JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Alternative performance measures for prediction models.
PUBLISHED: 01-01-2014
As a performance measure for a prediction model, the area under the receiver operating characteristic curve (AUC) is insensitive to the addition of strong markers. A number of measures sensitive to performance change have recently been proposed; however, these relative-performance measures may lead to self-contradictory conclusions. This paper examines alternative performance measures for prediction models: the Lorenz curve-based Gini and Pietra indices, and a standardized version of the Brier score, the scaled Brier. Computer simulations are performed in order to study the sensitivity of these measures to performance change when a new marker is added to a baseline model. When the discrimination power of the added marker is concentrated in the gray zone of the baseline model, the AUC and the Gini show minimal performance improvements. The Pietra and the scaled Brier show more significant improvements in the same situation, comparatively. The Pietra and the scaled Brier indices are therefore recommended for prediction model performance measurement, in light of their ease of interpretation, clinical relevance and sensitivity to gray-zone resolving markers.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
20 Related JoVE Articles!
Play Button
A Neuroscientific Approach to the Examination of Concussions in Student-Athletes
Authors: Caroline J. Ketcham, Eric Hall, Walter R. Bixby, Srikant Vallabhajosula, Stephen E. Folger, Matthew C. Kostek, Paul C. Miller, Kenneth P. Barnes, Kirtida Patel.
Institutions: Elon University, Elon University, Duquesne University, Elon University.
Concussions are occurring at alarming rates in the United States and have become a serious public health concern. The CDC estimates that 1.6 to 3.8 million concussions occur in sports and recreational activities annually. Concussion as defined by the 2013 Concussion Consensus Statement “may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an ‘impulsive’ force transmitted to the head.” Concussions leave the individual with both short- and long-term effects. The short-term effects of sport related concussions may include changes in playing ability, confusion, memory disturbance, the loss of consciousness, slowing of reaction time, loss of coordination, headaches, dizziness, vomiting, changes in sleep patterns and mood changes. These symptoms typically resolve in a matter of days. However, while some individuals recover from a single concussion rather quickly, many experience lingering effects that can last for weeks or months. The factors related to concussion susceptibility and the subsequent recovery times are not well known or understood at this time. Several factors have been suggested and they include the individual’s concussion history, the severity of the initial injury, history of migraines, history of learning disabilities, history of psychiatric comorbidities, and possibly, genetic factors. Many studies have individually investigated certain factors both the short-term and long-term effects of concussions, recovery time course, susceptibility and recovery. What has not been clearly established is an effective multifaceted approach to concussion evaluation that would yield valuable information related to the etiology, functional changes, and recovery. The purpose of this manuscript is to show one such multifaceted approached which examines concussions using computerized neurocognitive testing, event related potentials, somatosensory perceptual responses, balance assessment, gait assessment and genetic testing.
Medicine, Issue 94, Concussions, Student-Athletes, Mild Traumatic Brain Injury, Genetics, Cognitive Function, Balance, Gait, Somatosensory
Play Button
A Simple Stimulatory Device for Evoking Point-like Tactile Stimuli: A Searchlight for LFP to Spike Transitions
Authors: Antonio G. Zippo, Sara Nencini, Gian Carlo Caramenti, Maurizio Valente, Riccardo Storchi, Gabriele E.M. Biella.
Institutions: National Research Council, National Research Council, University of Manchester.
Current neurophysiological research has the aim to develop methodologies to investigate the signal route from neuron to neuron, namely in the transitions from spikes to Local Field Potentials (LFPs) and from LFPs to spikes. LFPs have a complex dependence on spike activity and their relation is still poorly understood1. The elucidation of these signal relations would be helpful both for clinical diagnostics (e.g. stimulation paradigms for Deep Brain Stimulation) and for a deeper comprehension of neural coding strategies in normal and pathological conditions (e.g. epilepsy, Parkinson disease, chronic pain). To this aim, one has to solve technical issues related to stimulation devices, stimulation paradigms and computational analyses. Therefore, a custom-made stimulation device was developed in order to deliver stimuli well regulated in space and time that does not incur in mechanical resonance. Subsequently, as an exemplification, a set of reliable LFP-spike relationships was extracted. The performance of the device was investigated by extracellular recordings, jointly spikes and LFP responses to the applied stimuli, from the rat Primary Somatosensory cortex. Then, by means of a multi-objective optimization strategy, a predictive model for spike occurrence based on LFPs was estimated. The application of this paradigm shows that the device is adequately suited to deliver high frequency tactile stimulation, outperforming common piezoelectric actuators. As a proof of the efficacy of the device, the following results were presented: 1) the timing and reliability of LFP responses well match the spike responses, 2) LFPs are sensitive to the stimulation history and capture not only the average response but also the trial-to-trial fluctuations in the spike activity and, finally, 3) by using the LFP signal it is possible to estimate a range of predictive models that capture different aspects of the spike activity.
