JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Usage of plant food supplements across six European countries: findings from the PlantLIBRA consumer survey.
PUBLISHED: 01-01-2014
The popularity of botanical products is on the rise in Europe, with consumers using them to complement their diets or to maintain health, and products are taken in many different forms (e.g. teas, juices, herbal medicinal products, plant food supplements (PFS)). However there is a scarcity of data on the usage of such products at European level.
Authors: Devrim Coskun, Dev T. Britto, Ahmed M. Hamam, Herbert J. Kronzucker.
Published: 08-22-2014
Unidirectional influx and efflux of nutrients and toxicants, and their resultant net fluxes, are central to the nutrition and toxicology of plants. Radioisotope tracing is a major technique used to measure such fluxes, both within plants, and between plants and their environments. Flux data obtained with radiotracer protocols can help elucidate the capacity, mechanism, regulation, and energetics of transport systems for specific mineral nutrients or toxicants, and can provide insight into compartmentation and turnover rates of subcellular mineral and metabolite pools. Here, we describe two major radioisotope protocols used in plant biology: direct influx (DI) and compartmental analysis by tracer efflux (CATE). We focus on flux measurement of potassium (K+) as a nutrient, and ammonia/ammonium (NH3/NH4+) as a toxicant, in intact seedlings of the model species barley (Hordeum vulgare L.). These protocols can be readily adapted to other experimental systems (e.g., different species, excised plant material, and other nutrients/toxicants). Advantages and limitations of these protocols are discussed.
27 Related JoVE Articles!
Play Button
Isolation of Viable Multicellular Glands from Tissue of the Carnivorous Plant, Nepenthes
Authors: Sandy Rottloff, Axel Mithöfer, Ute Müller, Roland Kilper.
Institutions: Université de Lorraine, Max Planck Institute for Chemical Ecology, aura optik.
Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores. Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands. In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA.
Plant Biology, Issue 82, Plant, Plant Preparations, Plant Physiological Processes, Plant Pathology, micropreparation, mechanical dissection, glands, carnivory, Nepenthes, PCR, RNA
Play Button
A New Approach for the Comparative Analysis of Multiprotein Complexes Based on 15N Metabolic Labeling and Quantitative Mass Spectrometry
Authors: Kerstin Trompelt, Janina Steinbeck, Mia Terashima, Michael Hippler.
Institutions: University of Münster, Carnegie Institution for Science.
The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling (14N/15N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions.
Microbiology, Issue 85, Sucrose density gradients, Chlamydomonas, multiprotein complexes, 15N metabolic labeling, thylakoids
Play Button
Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling
Authors: Jennifer L Soong, Dan Reuss, Colin Pinney, Ty Boyack, Michelle L Haddix, Catherine E Stewart, M. Francesca Cotrufo.
Institutions: Colorado State University, USDA-ARS, Colorado State University.
Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components, respectively). Challenges lie in maintaining proper temperature, humidity, CO2 concentration, and light levels in an airtight 13C-CO2 atmosphere for successful plant production. This chamber description represents a useful research tool to effectively produce uniformly or differentially multi-isotope labeled plant material for use in experiments on ecosystem biogeochemical cycling.
Environmental Sciences, Issue 83, 13C, 15N, plant, stable isotope labeling, Andropogon gerardii, metabolic compounds, structural compounds, hot water extraction
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility
Authors: Robert Szulcek, Harm Jan Bogaard, Geerten P. van Nieuw Amerongen.
Institutions: Institute for Cardiovascular Research, VU University Medical Center, Institute for Cardiovascular Research, VU University Medical Center.
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.
Bioengineering, Issue 85, ECIS, Impedance Spectroscopy, Resistance, TEER, Endothelial Barrier, Cell Adhesions, Focal Adhesions, Proliferation, Migration, Motility, Wound Healing
Play Button
Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry
Authors: Colin Ruprecht, Takayuki Tohge, Alisdair Fernie, Cara L. Mortimer, Amanda Kozlo, Paul D. Fraser, Norma Funke, Igor Cesarino, Ruben Vanholme, Wout Boerjan, Kris Morreel, Ingo Burgert, Notburga Gierlinger, Vincent Bulone, Vera Schneider, Andrea Stockero, Juan Navarro-Aviñó, Frank Pudel, Bart Tambuyser, James Hygate, Jon Bumstead, Louis Notley, Staffan Persson.
