JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Discovery of novel and differentially expressed microRNAs between fetal and adult backfat in cattle.
PLoS ONE
PUBLISHED: 01-01-2014
The posttranscriptional gene regulation mediated by microRNAs (miRNAs) plays an important role in various species. Recently, a large number of miRNAs and their expression patterns have been identified. However, to date, limited miRNAs have been reported to modulate adipogenesis and lipid deposition in beef cattle. Total RNAs from Chinese Qinchuan bovine backfat at fetal and adult stages were used to construct small RNA libraries for Illumina next-generation sequencing. A total of 13,915,411 clean reads were obtained from a fetal library and 14,244,946 clean reads from an adult library. In total, 475 known and 36 novel miRNA candidates from backfat were identified. The nucleotide bias, base editing, and family of the known miRNAs were also analyzed. Based on stem-loop qPCR, 15 specific miRNAs were detected, and the results showed that bta-miRNAn25 and miRNAn26 were highly expressed in backfat tissue, suggesting these small RNAs play a role in the development and maintenance of bovine subcutaneous fat tissue. Putative targets for miRNAn25 and miRNAn26 were predicted, and the 61 most significant target transcripts were related to lipid and fatty acid metabolism. Of interest, the canonical pathway and gene networks analyses revealed that PPAR?/RXR? activation and LXR/RXR activation were important components of the gene interaction hierarchy results. In the present study, we explored the backfat miRNAome differences between cattle of different developmental stages, expanding the expression repertoire of bovine miRNAs that could contribute to further studies on the fat development of cattle. Predication of target genes analysis of miRNA25 and miRNA26 also showed potential gene networks that affect lipid and fatty acid metabolism. These results may help in the design of new intervention strategies to improve beef quality.
Authors: Whitney A. Greene, Alberto. Muñiz, Mark L. Plamper, Ramesh R. Kaini, Heuy-Ching Wang.
Published: 06-24-2014
ABSTRACT
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.
18 Related JoVE Articles!
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
51285
Play Button
Performing Custom MicroRNA Microarray Experiments
Authors: Xiaoxiao Zhang, Yan Zeng.
Institutions: University of Minnesota , University of Minnesota .
microRNAs (miRNAs) are a large family of ˜ 22 nucleotides (nt) long RNA molecules that are widely expressed in eukaryotes 1. Complex genomes encode at least hundreds of miRNAs, which primarily inhibit the expression of a vast number of target genes post-transcriptionally 2, 3. miRNAs control a broad range of biological processes 1. In addition, altered miRNA expression has been associated with human diseases such as cancers, and miRNAs may serve as biomarkers for diseases and prognosis 4, 5. It is important, therefore, to understand the expression and functions of miRNAs under many different conditions. Three major approaches have been employed to profile miRNA expression: real-time PCR, microarray, and deep sequencing. The technique of miRNA microarray has the advantage of being high-throughput, generally less expensive, and most of the experimental and analysis steps can be carried out in a molecular biology laboratory at most universities, medical schools and associated hospitals. Here, we describe a method for performing custom miRNA microarray experiments. A miRNA probe set will be printed on glass slides to produce miRNA microarrays. RNA is isolated using a method or reagent that preserves small RNA species, and then labeled with a fluorescence dye. As a control, reference DNA oligonucleotides corresponding to a subset of miRNAs are also labeled with a different fluorescence dye. The reference DNA will serve to demonstrate the quality of the slide and hybridization and will also be used for data normalization. The RNA and DNA are mixed and hybridized to a microarray slide containing probes for most of the miRNAs in the database. After washing, the slide is scanned to obtain images, and intensities of the individual spots quantified. These raw signals will be further processed and analyzed as the expression data of the corresponding miRNAs. Microarray slides can be stripped and regenerated to reduce the cost of microarrays and to enhance the consistency of microarray experiments. The same principles and procedures are applicable to other types of custom microarray experiments.