Neuroscience, Issue 85, LFP, spike, tactile stimulus, Multiobjective function, Neuron, somatosensory cortex
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
Authors: Richard A. Rudick, Deborah Miller, Francois Bethoux, Stephen M. Rao, Jar-Chi Lee, Darlene Stough, Christine Reece, David Schindler, Bernadett Mamone, Jay Alberts.
Institutions: Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation.
Precise measurement of neurological and neuropsychological impairment and disability in multiple sclerosis is challenging. We report a new test, the Multiple Sclerosis Performance Test (MSPT), which represents a new approach to quantifying MS related disability. The MSPT takes advantage of advances in computer technology, information technology, biomechanics, and clinical measurement science. The resulting MSPT represents a computer-based platform for precise, valid measurement of MS severity. Based on, but extending the Multiple Sclerosis Functional Composite (MSFC), the MSPT provides precise, quantitative data on walking speed, balance, manual dexterity, visual function, and cognitive processing speed. The MSPT was tested by 51 MS patients and 49 healthy controls (HC). MSPT scores were highly reproducible, correlated strongly with technician-administered test scores, discriminated MS from HC and severe from mild MS, and correlated with patient reported outcomes. Measures of reliability, sensitivity, and clinical meaning for MSPT scores were favorable compared with technician-based testing. The MSPT is a potentially transformative approach for collecting MS disability outcome data for patient care and research. Because the testing is computer-based, test performance can be analyzed in traditional or novel ways and data can be directly entered into research or clinical databases. The MSPT could be widely disseminated to clinicians in practice settings who are not connected to clinical trial performance sites or who are practicing in rural settings, drastically improving access to clinical trials for clinicians and patients. The MSPT could be adapted to out of clinic settings, like the patient’s home, thereby providing more meaningful real world data. The MSPT represents a new paradigm for neuroperformance testing. This method could have the same transformative effect on clinical care and research in MS as standardized computer-adapted testing has had in the education field, with clear potential to accelerate progress in clinical care and research.
Medicine, Issue 88, Multiple Sclerosis, Multiple Sclerosis Functional Composite, computer-based testing, 25-foot walk test, 9-hole peg test, Symbol Digit Modalities Test, Low Contrast Visual Acuity, Clinical Outcome Measure
Play Button
Development of a Virtual Reality Assessment of Everyday Living Skills
Authors: Stacy A. Ruse, Vicki G. Davis, Alexandra S. Atkins, K. Ranga R. Krishnan, Kolleen H. Fox, Philip D. Harvey, Richard S.E. Keefe.
Institutions: NeuroCog Trials, Inc., Duke-NUS Graduate Medical Center, Duke University Medical Center, Fox Evaluation and Consulting, PLLC, University of Miami Miller School of Medicine.
Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.
Behavior, Issue 86, Virtual Reality, Cognitive Assessment, Functional Capacity, Computer Based Assessment, Schizophrenia, Neuropsychology, Aging, Dementia
Play Button
The 5-Choice Serial Reaction Time Task: A Task of Attention and Impulse Control for Rodents
Authors: Samuel K. Asinof, Tracie A. Paine.
Institutions: Oberlin College.
This protocol describes the 5-choice serial reaction time task, which is an operant based task used to study attention and impulse control in rodents. Test day challenges, modifications to the standard task, can be used to systematically tax the neural systems controlling either attention or impulse control. Importantly, these challenges have consistent effects on behavior across laboratories in intact animals and can reveal either enhancements or deficits in cognitive function that are not apparent when rats are only tested on the standard task. The variety of behavioral measures that are collected can be used to determine if other factors (i.e., sedation, motivation deficits, locomotor impairments) are contributing to changes in performance. The versatility of the 5CSRTT is further enhanced because it is amenable to combination with pharmacological, molecular, and genetic techniques.
