JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
A model-based analysis of culture-dependent phenotypes of mESCs.
PLoS ONE
PUBLISHED: 01-01-2014
Mouse embryonic stem cells (mESCs) can be maintained in a proliferative and undifferentiated state over many passages (self-renewal) while retaining the potential to give rise to every cell type of the organism (pluripotency). Autocrine FGF4/Erk signalling has been identified as a major stimulus for fate decisions and lineage commitment in these cells. Recent findings on serum-free culture conditions with specific inhibitors (known as 2i) demonstrate that the inhibition of this pathway reduces transcription factor heterogeneity and is vital to maintain ground state pluripotency of mESCs. We suggest a novel mathematical model to explicitly integrate FGF4/Erk signalling into an interaction network of key pluripotency factors (namely Oct4, Sox2, Nanog and Rex1). The envisaged model allows to explore whether and how proposed mechanisms and feedback regulations can account for different expression patterns in mESC cultures. We demonstrate that an FGF4/Erk-mediated negative feedback is sufficient to induce molecular heterogeneity with respect to Nanog and Rex1 expression and thus critically regulates the propensity for differentiation and the loss of pluripotency. Furthermore, we compare simulation results on the transcription factor dynamics in different self-renewing states and during differentiation with experimental data on a Rex1GFPd2 reporter cell line using flow cytometry and qRT-PCR measurements. Concluding from our results we argue that interaction between FGF4/Erk signalling and Nanog expression qualifies as a key mechanism to manipulate mESC pluripotency. In particular, we infer that ground state pluripotency under 2i is achieved by shifting stable expression pattern of Nanog from a bistable into a monostable regulation impeding stochastic state transitions. Furthermore, we derive testable predictions on altering the degree of Nanog heterogeneity and on the frequency of state transitions in LIF/serum conditions to challenge our model assumptions.
Authors: HoTae Lim, In Young Choi, Gabsang Lee.
Published: 05-29-2014
ABSTRACT
Heterogeneity of stem cell population hampers detailed understanding of stem cell biology, such as their differentiation propensity toward different lineages. A single cell transcriptome assay can be a new approach for dissecting individual variation. We have developed the single cell qRT-PCR method, and confirmed that this method works well in several gene expression profiles. In single cell level, each human embryonic stem cell, sorted by OCT4::EGFP positive cells, has high expression in OCT4, but a different level of NANOG expression. Our single cell gene expression assay should be useful to interrogate population heterogeneities.
24 Related JoVE Articles!
Play Button
Derivation of Mouse Trophoblast Stem Cells from Blastocysts
Authors: Shang-Yi Chiu, Eri O. Maruyama, Wei Hsu.
Institutions: University of Rochester.
Specification of the trophectoderm is one of the earliest differentiation events of mammalian development. The trophoblast lineage derived from the trophectoderm mediates implantation and generates the fetal part of the placenta. As a result, the development of this lineage is essential for embryo survival. Derivation of trophoblast stem (TS) cells from mouse blastocysts was first described by Tanaka et al. 1998. The ability of TS cells to preserve the trophoblast specific property and their expression of stage- and cell type-specific markers after proper stimulation provides a valuable model system to investigate trophoblast lineage development whereby recapitulating early placentation events. Furthermore, trophoblast cells are one of the few somatic cell types undergoing natural genome amplification. Although the molecular pathways underlying trophoblast polyploidization have begun to unravel, the physiological role and advantage of trophoblast genome amplification remains largely elusive. The development of diploid stem cells into polyploid trophoblast cells in culture makes this ex vivo system an excellent tool for elucidating the regulatory mechanism of genome replication and instability in health and disease. Here we describe a protocol based on previous reports with modification published in Chiu et al. 2008.
Cellular Biology, Issue 40, Trophoblast stem cell, trophectoderm, trophoblast giant cell, blastocyst, extraembryonic development
1964
Play Button
Preparation of Mouse Embryonic Fibroblast Cells Suitable for Culturing Human Embryonic and Induced Pluripotent Stem Cells
Authors: Justyna Jozefczuk, Katharina Drews, James Adjaye.
Institutions: Max Planck Institute for Molecular Genetics.
