JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales).
PLoS ONE
PUBLISHED: 01-01-2014
Lichen symbioses in the Pannariaceae associate an ascomycete and either cyanobacteria alone (usually Nostoc; bipartite thalli) or green algae and cyanobacteria (cyanobacteria being located in dedicated structures called cephalodia; tripartite thalli) as photosynthetic partners (photobionts). In bipartite thalli, cyanobacteria can either be restricted to a well-delimited layer within the thallus ('pannarioid' thalli) or spread over the thallus that becomes gelatinous when wet ('collematoid' thalli). We studied the collematoid genera Kroswia and Physma and an undescribed tripartite species along with representatives of the pannarioid genera Fuscopannaria, Pannaria and Parmeliella. Molecular inferences from 4 loci for the fungus and 1 locus for the photobiont and statistical analyses within a phylogenetic framework support the following: (a) several switches from pannarioid to collematoid thalli occured and are correlated with photobiont switches; the collematoid genus Kroswia is nested within the pannarioid genus Fuscopannaria and the collematoid genus Physma is sister to the pannarioid Parmeliella mariana group; (b) Nostoc associated with collematoid thalli in the Pannariaceae are related to that of the Collemataceae (which contains only collematoid thalli), and never associated with pannarioid thalli; Nostoc associated with pannarioid thalli also associate in other families with similar morphology; (c) ancestors of several lineages in the Pannariaceae developed tripartite thalli, bipartite thalli probably resulting from cephalodia emancipation from tripartite thalli which eventually evolved and diverged, as suggested by the same Nostoc present in the collematoid genus Physma and in the cephalodia of a closely related tripartite species; Photobiont switches and cephalodia emancipation followed by divergence are thus suspected to act as evolutionary drivers in the family Pannariaceae.
Authors: Revital Halevy, Lazar Shtirberg, Michael Shklyar, Aharon Blank.
Published: 08-26-2010
ABSTRACT
This protocol describes an electron spin resonance (ESR) micro-imaging method for three-dimensional mapping of oxygen levels in the immediate environment of live cells with micron-scale resolution1. Oxygen is one of the most important molecules in the cycle of life. It serves as the terminal electron acceptor of oxidative phosphorylation in the mitochondria and is used in the production of reactive oxygen species. Measurements of oxygen are important for the study of mitochondrial and metabolic functions, signaling pathways, effects of various stimuli, membrane permeability, and disease differentiation. Oxygen consumption is therefore an informative marker of cellular metabolism, which is broadly applicable to various biological systems from mitochondria to cells to whole organisms. Due to its importance, many methods have been developed for the measurements of oxygen in live systems. Current attempts to provide high-resolution oxygen imaging are based mainly on optical fluorescence and phosphorescence methods that fail to provide satisfactory results as they employ probes with high photo-toxicity and low oxygen sensitivity. ESR, which measures the signal from exogenous paramagnetic probes in the sample, is known to provide very accurate measurements of oxygen concentration. In a typical case, ESR measurements map the probe's lineshape broadening and/or relaxation-time shortening that are linked directly to the local oxygen concentration. (Oxygen is paramagnetic; therefore, when colliding with the exogenous paramagnetic probe, it shortness its relaxation times.) Traditionally, these types of experiments are carried out with low resolution, millimeter-scale ESR for small animals imaging. Here we show how ESR imaging can also be carried out in the micron-scale for the examination of small live samples. ESR micro-imaging is a relatively new methodology that enables the acquisition of spatially-resolved ESR signals with a resolution approaching 1 micron at room temperature2. The main aim of this protocol-paper is to show how this new method, along with newly developed oxygen-sensitive probes, can be applied to the mapping of oxygen levels in small live samples. A spatial resolution of ~30 x 30 x 100 μm is demonstrated, with near-micromolar oxygen concentration sensitivity and sub-femtomole absolute oxygen sensitivity per voxel. The use of ESR micro-imaging for oxygen mapping near cells complements the currently available techniques based on micro-electrodes or fluorescence/phosphorescence. Furthermore, with the proper paramagnetic probe, it will also be readily applicable for intracellular oxygen micro-imaging, a capability which other methods find very difficult to achieve.