Neuroscience, Issue 90, attention, impulse control, neuroscience, cognition, rodent
Play Button
A Multi-Modal Approach to Assessing Recovery in Youth Athletes Following Concussion
Authors: Nick Reed, James Murphy, Talia Dick, Katie Mah, Melissa Paniccia, Lee Verweel, Danielle Dobney, Michelle Keightley.
Institutions: Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, University of Toronto.
Concussion is one of the most commonly reported injuries amongst children and youth involved in sport participation. Following a concussion, youth can experience a range of short and long term neurobehavioral symptoms (somatic, cognitive and emotional/behavioral) that can have a significant impact on one’s participation in daily activities and pursuits of interest (e.g., school, sports, work, family/social life, etc.). Despite this, there remains a paucity in clinically driven research aimed specifically at exploring concussion within the youth sport population, and more specifically, multi-modal approaches to measuring recovery. This article provides an overview of a novel and multi-modal approach to measuring recovery amongst youth athletes following concussion. The presented approach involves the use of both pre-injury/baseline testing and post-injury/follow-up testing to assess performance across a wide variety of domains (post-concussion symptoms, cognition, balance, strength, agility/motor skills and resting state heart rate variability). The goal of this research is to gain a more objective and accurate understanding of recovery following concussion in youth athletes (ages 10-18 years). Findings from this research can help to inform the development and use of improved approaches to concussion management and rehabilitation specific to the youth sport community.
Medicine, Issue 91, concussion, children, youth, athletes, assessment, management, rehabilitation
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
A Chemical Screening Procedure for Glucocorticoid Signaling with a Zebrafish Larva Luciferase Reporter System
Authors: Benjamin D. Weger, Meltem Weger, Nicole Jung, Christin Lederer, Stefan Bräse, Thomas Dickmeis.
Institutions: Karlsruhe Institute of Technology - Campus North, Karlsruhe Institute of Technology - Campus North, Karlsruhe Institute of Technology - Campus South.
Glucocorticoid stress hormones and their artificial derivatives are widely used drugs to treat inflammation, but long-term treatment with glucocorticoids can lead to severe side effects. Test systems are needed to search for novel compounds influencing glucocorticoid signaling in vivo or to determine unwanted effects of compounds on the glucocorticoid signaling pathway. We have established a transgenic zebrafish assay which allows the measurement of glucocorticoid signaling activity in vivo and in real-time, the GRIZLY assay (Glucocorticoid Responsive In vivo Zebrafish Luciferase activitY). The luciferase-based assay detects effects on glucocorticoid signaling with high sensitivity and specificity, including effects by compounds that require metabolization or affect endogenous glucocorticoid production. We present here a detailed protocol for conducting chemical screens with this assay. We describe data acquisition, normalization, and analysis, placing a focus on quality control and data visualization. The assay provides a simple, time-resolved, and quantitative readout. It can be operated as a stand-alone platform, but is also easily integrated into high-throughput screening workflows. It furthermore allows for many applications beyond chemical screening, such as environmental monitoring of endocrine disruptors or stress research.
Developmental Biology, Issue 79, Biochemistry, Vertebrates, Zebrafish, environmental effects (biological and animal), genetics (animal), life sciences, animal biology, animal models, biochemistry, bioengineering (general), Hormones, Hormone Substitutes, and Hormone Antagonists, zebrafish, Danio rerio, chemical screening, luciferase, glucocorticoid, stress, high-throughput screening, receiver operating characteristic curve, in vivo, animal model
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
RNA Secondary Structure Prediction Using High-throughput SHAPE
Authors: Sabrina Lusvarghi, Joanna Sztuba-Solinska, Katarzyna J. Purzycka, Jason W. Rausch, Stuart F.J. Le Grice.
Institutions: Frederick National Laboratory for Cancer Research.
Understanding the function of RNA involved in biological processes requires a thorough knowledge of RNA structure. Toward this end, the methodology dubbed "high-throughput selective 2' hydroxyl acylation analyzed by primer extension", or SHAPE, allows prediction of RNA secondary structure with single nucleotide resolution. This approach utilizes chemical probing agents that preferentially acylate single stranded or flexible regions of RNA in aqueous solution. Sites of chemical modification are detected by reverse transcription of the modified RNA, and the products of this reaction are fractionated by automated capillary electrophoresis (CE). Since reverse transcriptase pauses at those RNA nucleotides modified by the SHAPE reagents, the resulting cDNA library indirectly maps those ribonucleotides that are single stranded in the context of the folded RNA. Using ShapeFinder software, the electropherograms produced by automated CE are processed and converted into nucleotide reactivity tables that are themselves converted into pseudo-energy constraints used in the RNAStructure (v5.3) prediction algorithm. The two-dimensional RNA structures obtained by combining SHAPE probing with in silico RNA secondary structure prediction have been found to be far more accurate than structures obtained using either method alone.