In general, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs)1 can be cultured under variable conditions. However, it is not easy to establish an effective system for culturing these cells. Since the culture conditions can influence gene expression that confers pluripotency in hESCs and hiPSCs, the optimization and standardization of the culture method is crucial. The establishment of hESC lines was first described by using MEFs as feeder cells and fetal bovine serum (FBS)-containing culture medium2. Next, FBS was replaced with knockout serum replacement (KSR) and FGF2, which enhances proliferation of hESCs3. Finally, feeder-free culture systems enable culturing cells on Matrigel-coated plates in KSR-containing conditioned medium (medium conditioned by MEFs)4. Subsequently, hESCs culture conditions have moved towards feeder-free culture in chemically defined conditions5-7. Moreover, to avoid the potential contamination by pathogens and animal proteins culture methods using xeno-free components have been established8. To obtain improved conditions mouse feeder cells have been replaced with human cell lines (e.g. fetal muscle and skin cells9, adult skin cells10, foreskin fibroblasts11-12, amniotic mesenchymal cells13). However, the efficiency of maintaining undifferentiated hESCs using human foreskin fibroblast-derived feeder layers is not as high as that from mouse feeder cells due to the lower level of secretion of Activin A14. Obviously, there is an evident difference in growth factor production by mouse and human feeder cells. Analyses of the transcriptomes of mouse and human feeder cells revealed significant differences between supportive and non-supportive cells. Exogenous FGF2 is crucial for maintaining self-renewal of hESCs and hiPSCs, and has been identified as a key factor regulating the expression of Tgfβ1, Activin A and Gremlin (a BMP antagonist) in feeder cells. Activin A has been shown to induce the expression of OCT4, SOX2, and NANOG in hESCs15-16. For long-term culture, hESCs and hiPSCs can be grown on mitotically inactivated MEFs or under feeder-free conditions in MEF-CM (MEF-Conditioned Medium) on Matrigel-coated plates to maintain their undifferentiated state. Success of both culture conditions fully depends on the quality of the feeder cells, since they directly affect the growth of hESCs. Here, we present an optimized method for the isolation and culture of mouse embryonic fibroblasts (MEFs), preparation of conditioned medium (CM) and enzyme-linked immunosorbent assay (ELISA) to assess the levels of Activin A within the media.
Stem Cell Biology, Issue 64, Molecular Biology, Developmental Biology, mouse embryonic fibroblasts (MEFs), human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs), Activin A -conditioned medium (CM), cell culture
3854
Play Button
Expression Analysis of Mammalian Linker-histone Subtypes
Authors: Magdalena Medrzycki, Yunzhe Zhang, Kaixiang Cao, Yuhong Fan.
Institutions: Georgia Institute of Technology .
Linker histone H1 binds to the nucleosome core particle and linker DNA, facilitating folding of chromatin into higher order structure. H1 is essential for mammalian development1 and regulates specific gene expression in vivo2-4. Among the highly conserved histone proteins, the family of H1 linker histones is the most heterogeneous group. There are 11 H1 subtypes in mammals that are differentially regulated during development and in different cell types. These H1 subtypes include 5 somatic H1s (H1a-e), the replacement H10, 4 germ cell specific H1 subtypes, and H1x5. The presence of multiple H1 subtypes that differ in DNA binding affinity and chromatin compaction ability6-9 provides an additional level of modulation of chromatin function. Thus, quantitative expression analysis of individual H1 subtypes, both of mRNA and proteins, is necessary for better understanding of the regulation of higher order chromatin structure and function. Here we describe a set of assays designed for analyzing the expression levels of individual H1 subtypes (Figure 1). mRNA expression of various H1 variant genes is measured by a set of highly sensitive and quantitative reverse transcription-PCR (qRT-PCR) assays, which are faster, more accurate and require much less samples compared with the alternative approach of Northern blot analysis. Unlike most other cellular mRNA messages, mRNAs for most histone genes, including the majority of H1 genes, lack a long polyA tail, but contain a stem-loop structure at the 3' untranslated region (UTR)10. Therefore, cDNAs are prepared from total RNA by reverse transcription using random primers instead of oligo-dT primers. Realtime PCR assays with primers specific to each H1 subtypes (Table 1) are performed to obtain highly quantitative measurement of mRNA levels of individual H1 subtypes. Expression of housekeeping genes are analyzed as controls for normalization. The relative abundance of proteins of each H1 subtype and core histones is obtained through reverse phase high-performance liquid chromatography (RP-HPLC) analysis of total histones extracted from mammalian cells11-13. The HPLC method and elution conditions described here give optimum separations of mouse H1 subtypes. By quantifying the HPLC profile, we calculate the relative proportion of individual H1 subtypes within H1 family, as well as determine the H1 to nucleosome ratio in the cells.