Molecular Biology, Issue 56, Genetics, microRNA, custom microarray, oligonucleotide probes, RNA labeling
3250
Play Button
Identifying Targets of Human microRNAs with the LightSwitch Luciferase Assay System using 3'UTR-reporter Constructs and a microRNA Mimic in Adherent Cells
Authors: Shelley Force Aldred, Patrick Collins, Nathan Trinklein.
Institutions: SwitchGear Genomics.
MicroRNAs (miRNAs) are important regulators of gene expression and play a role in many biological processes. More than 700 human miRNAs have been identified so far with each having up to hundreds of unique target mRNAs. Computational tools, expression and proteomics assays, and chromatin-immunoprecipitation-based techniques provide important clues for identifying mRNAs that are direct targets of a particular miRNA. In addition, 3'UTR-reporter assays have become an important component of thorough miRNA target studies because they provide functional evidence for and quantitate the effects of specific miRNA-3'UTR interactions in a cell-based system. To enable more researchers to leverage 3'UTR-reporter assays and to support the scale-up of such assays to high-throughput levels, we have created a genome-wide collection of human 3'UTR luciferase reporters in the highly-optimized LightSwitch Luciferase Assay System. The system also includes synthetic miRNA target reporter constructs for use as positive controls, various endogenous 3'UTR reporter constructs, and a series of standardized experimental protocols. Here we describe a method for co-transfection of individual 3'UTR-reporter constructs along with a miRNA mimic that is efficient, reproducible, and amenable to high-throughput analysis.
Genetics, Issue 55, MicroRNA, miRNA, mimic, Clone, 3' UTR, Assay, vector, LightSwitch, luciferase, co-transfection, 3'UTR REPORTER, mirna target, microrna target, reporter, GoClone, Reporter construct
3343
Play Button
Profiling of Pre-micro RNAs and microRNAs using Quantitative Real-time PCR (qPCR) Arrays
Authors: Pauline Chugh, Kristen Tamburro, Dirk P Dittmer.
Institutions: University of North Carolina at Chapel Hill.
Quantitative real-time PCR (QPCR) has emerged as an accurate and valuable tool in profiling gene expression levels. One of its many advantages is a lower detection limit compared to other methods of gene expression profiling while using smaller amounts of input for each assay. Automated qPCR setup has improved this field by allowing for greater reproducibility. Its convenient and rapid setup allows for high-throughput experiments, enabling the profiling of many different genes simultaneously in each experiment. This method along with internal plate controls also reduces experimental variables common to other techniques. We recently developed a qPCR assay for profiling of pre-microRNAs (pre-miRNAs) using a set of 186 primer pairs. MicroRNAs have emerged as a novel class of small, non-coding RNAs with the ability to regulate many mRNA targets at the post-transcriptional level. These small RNAs are first transcribed by RNA polymerase II as a primary miRNA (pri-miRNA) transcript, which is then cleaved into the precursor miRNA (pre-miRNA). Pre-miRNAs are exported to the cytoplasm where Dicer cleaves the hairpin loop to yield mature miRNAs. Increases in miRNA levels can be observed at both the precursor and mature miRNA levels and profiling of both of these forms can be useful. There are several commercially available assays for mature miRNAs; however, their high cost may deter researchers from this profiling technique. Here, we discuss a cost-effective, reliable, SYBR-based qPCR method of profiling pre-miRNAs. Changes in pre-miRNA levels often reflect mature miRNA changes and can be a useful indicator of mature miRNA expression. However, simultaneous profiling of both pre-miRNAs and mature miRNAs may be optimal as they can contribute nonredundant information and provide insight into microRNA processing. Furthermore, the technique described here can be expanded to encompass the profiling of other library sets for specific pathways or pathogens.
Biochemistry, Issue 46, pre-microRNAs, qPCR, profiling, Tecan Freedom Evo, robot
2210
Play Button
Highly Efficient Ligation of Small RNA Molecules for MicroRNA Quantitation by High-Throughput Sequencing
Authors: Jerome E. Lee, Rui Yi.