26 Related JoVE Articles!
Play Button
Purification and Visualization of Lipopolysaccharide from Gram-negative Bacteria by Hot Aqueous-phenol Extraction
Authors: Michael R. Davis, Jr., Joanna B. Goldberg.
Institutions: University of Virginia Health System.
Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell1, 2. LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli3-5, and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence6-8. For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods9. LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background can lead to poor quality LPS that is not well resolved by any of the aforementioned methods. For these reasons, we believe that the following protocol, adapted from Westpahl and Jann10, is ideal for LPS extraction.
Immunology, Issue 63, Microbiology, Gram-negative, LPS, extraction, polysaccharide staining, Western immunoblot
3916
Play Button
The ITS2 Database
Authors: Benjamin Merget, Christian Koetschan, Thomas Hackl, Frank Förster, Thomas Dandekar, Tobias Müller, Jörg Schultz, Matthias Wolf.
Institutions: University of Würzburg, University of Würzburg.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8. The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.
Genetics, Issue 61, alignment, internal transcribed spacer 2, molecular systematics, secondary structure, ribosomal RNA, phylogenetic tree, homology modeling, phylogeny
3806
Play Button
Using a Comparative Species Approach to Investigate the Neurobiology of Paternal Responses
Authors: Catherine L. Franssen, Massimo Bardi, Kelly G. Lambert.
Institutions: Randolph-Macon College, Marshall University.
A goal of behavioral neuroscience is to identify underlying neurobiological factors that regulate specific behaviors. Using animal models to accomplish this goal, many methodological strategies require invasive techniques to manipulate the intensity of the behavior of interest (e.g., lesion methods, pharmacological manipulations, microdialysis techniques, genetically-engineered animal models). The utilization of a comparative species approach allows researchers to take advantage of naturally occurring differences in response strategies existing in closely related species. In our lab, we use two species of the Peromyscus genus that differ in paternal responses. The male California deer mouse (Peromyscus californicus) exhibits the same parental responses as the female whereas its cousin, the common deer mouse (Peromyscus maniculatus) exhibits virtually no nurturing/parental responses in the presence of pups. Of specific interest in this article is an exploration of the neurobiological factors associated with the affiliative social responses exhibited by the paternal California deer mouse. Because the behavioral neuroscience approach is multifaceted, the following key components of the study will be briefly addressed: the identification of appropriate species for this type of research; data collection for behavioral analysis; preparation and sectioning of the brains; basic steps involved in immunocytochemistry for the quantification of vasopressin-immunoreactivity; the use of neuroimaging software to quantify the brain tissue; the use of a microsequencing video analysis to score behavior and, finally, the appropriate statistical analyses to provide the most informed interpretations of the research findings.
Neuroscience, Issue 55, Peromyscus, mouse, paternal behavior, vasopressin, immunocytochemistry, microsequencing behavioral analysis
3173
Play Button
Single-plant, Sterile Microcosms for Nodulation and Growth of the Legume Plant Medicago truncatula with the Rhizobial Symbiont Sinorhizobium meliloti
Authors: Kathryn M. Jones, Hajeewaka C. Mendis, Clothilde Queiroux.
Institutions: Florida State University.
Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructive to either plants or bacteria. The symbiotic phenotypes of some plant and bacterial mutants become apparent after relatively short periods of growth, and do not require long-term observation of the host/symbiont interaction. However, subtle differences in symbiotic efficiency and nodule senescence phenotypes that are not apparent in the early stages of the nodulation process require relatively long growth periods before they can be scored. Several methods have been developed for long-term growth and observation of this host/symbiont pair. However, many of these methods require repeated watering, which increases the possibility of contamination by other microbes. Other methods require a relatively large space for growth of large numbers of plants. The method described here, symbiotic growth of M. truncatula/S. meliloti in sterile, single-plant microcosms, has several advantages. Plants in these microcosms have sufficient moisture and nutrients to ensure that watering is not required for up to 9 weeks, preventing cross-contamination during watering. This allows phenotypes to be quantified that might be missed in short-term growth systems, such as subtle delays in nodule development and early nodule senescence. Also, the roots and nodules in the microcosm are easily viewed through the plate lid, so up-rooting of the plants for observation is not required.