Genetics, Issue 61, H1 linker histones, histone H1 subtypes, chromatin, RT-PCR, HPLC, gene expression
3577
Play Button
Differentiation of Embryonic Stem Cells into Oligodendrocyte Precursors
Authors: Peng Jiang, Vimal Selvaraj, Wenbin Deng.
Institutions: School of Medicine, University of California, Davis.
Oligodendrocytes are the myelinating cells of the central nervous system. For regenerative cell therapy in demyelinating diseases, there is significant interest in deriving a pure population of lineage-committed oligodendrocyte precursor cells (OPCs) for transplantation. OPCs are characterized by the activity of the transcription factor Olig2 and surface expression of a proteoglycan NG2. Using the GFP-Olig2 (G-Olig2) mouse embryonic stem cell (mESC) reporter line, we optimized conditions for the differentiation of mESCs into GFP+Olig2+NG2+ OPCs. In our protocol, we first describe the generation of embryoid bodies (EBs) from mESCs. Second, we describe treatment of mESC-derived EBs with small molecules: (1) retinoic acid (RA) and (2) a sonic hedgehog (Shh) agonist purmorphamine (Pur) under defined culture conditions to direct EB differentiation into the oligodendroglial lineage. By this approach, OPCs can be obtained with high efficiency (>80%) in a time period of 30 days. Cells derived from mESCs in this protocol are phenotypically similar to OPCs derived from primary tissue culture. The mESC-derived OPCs do not show the spiking property described for a subpopulation of brain OPCs in situ. To study this electrophysiological property, we describe the generation of spiking mESC-derived OPCs by ectopically expressing NaV1.2 subunit. The spiking and nonspiking cells obtained from this protocol will help advance functional studies on the two subpopulations of OPCs.
Neurobiology, Issue 39, pluripotent stem cell, oligodendrocyte precursor cells, differentiation, myelin, neuroscience, brain
1960
Play Button
Large-scale Gene Knockdown in C. elegans Using dsRNA Feeding Libraries to Generate Robust Loss-of-function Phenotypes
Authors: Kathryn N. Maher, Mary Catanese, Daniel L. Chase.
Institutions: University of Massachusetts, Amherst, University of Massachusetts, Amherst, University of Massachusetts, Amherst.
RNA interference by feeding worms bacteria expressing dsRNAs has been a useful tool to assess gene function in C. elegans. While this strategy works well when a small number of genes are targeted for knockdown, large scale feeding screens show variable knockdown efficiencies, which limits their utility. We have deconstructed previously published RNAi knockdown protocols and found that the primary source of the reduced knockdown can be attributed to the loss of dsRNA-encoding plasmids from the bacteria fed to the animals. Based on these observations, we have developed a dsRNA feeding protocol that greatly reduces or eliminates plasmid loss to achieve efficient, high throughput knockdown. We demonstrate that this protocol will produce robust, reproducible knock down of C. elegans genes in multiple tissue types, including neurons, and will permit efficient knockdown in large scale screens. This protocol uses a commercially available dsRNA feeding library and describes all steps needed to duplicate the library and perform dsRNA screens. The protocol does not require the use of any sophisticated equipment, and can therefore be performed by any C. elegans lab.
Developmental Biology, Issue 79, Caenorhabditis elegans (C. elegans), Gene Knockdown Techniques, C. elegans, dsRNA interference, gene knockdown, large scale feeding screen
50693
Play Button
A Rapid and Efficient Method for Assessing Pathogenicity of Ustilago maydis on Maize and Teosinte Lines
Authors: Suchitra Chavan, Shavannor M. Smith.
Institutions: University of Georgia.