Institutions: University of Colorado, Boulder, University of Colorado, Denver.
MiRNA cloning and high-throughput sequencing, termed miR-Seq, stands alone as a transcriptome-wide approach to quantify miRNAs with single nucleotide resolution. This technique captures miRNAs by attaching 3’ and 5’ oligonucleotide adapters to miRNA molecules and allows de novo miRNA discovery. Coupling with powerful next-generation sequencing platforms, miR-Seq has been instrumental in the study of miRNA biology. However, significant biases introduced by oligonucleotide ligation steps have prevented miR-Seq from being employed as an accurate quantitation tool. Previous studies demonstrate that biases in current miR-Seq methods often lead to inaccurate miRNA quantification with errors up to 1,000-fold for some miRNAs1,2. To resolve these biases imparted by RNA ligation, we have developed a small RNA ligation method that results in ligation efficiencies of over 95% for both 3’ and 5′ ligation steps. Benchmarking this improved library construction method using equimolar or differentially mixed synthetic miRNAs, consistently yields reads numbers with less than two-fold deviation from the expected value. Furthermore, this high-efficiency miR-Seq method permits accurate genome-wide miRNA profiling from in vivo total RNA samples2.
Molecular Biology, Issue 93, RNA, ligation, miRNA, miR-Seq, linker, oligonucleotide, high-throughput sequencing
52095
Play Button
Isolation of Small Noncoding RNAs from Human Serum
Authors: Samantha Khoury, Pamela Ajuyah, Nham Tran.
Institutions: University of Technology, Sydney, University of Technology, Sydney, Royal Prince Alfred Hospital.
The analysis of RNA and its expression is a common feature in many laboratories. Of significance is the emergence of small RNAs like microRNAs, which are found in mammalian cells. These small RNAs are potent gene regulators controlling vital pathways such as growth, development and death and much interest has been directed at their expression in bodily fluids. This is due to their dysregulation in human diseases such as cancer and their potential application as serum biomarkers. However, the analysis of miRNA expression in serum may be problematic. In most cases the amount of serum is limiting and serum contains low amounts of total RNA, of which small RNAs only constitute 0.4-0.5%1. Thus the isolation of sufficient amounts of quality RNA from serum is a major challenge to researchers today. In this technical paper, we demonstrate a method which uses only 400 µl of human serum to obtain sufficient RNA for either DNA arrays or qPCR analysis. The advantages of this method are its simplicity and ability to yield high quality RNA. It requires no specialized columns for purification of small RNAs and utilizes general reagents and hardware found in common laboratories. Our method utilizes a Phase Lock Gel to eliminate phenol contamination while at the same time yielding high quality RNA. We also introduce an additional step to further remove all contaminants during the isolation step. This protocol is very effective in isolating yields of total RNA of up to 100 ng/µl from serum but can also be adapted for other biological tissues.
Bioengineering, Issue 88, small noncoding RNA isolation, microRNAs, human serum, qPCR, guanidinium thiocyanate , Phase Lock Gels, arrays
51443
Play Button
A Calcium Bioluminescence Assay for Functional Analysis of Mosquito (Aedes aegypti) and Tick (Rhipicephalus microplus) G Protein-coupled Receptors
Authors: Hsiao-Ling Lu, Cymon N. Kersch, Suparna Taneja-Bageshwar, Patricia V. Pietrantonio.
Institutions: Texas A&M University (TAMU), Texas A&M University (TAMU).