Environmental Sciences, Issue 80, Plant Roots, Medicago, Gram-Negative Bacteria, Nitrogen, Microbiological Techniques, Bacterial Processes, Symbiosis, botany, microbiology, Medicago truncatula, Sinorhizobium meliloti, nodule, nitrogen fixation, legume, rhizobia, bacteria
50916
Play Button
Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury
Authors: Teresa A. Evans, Deborah S. Barkauskas, Jay T. Myers, Alex Y. Huang.
Institutions: Case Western Reserve University, Case Western Reserve University, Case Western Reserve University.
Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury.
Cellular Biology, Issue 93, Intravital, spinal cord crush injury, chimera, microglia, macrophages, dorsal column crush, axonal dieback
52228
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
51580
Play Button
Visualizing Bacteria in Nematodes using Fluorescent Microscopy
Authors: Kristen E. Murfin, John Chaston, Heidi Goodrich-Blair.
Institutions: University of Wisconsin-Madison.
Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic 1-3. One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis 4. Steinernema nematodes are entomopathogenic, using their bacterial symbiont to kill insects 5. For transmission between insect hosts, the bacteria colonize the intestine of the nematode's infective juvenile stage 6-8. Recently, several other nematode species have been shown to utilize bacteria to kill insects 9-13, and investigations have begun examining the interactions between the nematodes and bacteria in these systems 9. We describe a method for visualization of a bacterial symbiont within or on a nematode host, taking advantage of the optical transparency of nematodes when viewed by microscopy. The bacteria are engineered to express a fluorescent protein, allowing their visualization by fluorescence microscopy. Many plasmids are available that carry genes encoding proteins that fluoresce at different wavelengths (i.e. green or red), and conjugation of plasmids from a donor Escherichia coli strain into a recipient bacterial symbiont is successful for a broad range of bacteria. The methods described were developed to investigate the association between Steinernema carpocapsae and Xenorhabdus nematophila 14. Similar methods have been used to investigate other nematode-bacterium associations 9,15-18and the approach therefore is generally applicable. The method allows characterization of bacterial presence and localization within nematodes at different stages of development, providing insights into the nature of the association and the process of colonization 14,16,19. Microscopic analysis reveals both colonization frequency within a population and localization of bacteria to host tissues 14,16,19-21. This is an advantage over other methods of monitoring bacteria within nematode populations, such as sonication 22or grinding 23, which can provide average levels of colonization, but may not, for example, discriminate populations with a high frequency of low symbiont loads from populations with a low frequency of high symbiont loads. Discriminating the frequency and load of colonizing bacteria can be especially important when screening or characterizing bacterial mutants for colonization phenotypes 21,24. Indeed, fluorescence microscopy has been used in high throughput screening of bacterial mutants for defects in colonization 17,18, and is less laborious than other methods, including sonication 22,25-27and individual nematode dissection 28,29.
Microbiology, Issue 68, Molecular Biology, Bacteriology, Developmental Biology, Colonization, Xenorhabdus, Steinernema, symbiosis, nematode, bacteria, fluorescence microscopy
4298
Play Button
Irrelevant Stimuli and Action Control: Analyzing the Influence of Ignored Stimuli via the Distractor-Response Binding Paradigm
Authors: Birte Moeller, Hartmut Schächinger, Christian Frings.
Institutions: Trier University, Trier University.
Selection tasks in which simple stimuli (e.g. letters) are presented and a target stimulus has to be selected against one or more distractor stimuli are frequently used in the research on human action control. One important question in these settings is how distractor stimuli, competing with the target stimulus for a response, influence actions. The distractor-response binding paradigm can be used to investigate this influence. It is particular useful to separately analyze response retrieval and distractor inhibition effects. Computer-based experiments are used to collect the data (reaction times and error rates). In a number of sequentially presented pairs of stimulus arrays (prime-probe design), participants respond to targets while ignoring distractor stimuli. Importantly, the factors response relation in the arrays of each pair (repetition vs. change) and distractor relation (repetition vs. change) are varied orthogonally. The repetition of the same distractor then has a different effect depending on response relation (repetition vs. change) between arrays. This result pattern can be explained by response retrieval due to distractor repetition. In addition, distractor inhibition effects are indicated by a general advantage due to distractor repetition. The described paradigm has proven useful to determine relevant parameters for response retrieval effects on human action.