Maize is a major cereal crop worldwide. However, susceptibility to biotrophic pathogens is the primary constraint to increasing productivity. U. maydis is a biotrophic fungal pathogen and the causal agent of corn smut on maize. This disease is responsible for significant yield losses of approximately $1.0 billion annually in the U.S.1 Several methods including crop rotation, fungicide application and seed treatments are currently used to control corn smut2. However, host resistance is the only practical method for managing corn smut. Identification of crop plants including maize, wheat, and rice that are resistant to various biotrophic pathogens has significantly decreased yield losses annually3-5. Therefore, the use of a pathogen inoculation method that efficiently and reproducibly delivers the pathogen in between the plant leaves, would facilitate the rapid identification of maize lines that are resistant to U. maydis. As, a first step toward indentifying maize lines that are resistant to U. maydis, a needle injection inoculation method and a resistance reaction screening method was utilized to inoculate maize, teosinte, and maize x teosinte introgression lines with a U. maydis strain and to select resistant plants. Maize, teosinte and maize x teosinte introgression lines, consisting of about 700 plants, were planted, inoculated with a strain of U. maydis, and screened for resistance. The inoculation and screening methods successfully identified three teosinte lines resistant to U. maydis. Here a detailed needle injection inoculation and resistance reaction screening protocol for maize, teosinte, and maize x teosinte introgression lines is presented. This study demonstrates that needle injection inoculation is an invaluable tool in agriculture that can efficiently deliver U. maydis in between the plant leaves and has provided plant lines that are resistant to U. maydis that can now be combined and tested in breeding programs for improved disease resistance.
Environmental Sciences, Issue 83, Bacterial Infections, Signs and Symptoms, Eukaryota, Plant Physiological Phenomena, Ustilago maydis, needle injection inoculation, disease rating scale, plant-pathogen interactions
50712
Play Button
Visualizing Neuroblast Cytokinesis During C. elegans Embryogenesis
Authors: Denise Wernike, Chloe van Oostende, Alisa Piekny.
Institutions: Concordia University.
This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.
Neuroscience, Issue 85, C. elegans, morphogenesis, cytokinesis, neuroblasts, anillin, microscopy, cell division
51188
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
50338
Play Button
Preparation of DNA-crosslinked Polyacrylamide Hydrogels
Authors: Michelle L. Previtera, Noshir A. Langrana.
Institutions: JFK Medical Center, Rutgers University, Rutgers University.
Mechanobiology is an emerging scientific area that addresses the critical role of physical cues in directing cell morphology and function. For example, the effect of tissue elasticity on cell function is a major area of mechanobiology research because tissue stiffness modulates with disease, development, and injury. Static tissue-mimicking materials, or materials that cannot alter stiffness once cells are plated, are predominately used to investigate the effects of tissue stiffness on cell functions. While information gathered from static studies is valuable, these studies are not indicative of the dynamic nature of the cellular microenvironment in vivo. To better address the effects of dynamic stiffness on cell function, we developed a DNA-crosslinked polyacrylamide hydrogel system (DNA gels). Unlike other dynamic substrates, DNA gels have the ability to decrease or increase in stiffness after fabrication without stimuli. DNA gels consist of DNA crosslinks that are polymerized into a polyacrylamide backbone. Adding and removing crosslinks via delivery of single-stranded DNA allows temporal, spatial, and reversible control of gel elasticity. We have shown in previous reports that dynamic modulation of DNA gel elasticity influences fibroblast and neuron behavior. In this report and video, we provide a schematic that describes the DNA gel crosslinking mechanisms and step-by-step instructions on the preparation DNA gels.
Bioengineering, Issue 90, bioengineering (general), Elastic, viscoelastic, bis-acrylamide, substrate, stiffness, dynamic, static, neuron, fibroblast, compliance, ECM, mechanobiology, tunable
51323
Play Button
Larval RNA Interference in the Red Flour Beetle, Tribolium castaneum
Authors: David M. Linz, Courtney M. Clark-Hachtel, Ferran Borràs-Castells, Yoshinori Tomoyasu.
Institutions: Miami University.
The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.
Molecular Biology, Issue 92, RNA interference, RNAi, gene knockdown, red flour beetle, Tribolium castaneum, injection, double-stranded RNA, functional analysis, teaching laboratories
52059
Play Button
Reprogramming Human Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) Using Retroviral Vector with GFP
Authors: Kun-Yong Kim, Eriona Hysolli, In-Hyun Park.
Institutions: Yale School of Medicine.