Institutions: Max Planck Institute for Molecular Plant Physiology, Royal Holloway, University of London, VIB, UGhent, ETH Zurich, EMPA, Royal Institute of Technology (KTH), European Research and Project Office GmbH, ABBA Gaia S.L., Pflanzenöltechnologie, Capax Environmental Services, Green Fuels, Neutral Consulting Ltd, University of Melbourne.
The global demand for food, feed, energy, and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Environmental Sciences, Issue 87, botany, plants, Biorefining, Poplar, Tobacco tree, Arabidopsis, suberin, lignin, cell walls, biomass, long-chain hydrocarbons, isoprenoids, Nicotiana glauca, systems biology
Play Button
Tracking Microbial Contamination in Retail Environments Using Fluorescent Powder - A Retail Delicatessen Environment Example
Authors: Sujata A. Sirsat, Kawon Kim, Kristen E. Gibson, Phillip G. Crandall, Steven C. Ricke, Jack A. Neal.
Institutions: University of Houston, University of Arkansas.
Cross contamination of foodborne pathogens in the retail environment is a significant public health issue contributing to an increased risk for foodborne illness. Ready-to-eat (RTE) processed foods such as deli meats, cheese, and in some cases fresh produce, have been involved in foodborne disease outbreaks due to contamination with pathogens such as Listeria monocytogenes. With respect to L. monocytogenes, deli slicers are often the main source of cross contamination. The goal of this study was to use a fluorescent compound to simulate bacterial contamination and track this contamination in a retail setting. A mock deli kitchen was designed to simulate the retail environment. Deli meat was inoculated with the fluorescent compound and volunteers were recruited to complete a set of tasks similar to those expected of a food retail employee. The volunteers were instructed to slice, package, and store the meat in a deli refrigerator. The potential cross contamination was tracked in the mock retail environment by swabbing specific areas and measuring the optical density of the swabbed area with a spectrophotometer. The results indicated that the refrigerator (i.e. deli case) grip and various areas on the slicer had the highest risk for cross contamination. The results of this study may be used to develop more focused training material for retail employees. In addition, similar methodologies could also be used to track microbial contamination in food production environments (e.g. small farms), hospitals, nursing homes, cruise ships, and hotels.
Environmental Sciences, Issue 85, cross contamination, retail deli, fluorescent powder, Listeria monocytogenes, foodborne pathogens
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
Play Button
Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology
Authors: William S. Phipps, Zhizhong Yin, Candice Bae, Julia Z. Sharpe, Andrew M. Bishara, Emily S. Nelson, Aaron S. Weaver, Daniel Brown, Terri L. McKay, DeVon Griffin, Eugene Y. Chan.
Institutions: DNA Medicine Institute, Harvard Medical School, NASA Glenn Research Center, ZIN Technologies.
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.
Cellular Biology, Issue 93, Point-of-care, prototype, diagnostics, spaceflight, reduced gravity, parabolic flight, flow cytometry, fluorescence, cell counting, micromixing, spiral-vortex, blood mixing
Play Button
In Vitro Reconstitution of Light-harvesting Complexes of Plants and Green Algae
Authors: Alberto Natali, Laura M. Roy, Roberta Croce.
Institutions: VU University Amsterdam.
In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 19871, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues (e.g., pigment binding sites) or protein domain (e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory, and examples describing applications of the method are provided.
Biochemistry, Issue 92, Reconstitution, Photosynthesis, Chlorophyll, Carotenoids, Light Harvesting Protein, Chlamydomonas reinhardtii, Arabidopsis thaliana
Play Button
Single-plant, Sterile Microcosms for Nodulation and Growth of the Legume Plant Medicago truncatula with the Rhizobial Symbiont Sinorhizobium meliloti
Authors: Kathryn M. Jones, Hajeewaka C. Mendis, Clothilde Queiroux.
Institutions: Florida State University.
Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructive to either plants or bacteria. The symbiotic phenotypes of some plant and bacterial mutants become apparent after relatively short periods of growth, and do not require long-term observation of the host/symbiont interaction. However, subtle differences in symbiotic efficiency and nodule senescence phenotypes that are not apparent in the early stages of the nodulation process require relatively long growth periods before they can be scored. Several methods have been developed for long-term growth and observation of this host/symbiont pair. However, many of these methods require repeated watering, which increases the possibility of contamination by other microbes. Other methods require a relatively large space for growth of large numbers of plants. The method described here, symbiotic growth of M. truncatula/S. meliloti in sterile, single-plant microcosms, has several advantages. Plants in these microcosms have sufficient moisture and nutrients to ensure that watering is not required for up to 9 weeks, preventing cross-contamination during watering. This allows phenotypes to be quantified that might be missed in short-term growth systems, such as subtle delays in nodule development and early nodule senescence. Also, the roots and nodules in the microcosm are easily viewed through the plate lid, so up-rooting of the plants for observation is not required.
Environmental Sciences, Issue 80, Plant Roots, Medicago, Gram-Negative Bacteria, Nitrogen, Microbiological Techniques, Bacterial Processes, Symbiosis, botany, microbiology, Medicago truncatula, Sinorhizobium meliloti, nodule, nitrogen fixation, legume, rhizobia, bacteria
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
The Importance of Correct Protein Concentration for Kinetics and Affinity Determination in Structure-function Analysis
Authors: Ewa Pol.
Institutions: GE Healthcare Bio-Sciences AB.
In this study, we explore the interaction between the bovine cysteine protease inhibitor cystatin B and a catalytically inactive form of papain (Fig. 1), a plant cysteine protease, by real-time label-free analysis using Biacore X100. Several cystatin B variants with point mutations in areas of interaction with papain, are produced. For each cystatin B variant we determine its specific binding concentration using calibration-free concentration analysis (CFCA) and compare the values obtained with total protein concentration as determined by A280. After that, the kinetics of each cystatin B variant binding to papain is measured using single-cycle kinetics (SCK). We show that one of the four cystatin B variants we examine is only partially active for binding. This partial activity, revealed by CFCA, translates to a significant difference in the association rate constant (ka) and affinity (KD), compared to the values calculated using total protein concentration. Using CFCA in combination with kinetic analysis in a structure-function study contributes to obtaining reliable results, and helps to make the right interpretation of the interaction mechanism.
Cellular Biology, Issue 37, Protein interaction, Surface Plasmon Resonance, Biacore X100, CFCA, Cystatin B, Papain
Play Button
Optimized PCR-based Detection of Mycoplasma
Authors: Paige L. Dobrovolny, Dan Bess.
Institutions: Sigma-Aldrich.
The maintenance of contamination-free cell lines is essential to cell-based research. Among the biggest contaminant concerns are mycoplasma contamination. Although mycoplasma do not usually kill contaminated cells, they are difficult to detect and can cause a variety of effects on cultured cells, including altered metabolism, slowed proliferation and chromosomal aberrations. In short, mycoplasma contamination compromises the value of those cell lines in providing accurate data for life science research. The sources of mycoplasma contamination in the laboratory are very challenging to completely control. As certain mycoplasma species are found on human skin, they can be introduced through poor aseptic technique. Additionally, they can come from contaminated supplements such as fetal bovine serum, and most importantly from other contaminated cell cultures. Once mycoplasma contaminates a culture, it can quickly spread to contaminate other areas of the lab. Strict adherence to good laboratory practices such as good aseptic technique are key, and routine testing for mycoplasma is highly recommended for successful control of mycoplasma contamination. PCR-based detection of mycoplasma has become a very popular method for routine cell line maintenance. PCR-based detection methods are highly sensitive and can provide rapid results, which allows researchers to respond quickly to isolate and eliminate contamination once it is detected in comparison to the time required using microbiological techniques. The LookOut Mycoplasma PCR Detection Kit is highly sensitive, with a detection limit of only 2 genomes per μl. Taking advantage of the highly specific JumpStart Taq DNA Polymerase and a proprietary primer design, false positives are greatly reduced. The convenient 8-tube format, strips pre-coated with dNTPs, and associated primers helps increase the throughput to meet the needs of customers with larger collections of cell lines. Given the extreme sensitivity of the kit, great care must be taken to prevent inadvertent contamination of samples and reagents. The step-by-step protocol we demonstrate highlights the precautions and practices required for reliable mycoplasma detection. We also show and discuss typical results and their interpretation. Our goal is to ensure the success of researchers using the LookOut Mycoplasma PCR Detection Kit.
Microbiology, Issue 52, Mycoplasma detection, mycoplasma contamination, cell culture, sigma mycoplasma detection, acholeplasma contamination, polymerase chain reaction, PCR
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
A PCR-based Genotyping Method to Distinguish Between Wild-type and Ornamental Varieties of Imperata cylindrica
Authors: Leland J. Cseke, Sharon M. Talley.