Behavior, Issue 87, stimulus-response binding, distractor-response binding, response retrieval, distractor inhibition, event file, action control, selection task
51571
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
Methods to Explore the Influence of Top-down Visual Processes on Motor Behavior
Authors: Jillian Nguyen, Thomas V. Papathomas, Jay H. Ravaliya, Elizabeth B. Torres.
Institutions: Rutgers University, Rutgers University, Rutgers University, Rutgers University, Rutgers University.
Kinesthetic awareness is important to successfully navigate the environment. When we interact with our daily surroundings, some aspects of movement are deliberately planned, while others spontaneously occur below conscious awareness. The deliberate component of this dichotomy has been studied extensively in several contexts, while the spontaneous component remains largely under-explored. Moreover, how perceptual processes modulate these movement classes is still unclear. In particular, a currently debated issue is whether the visuomotor system is governed by the spatial percept produced by a visual illusion or whether it is not affected by the illusion and is governed instead by the veridical percept. Bistable percepts such as 3D depth inversion illusions (DIIs) provide an excellent context to study such interactions and balance, particularly when used in combination with reach-to-grasp movements. In this study, a methodology is developed that uses a DII to clarify the role of top-down processes on motor action, particularly exploring how reaches toward a target on a DII are affected in both deliberate and spontaneous movement domains.
Behavior, Issue 86, vision for action, vision for perception, motor control, reach, grasp, visuomotor, ventral stream, dorsal stream, illusion, space perception, depth inversion
51422
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
50201
Play Button
Establishment of Microbial Eukaryotic Enrichment Cultures from a Chemically Stratified Antarctic Lake and Assessment of Carbon Fixation Potential
Authors: Jenna M. Dolhi, Nicholas Ketchum, Rachael M. Morgan-Kiss.
Institutions: Miami University .
Lake Bonney is one of numerous permanently ice-covered lakes located in the McMurdo Dry Valleys, Antarctica. The perennial ice cover maintains a chemically stratified water column and unlike other inland bodies of water, largely prevents external input of carbon and nutrients from streams. Biota are exposed to numerous environmental stresses, including year-round severe nutrient deficiency, low temperatures, extreme shade, hypersalinity, and 24-hour darkness during the winter 1. These extreme environmental conditions limit the biota in Lake Bonney almost exclusively to microorganisms 2. Single-celled microbial eukaryotes (called "protists") are important players in global biogeochemical cycling 3 and play important ecological roles in the cycling of carbon in the dry valley lakes, occupying both primary and tertiary roles in the aquatic food web. In the dry valley aquatic food web, protists that fix inorganic carbon (autotrophy) are the major producers of organic carbon for organotrophic organisms 4, 2. Phagotrophic or heterotrophic protists capable of ingesting bacteria and smaller protists act as the top predators in the food web 5. Last, an unknown proportion of the protist population is capable of combined mixotrophic metabolism 6, 7. Mixotrophy in protists involves the ability to combine photosynthetic capability with phagotrophic ingestion of prey microorganisms. This form of mixotrophy differs from mixotrophic metabolism in bacterial species, which generally involves uptake dissolved carbon molecules. There are currently very few protist isolates from permanently ice-capped polar lakes, and studies of protist diversity and ecology in this extreme environment have been limited 8, 4, 9, 10, 5. A better understanding of protist metabolic versatility in the simple dry valley lake food web will aid in the development of models for the role of protists in the global carbon cycle. We employed an enrichment culture approach to isolate potentially phototrophic and mixotrophic protists from Lake Bonney. Sampling depths in the water column were chosen based on the location of primary production maxima and protist phylogenetic diversity 4, 11, as well as variability in major abiotic factors affecting protist trophic modes: shallow sampling depths are limited for major nutrients, while deeper sampling depths are limited by light availability. In addition, lake water samples were supplemented with multiple types of growth media to promote the growth of a variety of phototrophic organisms. RubisCO catalyzes the rate limiting step in the Calvin Benson Bassham (CBB) cycle, the major pathway by which autotrophic organisms fix inorganic carbon and provide organic carbon for higher trophic levels in aquatic and terrestrial food webs 12. In this study, we applied a radioisotope assay modified for filtered samples 13 to monitor maximum carboxylase activity as a proxy for carbon fixation potential and metabolic versatility in the Lake Bonney enrichment cultures.