Arthropod hormone receptors are potential targets for novel pesticides as they regulate many essential physiological and behavioral processes. The majority of them belong to the superfamily of G protein-coupled receptors (GPCRs). We have focused on characterizing arthropod kinin receptors from the tick and mosquito. Arthropod kinins are multifunctional neuropeptides with myotropic, diuretic, and neurotransmitter function. Here, a method for systematic analyses of structure-activity relationships of insect kinins on two heterologous kinin receptor-expressing systems is described. We provide important information relevant to the development of biostable kinin analogs with the potential to disrupt the diuretic, myotropic, and/or digestive processes in ticks and mosquitoes. The kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini), and the mosquito Aedes aegypti (Linnaeus), were stably expressed in the mammalian cell line CHO-K1. Functional analyses of these receptors were completed using a calcium bioluminescence plate assay that measures intracellular bioluminescence to determine cytoplasmic calcium levels upon peptide application to these recombinant cells. This method takes advantage of the aequorin protein, a photoprotein isolated from luminescent jellyfish. We transiently transfected the aequorin plasmid (mtAEQ/pcDNA1) in cell lines that stably expressed the kinin receptors. These cells were then treated with the cofactor coelenterazine, which complexes with intracellular aequorin. This bond breaks in the presence of calcium, emitting luminescence levels indicative of the calcium concentration. As the kinin receptor signals through the release of intracellular calcium, the intensity of the signal is related to the potency of the peptide. This protocol is a synthesis of several previously described protocols with modifications; it presents step-by-step instructions for the stable expression of GPCRs in a mammalian cell line through functional plate assays (Staubly et al., 2002 and Stables et al., 1997). Using this methodology, we were able to establish stable cell lines expressing the mosquito and the tick kinin receptors, compare the potency of three mosquito kinins, identify critical amino acid positions for the ligand-receptor interaction, and perform semi-throughput screening of a peptide library. Because insect kinins are susceptible to fast enzymatic degradation by endogenous peptidases, they are severely limited in use as tools for pest control or endocrinological studies. Therefore, we also tested kinin analogs containing amino isobutyric acid (Aib) to enhance their potency and biostability. This peptidase-resistant analog represents an important lead in the development of biostable insect kinin analogs and may aid in the development of neuropeptide-based arthropod control strategies.
Immunology, Issue 50, Aequorin calcium reporter, coelenterazine, G protein-coupled receptor (GPCR), CHO-K1 cells, mammalian cell culture, neuropeptide SAR studies (SAR= structure-activity relationships), receptor-neuropeptide interaction, bioluminescence, drug discovery, semi-throughput screening in plates
2732
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
51519
Play Button
MicroRNA Detection in Prostate Tumors by Quantitative Real-time PCR (qPCR)
Authors: Aida Gordanpour, Robert K. Nam, Linda Sugar, Stephanie Bacopulos, Arun Seth.
Institutions: University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada, Sunnybrook Health Sciences Centre, Toronto, Canada, Sunnybrook Research Institute.
MicroRNAs (miRNAs) are single-stranded, 18–24 nucleotide long, non-coding RNA molecules. They are involved in virtually every cellular process including development1, apoptosis2, and cell cycle regulation3. MiRNAs are estimated to regulate the expression of 30% to 90% of human genes4 by binding to their target messenger RNAs (mRNAs)5. Widespread dysregulation of miRNAs has been reported in various diseases and cancer subtypes6. Due to their prevalence and unique structure, these small molecules are likely to be the next generation of biomarkers, therapeutic agents and/or targets. Methods used to investigate miRNA expression include SYBR green I dye- based as well as Taqman-probe based qPCR. If miRNAs are to be effectively used in the clinical setting, it is imperative that their detection in fresh and/or archived clinical samples be accurate, reproducible, and specific. qPCR has been widely used for validating expression of miRNAs in whole genome analyses such as microarray studies7. The samples used in this protocol were from patients who underwent radical prostatectomy for clinically localized prostate cancer; however