Genetics, Issue 75, Molecular Biology, Biochemistry, Virology, Cancer Biology, Medicine, Genomics, Nucleic Acid Probes, RNA Probes, RNA, High-throughput SHAPE, Capillary electrophoresis, RNA structure, RNA probing, RNA folding, secondary structure, DNA, nucleic acids, electropherogram, synthesis, transcription, high throughput, sequencing
Play Button
Movement Retraining using Real-time Feedback of Performance
Authors: Michael Anthony Hunt.
Institutions: University of British Columbia .
Any modification of movement - especially movement patterns that have been honed over a number of years - requires re-organization of the neuromuscular patterns responsible for governing the movement performance. This motor learning can be enhanced through a number of methods that are utilized in research and clinical settings alike. In general, verbal feedback of performance in real-time or knowledge of results following movement is commonly used clinically as a preliminary means of instilling motor learning. Depending on patient preference and learning style, visual feedback (e.g. through use of a mirror or different types of video) or proprioceptive guidance utilizing therapist touch, are used to supplement verbal instructions from the therapist. Indeed, a combination of these forms of feedback is commonplace in the clinical setting to facilitate motor learning and optimize outcomes. Laboratory-based, quantitative motion analysis has been a mainstay in research settings to provide accurate and objective analysis of a variety of movements in healthy and injured populations. While the actual mechanisms of capturing the movements may differ, all current motion analysis systems rely on the ability to track the movement of body segments and joints and to use established equations of motion to quantify key movement patterns. Due to limitations in acquisition and processing speed, analysis and description of the movements has traditionally occurred offline after completion of a given testing session. This paper will highlight a new supplement to standard motion analysis techniques that relies on the near instantaneous assessment and quantification of movement patterns and the display of specific movement characteristics to the patient during a movement analysis session. As a result, this novel technique can provide a new method of feedback delivery that has advantages over currently used feedback methods.
Medicine, Issue 71, Biophysics, Anatomy, Physiology, Physics, Biomedical Engineering, Behavior, Psychology, Kinesiology, Physical Therapy, Musculoskeletal System, Biofeedback, biomechanics, gait, movement, walking, rehabilitation, clinical, training
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
A Protocol for Computer-Based Protein Structure and Function Prediction
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Institutions: University of Michigan , University of Kansas.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
Biochemistry, Issue 57, On-line server, I-TASSER, protein structure prediction, function prediction
Play Button
The Trier Social Stress Test Protocol for Inducing Psychological Stress
Authors: Melissa A. Birkett.
Institutions: Northern Arizona University.
This article demonstrates a psychological stress protocol for use in a laboratory setting. Protocols that allow researchers to study the biological pathways of the stress response in health and disease are fundamental to the progress of research in stress and anxiety.1 Although numerous protocols exist for inducing stress response in the laboratory, many neglect to provide a naturalistic context or to incorporate aspects of social and psychological stress. Of psychological stress protocols, meta-analysis suggests that the Trier Social Stress Test (TSST) is the most useful and appropriate standardized protocol for studies of stress hormone reactivity.2 In the original description of the TSST, researchers sought to design and evaluate a procedure capable of inducing a reliable stress response in the majority of healthy volunteers.3 These researchers found elevations in heart rate, blood pressure and several endocrine stress markers in response to the TSST (a psychological stressor) compared to a saline injection (a physical stressor).3 Although the TSST has been modified to meet the needs of various research groups, it generally consists of a waiting period upon arrival, anticipatory speech preparation, speech performance, and verbal arithmetic performance periods, followed by one or more recovery periods. The TSST requires participants to prepare and deliver a speech, and verbally respond to a challenging arithmetic problem in the presence of a socially evaluative audience.3 Social evaluation and uncontrollability have been identified as key components of stress induction by the TSST.4 In use for over a decade, the goal of the TSST is to systematically induce a stress response in order to measure differences in reactivity, anxiety and activation of the hypothalamic-pituitary-adrenal (HPA) or sympathetic-adrenal-medullary (SAM) axis during the task.1 Researchers generally assess changes in self-reported anxiety, physiological measures (e.g. heart rate), and/or neuroendocrine indices (e.g. the stress hormone cortisol) in response to the TSST. Many investigators have adopted salivary sampling for stress markers such as cortisol and alpha-amylase (a marker of autonomic nervous system activation) as an alternative to blood sampling to reduce the confounding stress of blood-collection techniques. In addition to changes experienced by an individual completing the TSST, researchers can compare changes between different treatment groups (e.g. clinical versus healthy control samples) or the effectiveness of stress-reducing interventions.1
Medicine, Issue 56, Stress, anxiety, laboratory stressor, cortisol, physiological response, psychological stressor
Play Button
Assessment of Motor Balance and Coordination in Mice using the Balance Beam
Authors: Tinh N. Luong, Holly J. Carlisle, Amber Southwell, Paul H. Patterson.