Microbiology, Issue 62, Antarctic lake, McMurdo Dry Valleys, Enrichment cultivation, Microbial eukaryotes, RubisCO
3992
Play Button
Microarray-based Identification of Individual HERV Loci Expression: Application to Biomarker Discovery in Prostate Cancer
Authors: Philippe Pérot, Valérie Cheynet, Myriam Decaussin-Petrucci, Guy Oriol, Nathalie Mugnier, Claire Rodriguez-Lafrasse, Alain Ruffion, François Mallet.
Institutions: Joint Unit Hospices de Lyon-bioMérieux, BioMérieux, Hospices Civils de Lyon, Lyon 1 University, BioMérieux, Hospices Civils de Lyon, Hospices Civils de Lyon.
The prostate-specific antigen (PSA) is the main diagnostic biomarker for prostate cancer in clinical use, but it lacks specificity and sensitivity, particularly in low dosage values1​​. ‘How to use PSA' remains a current issue, either for diagnosis as a gray zone corresponding to a concentration in serum of 2.5-10 ng/ml which does not allow a clear differentiation to be made between cancer and noncancer2 or for patient follow-up as analysis of post-operative PSA kinetic parameters can pose considerable challenges for their practical application3,4. Alternatively, noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease, e.g. PCA3 in prostate cancer5,6 and to reveal uncharacterized aspects of tumor biology. Moreover, data from the ENCODE project published in 2012 showed that different RNA types cover about 62% of the genome. It also appears that the amount of transcriptional regulatory motifs is at least 4.5x higher than the one corresponding to protein-coding exons. Thus, long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) constitute a wide range of putative/candidate transcriptional regulatory sequences, as it is their primary function in infectious retroviruses. HERVs, which are spread throughout the human genome, originate from ancestral and independent infections within the germ line, followed by copy-paste propagation processes and leading to multicopy families occupying 8% of the human genome (note that exons span 2% of our genome). Some HERV loci still express proteins that have been associated with several pathologies including cancer7-10. We have designed a high-density microarray, in Affymetrix format, aiming to optimally characterize individual HERV loci expression, in order to better understand whether they can be active, if they drive ncRNA transcription or modulate coding gene expression. This tool has been applied in the prostate cancer field (Figure 1).
Medicine, Issue 81, Cancer Biology, Genetics, Molecular Biology, Prostate, Retroviridae, Biomarkers, Pharmacological, Tumor Markers, Biological, Prostatectomy, Microarray Analysis, Gene Expression, Diagnosis, Human Endogenous Retroviruses, HERV, microarray, Transcriptome, prostate cancer, Affymetrix
50713
Play Button
A Practical Guide to Phylogenetics for Nonexperts
Authors: Damien O'Halloran.
Institutions: The George Washington University.
Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts. We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteria and finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studies and also serve as an educational resource that could be incorporated into a classroom or teaching-lab.
Basic Protocol, Issue 84, phylogenetics, multiple sequence alignments, phylogenetic tree, BLAST executables, basic local alignment search tool, Bayesian models
50975
Play Button
Using Reverse Genetics to Manipulate the NSs Gene of the Rift Valley Fever Virus MP-12 Strain to Improve Vaccine Safety and Efficacy
Authors: Birte Kalveram, Olga Lihoradova, Sabarish V. Indran, Tetsuro Ikegami.
Institutions: University of Texas Medical Branch.