other tissues and cell lines can be substituted in. Prostate specimens were snap-frozen in liquid nitrogen after resection. Clinical variables and follow-up information for each patient were collected for subsequent analysis8. Quantification of miRNA levels in prostate tumor samples. The main steps in qPCR analysis of tumors are: Total RNA extraction, cDNA synthesis, and detection of qPCR products using miRNA-specific primers. Total RNA, which includes mRNA, miRNA, and other small RNAs were extracted from specimens using TRIzol reagent. Qiagen's miScript System was used to synthesize cDNA and perform qPCR (Figure 1). Endogenous miRNAs are not polyadenylated, therefore during the reverse transcription process, a poly(A) polymerase polyadenylates the miRNA. The miRNA is used as a template to synthesize cDNA using oligo-dT and Reverse Transcriptase. A universal tag sequence on the 5' end of oligo-dT primers facilitates the amplification of cDNA in the PCR step. PCR product amplification is detected by the level of fluorescence emitted by SYBR Green, a dye which intercalates into double stranded DNA. Specific miRNA primers, along with a Universal Primer that binds to the universal tag sequence will amplify specific miRNA sequences. The miScript Primer Assays are available for over a thousand human-specific miRNAs, and hundreds of murine-specific miRNAs. Relative quantification method was used here to quantify the expression of miRNAs. To correct for variability amongst different samples, expression levels of a target miRNA is normalized to the expression levels of a reference gene. The choice of a gene on which to normalize the expression of targets is critical in relative quantification method of analysis. Examples of reference genes typically used in this capacity are the small RNAs RNU6B, RNU44, and RNU48 as they are considered to be stably expressed across most samples. In this protocol, RNU6B is used as the reference gene.
Cancer Biology, Issue 63, Medicine, cancer, primer assay, Prostate, microRNA, tumor, qPCR
3874
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis
Authors: Shan Zong, Shuyun Deng, Kenian Chen, Jia Qian Wu.
Institutions: The University of Texas Graduate School of Biomedical Sciences at Houston.
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Genetics, Issue 93, EML Cells, Self-renewal, Differentiation, Hematopoietic precursor cell, RNA-Sequencing, Data analysis
52104
Play Button
Cerebrospinal Fluid MicroRNA Profiling Using Quantitative Real Time PCR
Authors: Marco Pacifici, Serena Delbue, Ferdous Kadri, Francesca Peruzzi.
Institutions: LSU Health Sciences Center, University of Milan.
MicroRNAs (miRNAs) constitute a potent layer of gene regulation by guiding RISC to target sites located on mRNAs and, consequently, by modulating their translational repression. Changes in miRNA expression have been shown to be involved in the development of all major complex diseases. Furthermore, recent findings showed that miRNAs can be secreted to the extracellular environment and enter the bloodstream and other body fluids where they can circulate with high stability. The function of such circulating miRNAs remains largely elusive, but systematic high throughput approaches, such as miRNA profiling arrays, have lead to the identification of miRNA signatures in several pathological conditions, including neurodegenerative disorders and several types of cancers. In this context, the identification of miRNA expression profile in the cerebrospinal fluid, as reported in our recent study, makes miRNAs attractive candidates for biomarker analysis. There are several tools available for profiling microRNAs, such as microarrays, quantitative real-time PCR (qPCR), and deep sequencing. Here, we describe a sensitive method to profile microRNAs in cerebrospinal fluids by quantitative real-time PCR. We used the Exiqon microRNA ready-to-use PCR human panels I and II V2.R, which allows detection of 742 unique human microRNAs. We performed the arrays in triplicate runs and we processed and analyzed data using the GenEx Professional 5 software. Using this protocol, we have successfully profiled microRNAs in various types of cell lines and primary cells, CSF, plasma, and formalin-fixed paraffin-embedded tissues.
Medicine, Issue 83, microRNAs, biomarkers, miRNA profiling, qPCR, cerebrospinal fluid, RNA, DNA
51172
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
4393
Play Button
Enhanced Northern Blot Detection of Small RNA Species in Drosophila Melanogaster
Authors: Pietro Laneve, Angela Giangrande.
Institutions: Institut de Génétique et de Biologie Moléculaire et Cellulaire, Istituto Italiano di Tecnologia.