Institutions: The University of Alabama, Huntsville, Center for Plant Health Science and Technology.
Wild-type I. cylindrica (cogongrass) is one of the top ten worst invasive plants in the world, negatively impacting agricultural and natural resources in 73 different countries throughout Africa, Asia, Europe, New Zealand, Oceania and the Americas1-2. Cogongrass forms rapidly-spreading, monodominant stands that displace a large variety of native plant species and in turn threaten the native animals that depend on the displaced native plant species for forage and shelter. To add to the problem, an ornamental variety [I. cylindrica var. koenigii (Retzius)] is widely marketed under the names of Imperata cylindrica 'Rubra', Red Baron, and Japanese blood grass (JBG). This variety is putatively sterile and noninvasive and is considered a desirable ornamental for its red-colored leaves. However, under the correct conditions, JBG can produce viable seed (Carol Holko, 2009 personal communication) and can revert to a green invasive form that is often indistinguishable from cogongrass as it takes on the distinguishing characteristics of the wild-type invasive variety4 (Figure 1). This makes identification using morphology a difficult task even for well-trained plant taxonomists. Reversion of JBG to an aggressive green phenotype is also not a rare occurrence. Using sequence comparisons of coding and variable regions in both nuclear and chloroplast DNA, we have confirmed that JBG has reverted to the green invasive within the states of Maryland, South Carolina, and Missouri. JBG has been sold and planted in just about every state in the continental U.S. where there is not an active cogongrass infestation. The extent of the revert problem in not well understood because reverted plants are undocumented and often destroyed. Application of this molecular protocol provides a method to identify JBG reverts and can help keep these varieties from co-occurring and possibly hybridizing. Cogongrass is an obligate outcrosser and, when crossed with a different genotype, can produce viable wind-dispersed seeds that spread cogongrass over wide distances5-7. JBG has a slightly different genotype than cogongrass and may be able to form viable hybrids with cogongrass. To add to the problem, JBG is more cold and shade tolerant than cogongrass8-10, and gene flow between these two varieties is likely to generate hybrids that are more aggressive, shade tolerant, and cold hardy than wild-type cogongrass. While wild-type cogongrass currently infests over 490 million hectares worldwide, in the Southeast U.S. it infests over 500,000 hectares and is capable of occupying most of the U.S. as it rapidly spreads northward due to its broad niche and geographic potential3,7,11. The potential of a genetic crossing is a serious concern for the USDA-APHIS Federal Noxious Week Program. Currently, the USDA-APHIS prohibits JBG in states where there are major cogongrass infestations (e.g., Florida, Alabama, Mississippi). However, preventing the two varieties from combining can prove more difficult as cogongrass and JBG expand their distributions. Furthermore, the distribution of the JBG revert is currently unknown and without the ability to identify these varieties through morphology, some cogongrass infestations may be the result of JBG reverts. Unfortunately, current molecular methods of identification typically rely on AFLP (Amplified Fragment Length Polymorphisms) and DNA sequencing, both of which are time consuming and costly. Here, we present the first cost-effective and reliable PCR-based molecular genotyping method to accurately distinguish between cogongrass and JBG revert.
Molecular Biology, Issue 60, Molecular genotyping, Japanese blood grass, Red Baron, cogongrass, invasive plants
Play Button
Annotation of Plant Gene Function via Combined Genomics, Metabolomics and Informatics
Authors: Takayuki Tohge, Alisdair R. Fernie.
Institutions: Max-Planck-Institut.
Given the ever expanding number of model plant species for which complete genome sequences are available and the abundance of bio-resources such as knockout mutants, wild accessions and advanced breeding populations, there is a rising burden for gene functional annotation. In this protocol, annotation of plant gene function using combined co-expression gene analysis, metabolomics and informatics is provided (Figure 1). This approach is based on the theory of using target genes of known function to allow the identification of non-annotated genes likely to be involved in a certain metabolic process, with the identification of target compounds via metabolomics. Strategies are put forward for applying this information on populations generated by both forward and reverse genetics approaches in spite of none of these are effortless. By corollary this approach can also be used as an approach to characterise unknown peaks representing new or specific secondary metabolites in the limited tissues, plant species or stress treatment, which is currently the important trial to understanding plant metabolism.