Rift Valley fever virus (RVFV), which causes hemorrhagic fever, neurological disorders or blindness in humans, and a high rate abortion and fetal malformation in ruminants1, has been classified as a HHS/USDA overlap select agent and a risk group 3 pathogen. It belongs to the genus Phlebovirus in the family Bunyaviridae and is one of the most virulent members of this family. Several reverse genetics systems for the RVFV MP-12 vaccine strain2,3 as well as wild-type RVFV strains 4-6, including ZH548 and ZH501, have been developed since 2006. The MP-12 strain (which is a risk group 2 pathogen and a non-select agent) is highly attenuated by several mutations in its M- and L-segments, but still carries virulent S-segment RNA3, which encodes a functional virulence factor, NSs. The rMP12-C13type (C13type) carrying 69% in-frame deletion of NSs ORF lacks all the known NSs functions, while it replicates as efficient as does MP-12 in VeroE6 cells lacking type-I IFN. NSs induces a shut-off of host transcription including interferon (IFN)-beta mRNA7,8 and promotes degradation of double-stranded RNA-dependent protein kinase (PKR) at the post-translational level.9,10 IFN-beta is transcriptionally upregulated by interferon regulatory factor 3 (IRF-3), NF-kB and activator protein-1 (AP-1), and the binding of IFN-beta to IFN-alpha/beta receptor (IFNAR) stimulates the transcription of IFN-alpha genes or other interferon stimulated genes (ISGs)11, which induces host antiviral activities, whereas host transcription suppression including IFN-beta gene by NSs prevents the gene upregulations of those ISGs in response to viral replication although IRF-3, NF-kB and activator protein-1 (AP-1) can be activated by RVFV7. . Thus, NSs is an excellent target to further attenuate MP-12, and to enhance host innate immune responses by abolishing the IFN-beta suppression function. Here, we describe a protocol for generating a recombinant MP-12 encoding mutated NSs, and provide an example of a screening method to identify NSs mutants lacking the function to suppress IFN-beta mRNA synthesis. In addition to its essential role in innate immunity, type-I IFN is important for the maturation of dendritic cells and the induction of an adaptive immune response12-14. Thus, NSs mutants inducing type-I IFN are further attenuated, but at the same time are more efficient at stimulating host immune responses than wild-type MP-12, which makes them ideal candidates for vaccination approaches.
Immunology, Issue 57, Rift Valley fever virus, reverse genetics, NSs, MP-12, vaccine development
3400
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
4056
Play Button
Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals
Authors: Mayandi Sivaguru, Glenn A. Fried, Carly A. H. Miller, Bruce W. Fouke.
Institutions: University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
An integrated suite of imaging techniques has been applied to determine the three-dimensional (3D) morphology and cellular structure of polyp tissues comprising the Caribbean reef building corals Montastraeaannularis and M. faveolata. These approaches include fluorescence microscopy (FM), serial block face imaging (SBFI), and two-photon confocal laser scanning microscopy (TPLSM). SBFI provides deep tissue imaging after physical sectioning; it details the tissue surface texture and 3D visualization to tissue depths of more than 2 mm. Complementary FM and TPLSM yield ultra-high resolution images of tissue cellular structure. Results have: (1) identified previously unreported lobate tissue morphologies on the outer wall of individual coral polyps and (2) created the first surface maps of the 3D distribution and tissue density of chromatophores and algae-like dinoflagellate zooxanthellae endosymbionts. Spectral absorption peaks of 500 nm and 675 nm, respectively, suggest that M. annularis and M. faveolata contain similar types of chlorophyll and chromatophores. However, M. annularis and M. faveolata exhibit significant differences in the tissue density and 3D distribution of these key cellular components. This study focusing on imaging methods indicates that SBFI is extremely useful for analysis of large mm-scale samples of decalcified coral tissues. Complimentary FM and TPLSM reveal subtle submillimeter scale changes in cellular distribution and density in nondecalcified coral tissue samples. The TPLSM technique affords: (1) minimally invasive sample preparation, (2) superior optical sectioning ability, and (3) minimal light absorption and scattering, while still permitting deep tissue imaging.
Environmental Sciences, Issue 91, Serial block face imaging, two-photon fluorescence microscopy, Montastraea annularis, Montastraea faveolata, 3D coral tissue morphology and structure, zooxanthellae, chromatophore, autofluorescence, light harvesting optimization, environmental change
51824
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
51047
Play Button
Synthesis of an Intein-mediated Artificial Protein Hydrogel
Authors: Miguel A. Ramirez, Zhilei Chen.