The last decades have witnessed the explosion of scientific interest around gene expression control mechanisms at the RNA level. This branch of molecular biology has been greatly fueled by the discovery of noncoding RNAs as major players in post-transcriptional regulation. Such a revolutionary perspective has been accompanied and triggered by the development of powerful technologies for profiling short RNAs expression, both at the high-throughput level (genome-wide identification) or as single-candidate analysis (steady state accumulation of specific species). Although several state-of-art strategies are currently available for dosing or visualizing such fleeing molecules, Northern Blot assay remains the eligible approach in molecular biology for immediate and accurate evaluation of RNA expression. It represents a first step toward the application of more sophisticated, costly technologies and, in many cases, remains a preferential method to easily gain insights into RNA biology. Here we overview an efficient protocol (Enhanced Northern Blot) for detecting weakly expressed microRNAs (or other small regulatory RNA species) from Drosophila melanogaster whole embryos, manually dissected larval/adult tissues or in vitro cultured cells. A very limited amount of RNA is required and the use of material from flow cytometry-isolated cells can be also envisaged.
Molecular Biology, Issue 90, Northern blotting, Noncoding RNAs, microRNAs, rasiRNA, Gene expression, Gcm/Glide, Drosophila melanogaster
51814
Play Button
Genome-wide Screen for miRNA Targets Using the MISSION Target ID Library
Authors: Matthew J. Coussens, Kevin Forbes, Carol Kreader, Jack Sago, Carrie Cupp, John Swarthout.
Institutions: Sigma-Aldrich.
The Target ID Library is designed to assist in discovery and identification of microRNA (miRNA) targets. The Target ID Library is a plasmid-based, genome-wide cDNA library cloned into the 3'UTR downstream from the dual-selection fusion protein, thymidine kinase-zeocin (TKzeo). The first round of selection is for stable transformants, followed with introduction of a miRNA of interest, and finally, selecting for cDNAs containing the miRNA's target. Selected cDNAs are identified by sequencing (see Figure 1-3 for Target ID Library Workflow and details). To ensure broad coverage of the human transcriptome, Target ID Library cDNAs were generated via oligo-dT priming using a pool of total RNA prepared from multiple human tissues and cell lines. Resulting cDNA range from 0.5 to 4 kb, with an average size of 1.2 kb, and were cloned into the p3΄TKzeo dual-selection plasmid (see Figure 4 for plasmid map). The gene targets represented in the library can be found on the Sigma-Aldrich webpage. Results from Illumina sequencing (Table 3), show that the library includes 16,922 of the 21,518 unique genes in UCSC RefGene (79%), or 14,000 genes with 10 or more reads (66%).
Genetics, Issue 62, Target ID, miRNA, ncRNA, RNAi, genomics
3303
Play Button
Purification and microRNA Profiling of Exosomes Derived from Blood and Culture Media
Authors: Marguerite K. McDonald, Kathryn E. Capasso, Seena K. Ajit.
Institutions: Drexel University College of Medicine.