Human embryonic stem cells (hESCs) are pluripotent and an invaluable cellular sources for in vitro disease modeling and regenerative medicine1. It has been previously shown that human somatic cells can be reprogrammed to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) and become induced pluripotent stem cells (iPSCs)2-4 . Like hESCs, human iPSCs are pluripotent and a potential source for autologous cells. Here we describe the protocol to reprogram human fibroblast cells with the four reprogramming factors cloned into GFP-containing retroviral backbone4. Using the following protocol, we generate human iPSCs in 3-4 weeks under human ESC culture condition. Human iPSC colonies closely resemble hESCs in morphology and display the loss of GFP fluorescence as a result of retroviral transgene silencing. iPSC colonies isolated mechanically under a fluorescence microscope behave in a similar fashion as hESCs. In these cells, we detect the expression of multiple pluripotency genes and surface markers.
Stem Cell Biology, Issue 62, Human iPS cells, iPSCs, Reprogramming, Retroviral vectors and Pluripotency
3804
Play Button
Generation of Induced Pluripotent Stem Cells by Reprogramming Mouse Embryonic Fibroblasts with a Four Transcription Factor, Doxycycline Inducible Lentiviral Transduction System
Authors: Brad Hamilton, Qiang Feng, Mike Ye, G Grant Welstead.
Institutions: Stemgent, MIT - Massachusetts Institute of Technology.
Using a defined set of transcription factors and cell culture conditions, Yamanaka and colleagues demonstrated that retrovirus-mediated delivery and expression of Oct4, Sox2, c-Myc, and Klf4 is capable of inducing pluripotency in mouse fibroblasts.1 Subsequent reports have demonstrated the utility of the doxycycline (DOX) inducible lentiviral delivery system for the generation of both primary and secondary iPS cells from a variety of other adult mouse somatic cell types.2,3 Induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells in morphology, proliferation and ability to induce teratoma formation. Both types of cell can be used as the pluripotent starting material for the generation of differentiated cells or tissues in regenerative medicine.4-6 iPS cells also have a distinct advantage over ES cells as they exhibit key properties of ES cells without the ethical dilemma of embryo destruction. Here we demonstrate the protocol for reprogramming mouse embryonic fibroblast (MEF) cells with the Stemgent DOX Inducible Mouse TF Lentivirus Set. We also demonstrate that the Stemgent DOX Inducible Mouse TF Lentivirus Set is capable of expressing each of the four transcription factors upon transduction into MEFs thereby inducing a pluripotent stem cell state that displays the pluripotency markers characteristic of ES cells.
Developmental Biology, Issue 33, reprogramming, Doxycycline, DOX, iPS, induced pluripotent stem cells, lentivirus, pluripotency, transduction, stem cells
1447
Play Button
In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors
Authors: Açelya Yilmazer, Irene de Lázaro, Cyrill Bussy, Kostas Kostarelos.
Institutions: University College London, University of Manchester.
Induced pluripotent stem (iPS) cells that result from the reprogramming of somatic cells to a pluripotent state by forced expression of defined factors are offering new opportunities for regenerative medicine. Such clinical applications of iPS cells have been limited so far, mainly due to the poor efficiency of the existing reprogramming methodologies and the risk of the generated iPS cells to form tumors upon implantation. We hypothesized that the reprogramming of somatic cells towards pluripotency could be achieved in vivo by gene transfer of reprogramming factors. In order to efficiently reprogram cells in vivo, high levels of the Yamanaka (OKSM) transcription factors need to be expressed at the target tissue. This can be achieved by using different viral or nonviral gene vectors depending on the target tissue. In this particular study, hydrodynamic tail-vein (HTV) injection of plasmid DNA was used to deliver the OKSM factors to mouse hepatocytes. This provided proof-of-evidence of in vivo reprogramming of adult, somatic cells towards a pluripotent state with high efficiency and fast kinetics. Furthermore no tumor or teratoma formation was observed in situ. It can be concluded that reprogramming somatic cells in vivo may offer a potential approach to induce enhanced pluripotency rapidly, efficiently, and safely compared to in vitro performed protocols and can be applied to different tissue types in the future.