Institutions: Texas A&M University, College Station, Texas A&M University, College Station.
We present the synthesis of a highly stable protein hydrogel mediated by a split-intein-catalyzed protein trans-splicing reaction. The building blocks of this hydrogel are two protein block-copolymers each containing a subunit of a trimeric protein that serves as a crosslinker and one half of a split intein. A highly hydrophilic random coil is inserted into one of the block-copolymers for water retention. Mixing of the two protein block copolymers triggers an intein trans-splicing reaction, yielding a polypeptide unit with crosslinkers at either end that rapidly self-assembles into a hydrogel. This hydrogel is very stable under both acidic and basic conditions, at temperatures up to 50 °C, and in organic solvents. The hydrogel rapidly reforms after shear-induced rupture. Incorporation of a "docking station peptide" into the hydrogel building block enables convenient incorporation of "docking protein"-tagged target proteins. The hydrogel is compatible with tissue culture growth media, supports the diffusion of 20 kDa molecules, and enables the immobilization of bioactive globular proteins. The application of the intein-mediated protein hydrogel as an organic-solvent-compatible biocatalyst was demonstrated by encapsulating the horseradish peroxidase enzyme and corroborating its activity.
Bioengineering, Issue 83, split-intein, self-assembly, shear-thinning, enzyme, immobilization, organic synthesis
51202
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
50863
Play Button
A Rapid Technique for the Visualization of Live Immobilized Yeast Cells
Authors: Karl Zawadzki, James Broach.
Institutions: Princeton University.
We present here a simple, rapid, and extremely flexible technique for the immobilization and visualization of growing yeast cells by epifluorescence microscopy. The technique is equally suited for visualization of static yeast populations, or time courses experiments up to ten hours in length. My microscopy investigates epigenetic inheritance at the silent mating loci in S. cerevisiae. There are two silent mating loci, HML and HMR, which are normally not expressed as they are packaged in heterochromatin. In the sir1 mutant background silencing is weakened such that each locus can either be in the expressed or silenced epigenetic state, so in the population as a whole there is a mix of cells of different epigenetic states for both HML and HMR. My microscopy demonstrated that there is no relationship between the epigenetic state of HML and HMR in an individual cell. sir1 cells stochastically switch epigenetic states, establishing silencing at a previously expressed locus or expressing a previously silenced locus. My time course microscopy tracked individual sir1 cells and their offspring to score the frequency of each of the four possible epigenetic switches, and thus the stability of each of the epigenetic states in sir1 cells. See also Xu et al., Mol. Cell 2006.
Microbiology, Issue 1, yeast, HML, HMR, epigenetic, loci, silencing, cerevisiae
84
Play Button
The Structure of Skilled Forelimb Reaching in the Rat: A Movement Rating Scale
Authors: Ian Q Whishaw, Paul Whishaw, Bogdan Gorny.
Institutions: University of Lethbridge.
Skilled reaching for food is an evolutionary ancient act and is displayed by many animal species, including those in the sister clades of rodents and primates. The video describes a test situation that allows filming of repeated acts of reaching for food by the rat that has been mildly food deprived. A rat is trained to reach through a slot in a holding box for food pellet that it grasps and then places in its mouth for eating. Reaching is accomplished in the main by proximally driven movements of the limb but distal limb movements are used for pronating the paw, grasping the food, and releasing the food into the mouth. Each reach is divided into at least 10 movements of the forelimb and the reaching act is facilitated by postural adjustments. Each of the movements is described and examples of the movements are given from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Because the reaching act for the rat is very similar to that displayed by humans and nonhuman primates, the scale can be used for comparative purposes. from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Experiments on animals were performed in accordance with the guidelines and regulations set forth by the University of Lethbridge Animal Care Committee in accordance with the regulations of the Canadian Council on Animal Care.
Neuroscience, Issue 18, rat skilled reaching, rat reaching scale, rat, rat movement element rating scale, reaching elements
816
Play Button
Harvesting Sperm and Artificial Insemination of Mice
Authors: Amanda R. Duselis, Paul B. Vrana.