Institutions: California Institute of Technology.
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.
Neuroscience, Issue 49, motor skills, coordination, balance beam test, mouse behavior
Play Button
Automated Midline Shift and Intracranial Pressure Estimation based on Brain CT Images
Authors: Wenan Chen, Ashwin Belle, Charles Cockrell, Kevin R. Ward, Kayvan Najarian.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University Reanimation Engineering Science (VCURES) Center, Virginia Commonwealth University, Virginia Commonwealth University, Virginia Commonwealth University.
In this paper we present an automated system based mainly on the computed tomography (CT) images consisting of two main components: the midline shift estimation and intracranial pressure (ICP) pre-screening system. To estimate the midline shift, first an estimation of the ideal midline is performed based on the symmetry of the skull and anatomical features in the brain CT scan. Then, segmentation of the ventricles from the CT scan is performed and used as a guide for the identification of the actual midline through shape matching. These processes mimic the measuring process by physicians and have shown promising results in the evaluation. In the second component, more features are extracted related to ICP, such as the texture information, blood amount from CT scans and other recorded features, such as age, injury severity score to estimate the ICP are also incorporated. Machine learning techniques including feature selection and classification, such as Support Vector Machines (SVMs), are employed to build the prediction model using RapidMiner. The evaluation of the prediction shows potential usefulness of the model. The estimated ideal midline shift and predicted ICP levels may be used as a fast pre-screening step for physicians to make decisions, so as to recommend for or against invasive ICP monitoring.
Medicine, Issue 74, Biomedical Engineering, Molecular Biology, Neurobiology, Biophysics, Physiology, Anatomy, Brain CT Image Processing, CT, Midline Shift, Intracranial Pressure Pre-screening, Gaussian Mixture Model, Shape Matching, Machine Learning, traumatic brain injury, TBI, imaging, clinical techniques
Play Button
Basics of Multivariate Analysis in Neuroimaging Data
Authors: Christian Georg Habeck.
Institutions: Columbia University.
Multivariate analysis techniques for neuroimaging data have recently received increasing attention as they have many attractive features that cannot be easily realized by the more commonly used univariate, voxel-wise, techniques1,5,6,7,8,9. Multivariate approaches evaluate correlation/covariance of activation across brain regions, rather than proceeding on a voxel-by-voxel basis. Thus, their results can be more easily interpreted as a signature of neural networks. Univariate approaches, on the other hand, cannot directly address interregional correlation in the brain. Multivariate approaches can also result in greater statistical power when compared with univariate techniques, which are forced to employ very stringent corrections for voxel-wise multiple comparisons. Further, multivariate techniques also lend themselves much better to prospective application of results from the analysis of one dataset to entirely new datasets. Multivariate techniques are thus well placed to provide information about mean differences and correlations with behavior, similarly to univariate approaches, with potentially greater statistical power and better reproducibility checks. In contrast to these advantages is the high barrier of entry to the use of multivariate approaches, preventing more widespread application in the community. To the neuroscientist becoming familiar with multivariate analysis techniques, an initial survey of the field might present a bewildering variety of approaches that, although algorithmically similar, are presented with different emphases, typically by people with mathematics backgrounds. We believe that multivariate analysis techniques have sufficient potential to warrant better dissemination. Researchers should be able to employ them in an informed and accessible manner. The current article is an attempt at a didactic introduction of multivariate techniques for the novice. A conceptual introduction is followed with a very simple application to a diagnostic data set from the Alzheimer s Disease Neuroimaging Initiative (ADNI), clearly demonstrating the superior performance of the multivariate approach.
JoVE Neuroscience, Issue 41, fMRI, PET, multivariate analysis, cognitive neuroscience, clinical neuroscience
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.