Plant Biology, Issue 64, Genetics, Bioinformatics, Metabolomics, Plant metabolism, Transcriptome analysis, Functional annotation, Computational biology, Plant biology, Theoretical biology, Spectroscopy and structural analysis
Play Button
Genotyping of Plant and Animal Samples without Prior DNA Purification
Authors: Pak Y. Chum, Josh D. Haimes, Chas P. André, Pia K. Kuusisto, Melissa L. Kelley.
Institutions: Thermo Fisher Scientific.
The Direct PCR approach facilitates PCR amplification directly from small amounts of unpurified samples, and is demonstrated here for several plant and animal tissues (Figure 1). Direct PCR is based on specially engineered Thermo Scientific Phusion and Phire DNA Polymerases, which include a double-stranded DNA binding domain that gives them unique properties such as high tolerance of inhibitors. PCR-based target DNA detection has numerous applications in plant research, including plant genotype analysis and verification of transgenes. PCR from plant tissues traditionally involves an initial DNA isolation step, which may require expensive or toxic reagents. The process is time consuming and increases the risk of cross contamination1, 2. Conversely, by using Thermo Scientific Phire Plant Direct PCR Kit the target DNA can be easily detected, without prior DNA extraction. In the model demonstrated here, an example of derived cleaved amplified polymorphic sequence analysis (dCAPS)3,4 is performed directly from Arabidopsis plant leaves. dCAPS genotyping assays can be used to identify single nucleotide polymorphisms (SNPs) by SNP allele-specific restriction endonuclease digestion3. Some plant samples tend to be more challenging when using Direct PCR methods as they contain components that interfere with PCR, such as phenolic compounds. In these cases, an additional step to remove the compounds is traditionally required2,5. Here, this problem is overcome by using a quick and easy dilution protocol followed by Direct PCR amplification (Figure 1). Fifteen year-old oak leaves are used as a model for challenging plants as the specimen contains high amounts of phenolic compounds including tannins. Gene transfer into mice is broadly used to study the roles of genes in development, physiology and human disease. The use of these animals requires screening for the presence of the transgene, usually with PCR. Traditionally, this involves a time consuming DNA isolation step, during which DNA for PCR analysis is purified from ear, tail or toe tissues6,7. However, with the Thermo Scientific Phire Animal Tissue Direct PCR Kit transgenic mice can be genotyped without prior DNA purification. In this protocol transgenic mouse genotyping is achieved directly from mouse ear tissues, as demonstrated here for a challenging example where only one primer set is used for amplification of two fragments differing greatly in size.
Genetics, Issue 67, Molecular Biology, Plant Biology, Medicine, Direct PCR, DNA amplification, DNA purification, dCAPS, PCR-based target DNA detection, genotyping, Arabidopsis, oak, mouse tissues
Play Button
Use of Animal Model of Sepsis to Evaluate Novel Herbal Therapies
Authors: Wei Li, Shu Zhu, Yusong Zhang, Jianhua Li, Andrew E. Sama, Ping Wang, Haichao Wang.
Institutions: North Shore – LIJ Health System.
Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. It has been routinely simulated in animals by several techniques, including infusion of exogenous bacterial toxin (endotoxemia) or bacteria (bacteremia), as well as surgical perforation of the cecum by cecal ligation and puncture (CLP)1-3. CLP allows bacteria spillage and fecal contamination of the peritoneal cavity, mimicking the human clinical disease of perforated appendicitis or diverticulitis. The severity of sepsis, as reflected by the eventual mortality rates, can be controlled surgically by varying the size of the needle used for cecal puncture2. In animals, CLP induces similar, biphasic hemodynamic cardiovascular, metabolic, and immunological responses as observed during the clinical course of human sepsis3. Thus, the CLP model is considered as one of the most clinically relevant models for experimental sepsis1-3. Various animal models have been used to elucidate the intricate mechanisms underlying the pathogenesis of experimental sepsis. The lethal consequence of sepsis is attributable partly to an excessive accumulation of early cytokines (such as TNF, IL-1 and IFN-γ)4-6 and late proinflammatory mediators (e.g., HMGB1)7. Compared with early proinflammatory cytokines, late-acting mediators have a wider therapeutic window for clinical applications. For instance, delayed administration of HMGB1-neutralizing antibodies beginning 24 hours after CLP, still rescued mice from lethality8,9, establishing HMGB1 as a late mediator of lethal sepsis. The discovery of HMGB1 as a late-acting mediator has initiated a new field of investigation for the development of sepsis therapies using Traditional Chinese Herbal Medicine. In this paper, we describe a procedure of CLP-induced sepsis, and its usage in screening herbal medicine for HMGB1-targeting therapies.