Institutions: University of California, Irvine (UCI).
Rodents of the genus Peromyscus (deer mice) are the most prevalent native North American mammals. Peromyscus species are used in a wide range of research including toxicology, epidemiology, ecology, behavioral, and genetic studies. Here they provide a useful model for demonstrations of artificial insemination. Methods similar to those displayed here have previously been used in several deer mouse studies, yet no detailed protocol has been published. Here we demonstrate the basic method of artificial insemination. This method entails extracting the testes from the rodent, then isolating the sperm from the epididymis and vas deferens. The mature sperm, now in a milk mixture, are placed in the female’s reproductive tract at the time of ovulation. Fertilization is counted as day 0 for timing of embryo development. Embryos can then be retrieved at the desired time-point and manipulated. Artificial insemination can be used in a variety of rodent species where exact embryo timing is crucial or hard to obtain. This technique is vital for species or strains (including most Peromyscus) which may not mate immediately and/or where mating is hard to assess. In addition, artificial insemination provides exact timing for embryo development either in mapping developmental progress and/or transgenic work. Reduced numbers of animals can be used since fertilization is guaranteed. This method has been vital to furthering the Peromyscus system, and will hopefully benefit others as well.
Developmental Biology, Issue 3, sperm, mouse, artificial insemination, dissection
184
Play Button
Electroporation of Mycobacteria
Authors: Renan Goude, Tanya Parish.
Institutions: Barts and the London School of Medicine and Dentistry, Barts and the London School of Medicine and Dentistry.
High efficiency transformation is a major limitation in the study of mycobacteria. The genus Mycobacterium can be difficult to transform; this is mainly caused by the thick and waxy cell wall, but is compounded by the fact that most molecular techniques have been developed for distantly-related species such as Escherichia coli and Bacillus subtilis. In spite of these obstacles, mycobacterial plasmids have been identified and DNA transformation of many mycobacterial species have now been described. The most successful method for introducing DNA into mycobacteria is electroporation. Many parameters contribute to successful transformation; these include the species/strain, the nature of the transforming DNA, the selectable marker used, the growth medium, and the conditions for the electroporation pulse. Optimized methods for the transformation of both slow- and fast-grower are detailed here. Transformation efficiencies for different mycobacterial species and with various selectable markers are reported.
Microbiology, Issue 15, Springer Protocols, Mycobacteria, Electroporation, Bacterial Transformation, Transformation Efficiency, Bacteria, Tuberculosis, M. Smegmatis, Springer Protocols
761
Play Button
Reaggregate Thymus Cultures
Authors: Andrea White, Eric Jenkinson, Graham Anderson.
Institutions: University of Birmingham .
Stromal cells within lymphoid tissues are organized into three-dimensional structures that provide a scaffold that is thought to control the migration and development of haemopoeitic cells. Importantly, the maintenance of this three-dimensional organization appears to be critical for normal stromal cell function, with two-dimensional monolayer cultures often being shown to be capable of supporting only individual fragments of lymphoid tissue function. In the thymus, complex networks of cortical and medullary epithelial cells act as a framework that controls the recruitment, proliferation, differentiation and survival of lymphoid progenitors as they undergo the multi-stage process of intrathymic T-cell development. Understanding the functional role of individual stromal compartments in the thymus is essential in determining how the thymus imposes self/non-self discrimination. Here we describe a technique in which we exploit the plasticity of fetal tissues to re-associate into intact three-dimensional structures in vitro, following their enzymatic disaggregation. The dissociation of fetal thymus lobes into heterogeneous cellular mixtures, followed by their separation into individual cellular components, is then combined with the in vitro re-association of these desired cell types into three-dimensional reaggregate structures at defined ratios, thereby providing an opportunity to investigate particular aspects of T-cell development under defined cellular conditions. (This article is based on work first reported Methods in Molecular Biology 2007, Vol. 380 pages 185-196).
Immunology, Issue 18, Springer Protocols, Thymus, 2-dGuo, Thymus Organ Cultures, Immune Tolerance, Positive and Negative Selection, Lymphoid Development
905
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.