Stem Cell Biology, Issue 82, Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Transcription Factors, General, Gene Therapy, Gene Expression, iPS, OKSM, regenerative medicine
50837
Play Button
The use of SC1 (Pluripotin) to Support mESC Self-renewal in the Absence of LIF
Authors: Wen Xiong, Yan Gao, Xun Cheng, Charles Martin, Dongmei Wu, Shuyuan Yao, Min-Ju Kim, Yang Liu.
Institutions: Stemgent, Stemgent.
Mouse embryonic stem (ES) cells are conventionally cultured with Leukemia Inhibitory Factor (LIF) to maintain self-renewal.1 However, LIF is expensive and activation of the LIF/JAK/STAT3 pathway is not absolutely required to maintain the self-renewal state.2 The SC1 small molecule may be an economical alternative to LIF. SC1 functions through dual inhibition of Ras-GAP and ERK1.3 Illustration of its mechanism of action makes it a useful tool to study the fundamental molecular mechanism of self-renewal. Here we demonstrate the procedure for culturing mouse ES cells in the presence of SC1 and show that they are able to maintain self-renewal in the absence of LIF. Cells cultured with SC1 showed similar morphology compared to cells maintained with LIF. Both exhibited typical mouse ES morphology after five passages. Expression of typical pluripotency markers (Oct4, Sox2, Nanog, and SSEA1) was observed after five passages in the presence of SC1. Furthermore, SC1 caused no overt toxicity on mouse ES cells.
Cellular Biology, Issue 33, SC1(Pluripotin), LIF, mESC, mouse ESC, mouse ES cells, pluripotency, self-renewal, small molecule
1550
Play Button
Oct4GiP Reporter Assay to Study Genes that Regulate Mouse Embryonic Stem Cell Maintenance and Self-renewal
Authors: Xiaofeng Zheng, Guang Hu.
Institutions: National Institute of Environmental Health Sciences.
Pluripotency and self-renewal are two defining characteristics of embryonic stem cells (ES cells). Understanding the underlying molecular mechanism will greatly facilitate the use of ES cells for developmental biology studies, disease modeling, drug discovery, and regenerative medicine (reviewed in 1,2). To expedite the identification and characterization of novel regulators of ES cell maintenance and self-renewal, we developed a fluorescence reporter-based assay to quantitatively measure the self-renewal status in mouse ES cells using the Oct4GiP cells 3. The Oct4GiP cells express the green fluorescent protein (GFP) under the control of the Oct4 gene promoter region 4,5. Oct4 is required for ES cell self-renewal, and is highly expressed in ES cells and quickly down-regulated during differentiation 6,7. As a result, GFP expression and fluorescence in the reporter cells correlates faithfully with the ES cell identity 5, and fluorescence-activated cell sorting (FACS) analysis can be used to closely monitor the self-renewal status of the cells at the single cell level 3,8. Coupled with RNAi, the Oct4GiP reporter assay can be used to quickly identify and study regulators of ES cell maintenance and self-renewal 3,8. Compared to other methods for assaying self-renewal, it is more convenient, sensitive, quantitative, and of lower cost. It can be carried out in 96- or 384-well plates for large-scale studies such as high-throughput screens or genetic epistasis analysis. Finally, by using other lineage-specific reporter ES cell lines, the assay we describe here can also be modified to study fate specification during ES cell differentiation.
Stem Cell Biology, Issue 63, Molecular Biology, Genetics, Embryonic stem cell, ESC, self-renewal, differentiation, Oct4, GFP, reporter assay, RNAi
3987
Play Button
Derivation of T Cells In Vitro from Mouse Embryonic Stem Cells
Authors: Martina Kučerová-Levisohn, Jordana Lovett, Armin Lahiji, Roxanne Holmes, Juan Carlos Zúñiga-Pflücker, Benjamin D. Ortiz.
Institutions: City University of New York, University of Toronto.
The OP9/OP9-DL1 co-culture system has become a well-established method for deriving differentiated blood cell types from embryonic and hematopoietic progenitors of both mouse and human origin. It is now used to address a growing variety of complex genetic, cellular and molecular questions related to hematopoiesis, and is at the cutting edge of efforts to translate these basic findings to therapeutic applications. The procedures are straightforward and routinely yield robust results. However, achieving successful hematopoietic differentiation in vitro requires special attention to the details of reagent and cell culture maintenance. Furthermore, the protocol features technique sensitive steps that, while not difficult, take care and practice to master. Here we focus on the procedures for differentiation of T lymphocytes from mouse embryonic stem cells (mESC). We provide a detailed protocol with discussions of the critical steps and parameters that enable reproducibly robust cellular differentiation in vitro. It is in the interest of the field to consider wider adoption of this technology, as it has the potential to reduce animal use, lower the cost and shorten the timelines of both basic and translational experimentation.