Medicine, Issue 62, Herbal therapies, innate immune cells, cytokines, HMGB1, experimental animal model of sepsis, cecal ligation and puncture
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
Play Button
A Protocol for Detecting and Scavenging Gas-phase Free Radicals in Mainstream Cigarette Smoke
Authors: Long-Xi Yu, Boris G. Dzikovski, Jack H. Freed.
Institutions: CDCF-AOX Lab, Cornell University.
Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking 5,6,7,12. Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens9,10. Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung3. Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke4. A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke14. However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine8. In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy1,2,14. We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of tomato or wine industry respectively11,13
Bioengineering, Issue 59, Cigarette smoke, free radical, spin-trap, ESR
Play Button
Principles of Site-Specific Recombinase (SSR) Technology
Authors: Frank Bucholtz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Site-specific recombinase (SSR) technology allows the manipulation of gene structure to explore gene function and has become an integral tool of molecular biology. Site-specific recombinases are proteins that bind to distinct DNA target sequences. The Cre/lox system was first described in bacteriophages during the 1980's. Cre recombinase is a Type I topoisomerase that catalyzes site-specific recombination of DNA between two loxP (locus of X-over P1) sites. The Cre/lox system does not require any cofactors. LoxP sequences contain distinct binding sites for Cre recombinases that surround a directional core sequence where recombination and rearrangement takes place. When cells contain loxP sites and express the Cre recombinase, a recombination event occurs. Double-stranded DNA is cut at both loxP sites by the Cre recombinase, rearranged, and ligated ("scissors and glue"). Products of the recombination event depend on the relative orientation of the asymmetric sequences. SSR technology is frequently used as a tool to explore gene function. Here the gene of interest is flanked with Cre target sites loxP ("floxed"). Animals are then crossed with animals expressing the Cre recombinase under the control of a tissue-specific promoter. In tissues that express the Cre recombinase it binds to target sequences and excises the floxed gene. Controlled gene deletion allows the investigation of gene function in specific tissues and at distinct time points. Analysis of gene function employing SSR technology --- conditional mutagenesis -- has significant advantages over traditional knock-outs where gene deletion is frequently lethal.
Cellular Biology, Issue 15, Molecular Biology, Site-Specific Recombinase, Cre recombinase, Cre/lox system, transgenic animals, transgenic technology
Play Button
Testing Nicotine Tolerance in Aphids Using an Artificial Diet Experiment
Authors: John Sawyer Ramsey, Georg Jander.
Institutions: Cornell University.
Plants may upregulate the production of many different seconday metabolites in response to insect feeding. One of these metabolites, nicotine, is well know to have insecticidal properties. One response of tobacco plants to herbivory, or being gnawed upon by insects, is to increase the production of this neurotoxic alkaloid. Here, we will demonstrate how to set up an experiment to address this question of whether a tobacco-adapted strain of the green peach aphid, Myzus persicae, can tolerate higher levels of nicotine than the a strain of this insect that does not infest tobacco in the field.
Plant Biology, Issue 15, Annual Review, Nicotine, Aphids, Plant Feeding Resistance, Tobacco
Play Button
Testing the Physiological Barriers to Viral Transmission in Aphids Using Microinjection
Authors: Cecilia Tamborindeguy, Stewart Gray, Georg Jander.
Institutions: Cornell University, Cornell University.
Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insect gut to the hemolymph (the insect blood ) and then must pass through the salivary gland, in order to be transmitted back to a new plant. An aphid may take up different viruses when munching on a plant, however only a small fraction will pass through the gut and salivary gland, the two main barriers for transmission to infect more plants. In the lab, we use physalis plants to study PLRV transmission. In this host, symptoms are characterized by stunting and interveinal chlorosis (yellowing of the leaves between the veins with the veins remaining green). The video that we present demonstrates a method for performing aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut is preventing viral transmission. The video that we present demonstrates a method for performing Aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut or salivary gland is preventing viral transmission.
Plant Biology, Issue 15, Annual Review, Aphids, Plant Virus, Potato Leaf Roll Virus, Microinjection Technique
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.