Stable miRNAs are present in all body fluids and some circulating miRNAs are protected from degradation by sequestration in small vesicles called exosomes. Exosomes can fuse with the plasma membrane resulting in the transfer of RNA and proteins to the target cell. Their biological functions include immune response, antigen presentation, and intracellular communication. Delivery of miRNAs that can regulate gene expression in the recipient cells via blood has opened novel avenues for target intervention. In addition to offering a strategy for delivery of drugs or RNA therapeutic agents, exosomal contents can serve as biomarkers that can aid in diagnosis, determining treatment options and prognosis. Here we will describe the procedure for quantitatively analyzing miRNAs and messenger RNAs (mRNA) from exosomes secreted in blood and cell culture media. Purified exosomes will be characterized using western blot analysis for exosomal markers and PCR for mRNAs of interest. Transmission electron microscopy (TEM) and immunogold labeling will be used to validate exosomal morphology and integrity. Total RNA will be purified from these exosomes to ensure that we can study both mRNA and miRNA from the same sample. After validating RNA integrity by Bioanalyzer, we will perform a medium throughput quantitative real time PCR (qPCR) to identify the exosomal miRNA using Taqman Low Density Array (TLDA) cards and gene expression studies for transcripts of interest. These protocols can be used to quantify changes in exosomal miRNAs in patients, rodent models and cell culture media before and after pharmacological intervention. Exosomal contents vary due to the source of origin and the physiological conditions of cells that secrete exosomes. These variations can provide insight on how cells and systems cope with stress or physiological perturbations. Our representative data show variations in miRNAs present in exosomes purified from mouse blood, human blood and human cell culture media. Here we will describe the procedure for quantitatively analyzing miRNAs and messenger RNAs (mRNA) from exosomes secreted in blood and cell culture media. Purified exosomes will be characterized using western blot analysis for exosomal markers and PCR for mRNAs of interest. Transmission electron microscopy (TEM) and immunogold labeling will be used to validate exosomal morphology and integrity. Total RNA will be purified from these exosomes to ensure that we can study both mRNA and miRNA from the same sample. After validating RNA integrity by Bioanalyzer, we will perform a medium throughput quantitative real time PCR (qPCR) to identify the exosomal miRNA using Taqman Low Density Array (TLDA) cards and gene expression studies for transcripts of interest. These protocols can be used to quantify changes in exosomal miRNAs in patients, rodent models and cell culture media before and after pharmacological intervention. Exosomal contents vary due to the source of origin and the physiological conditions of cells that secrete exosomes. These variations can provide insight on how cells and systems cope with stress or physiological perturbations. Our representative data show variations in miRNAs present in exosomes purified from mouse blood, human blood and human cell culture media
Genetics, Issue 76, Molecular Biology, Cellular Biology, Medicine, Biochemistry, Genomics, Pharmacology, Exosomes, RNA, MicroRNAs, Biomarkers, Pharmacological, Exosomes, microRNA, qPCR, PCR, blood, biomarker, TLDA, profiling, sequencing, cell culture
50294
Play Button
The Bovine Lung in Biomedical Research: Visually Guided Bronchoscopy, Intrabronchial Inoculation and In Vivo Sampling Techniques
Authors: Annette Prohl, Carola Ostermann, Markus Lohr, Petra Reinhold.
Institutions: Friedrich-Loeffler-Institut.
There is an ongoing search for alternative animal models in research of respiratory medicine. Depending on the goal of the research, large animals as models of pulmonary disease often resemble the situation of the human lung much better than mice do. Working with large animals also offers the opportunity to sample the same animal repeatedly over a certain course of time, which allows long-term studies without sacrificing the animals. The aim was to establish in vivo sampling methods for the use in a bovine model of a respiratory Chlamydia psittaci infection. Sampling should be performed at various time points in each animal during the study, and the samples should be suitable to study the host response, as well as the pathogen under experimental conditions. Bronchoscopy is a valuable diagnostic tool in human and veterinary medicine. It is a safe and minimally invasive procedure. This article describes the intrabronchial inoculation of calves as well as sampling methods for the lower respiratory tract. Videoendoscopic, intrabronchial inoculation leads to very consistent clinical and pathological findings in all inoculated animals and is, therefore, well-suited for use in models of infectious lung disease. The sampling methods described are bronchoalveolar lavage, bronchial brushing and transbronchial lung biopsy. All of these are valuable diagnostic tools in human medicine and could be adapted for experimental purposes to calves aged 6-8 weeks. The samples obtained were suitable for both pathogen detection and characterization of the severity of lung inflammation in the host.
Medicine, Issue 89, translational medicine, respiratory models, bovine lung, bronchoscopy, transbronchial lung biopsy, bronchoalveolar lavage, bronchial brushing, cytology brush
51557
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.