Immunology, Issue 92, mouse, embryonic stem cells, in vitro differentiation, OP9 cells, Delta-like 1 (Dll-1) ligand, Notch, hematopoiesis, lymphocytes, T cells
52119
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
51519
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Enrichment and Purging of Human Embryonic Stem Cells by Detection of Cell Surface Antigens Using the Monoclonal Antibodies TG30 and GCTM-2
Authors: Juan Carlos Polanco, Bei Wang, Qi Zhou, Hun Chy, Carmel O'Brien, Andrew L. Laslett.
Institutions: CSIRO.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.
Stem Cell Biology, Issue 82, Stem cells, cell surface antigens, antibodies, FACS, purging stem cells, differentiation, pluripotency, teratoma, human embryonic stem cells (hESC)
50856
Play Button
Derivation and Characterization of a Transgene-free Human Induced Pluripotent Stem Cell Line and Conversion into Defined Clinical-grade Conditions
Authors: Jason P. Awe, Agustin Vega-Crespo, James A. Byrne.
Institutions: University of California, Los Angeles (UCLA), University of California, Los Angeles (UCLA).
Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However, traces of potentially oncogenic genes remaining in actively transcribed regions of the genome, limit their potential for use in human therapeutic applications1. Additionally, non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context2. In this video, we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR), which has an advantage over less sensitive techniques previously used to detect gene expression differences3. Full conversion into clinical-grade good manufacturing practice (GMP) conditions, allows human clinical relevance. Our protocol offers another methodology—provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications—for deriving GMP-grade hiPSCs, which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
Stem Cell Biology, Issue 93, Human induced pluripotent stem cells, STEMCCA, factor-free, GMP, xeno-free, quantitative PCR
52158
Play Button
Cell Surface Marker Mediated Purification of iPS Cell Intermediates from a Reprogrammable Mouse Model
Authors: Christian M. Nefzger, Sara Alaei, Anja S. Knaupp, Melissa L. Holmes, Jose M. Polo.
Institutions: Monash University, Monash University.
Mature cells can be reprogrammed to a pluripotent state. These so called induced pluripotent stem (iPS) cells are able to give rise to all cell types of the body and consequently have vast potential for regenerative medicine applications. Traditionally iPS cells are generated by viral introduction of transcription factors Oct-4, Klf-4, Sox-2, and c-Myc (OKSM) into fibroblasts. However, reprogramming is an inefficient process with only 0.1-1% of cells reverting towards a pluripotent state, making it difficult to study the reprogramming mechanism. A proven methodology that has allowed the study of the reprogramming process is to separate the rare intermediates of the reaction from the refractory bulk population. In the case of mouse embryonic fibroblasts (MEFs), we and others have previously shown that reprogramming cells undergo a distinct series of changes in the expression profile of cell surface markers which can be used for the separation of these cells. During the early stages of OKSM expression successfully reprogramming cells lose fibroblast identity marker Thy-1.2 and up-regulate pluripotency associated marker Ssea-1. The final transition of a subset of Ssea-1 positive cells towards the pluripotent state is marked by the expression of Epcam during the late stages of reprogramming. Here we provide a detailed description of the methodology used to isolate reprogramming intermediates from cultures of reprogramming MEFs. In order to increase experimental reproducibility we use a reprogrammable mouse strain that has been engineered to express a transcriptional transactivator (m2rtTA) under control of the Rosa26 locus and OKSM under control of a doxycycline responsive promoter. Cells isolated from these mice are isogenic and express OKSM homogenously upon addition of doxycycline. We describe in detail the establishment of the reprogrammable mice, the derivation of MEFs, and the subsequent isolation of intermediates during reprogramming into iPS cells via fluorescent activated cells sorting (FACS).
Stem Cell Biology, Issue 91, Induced pluripotent stem cells; reprogramming; intermediates; fluorescent activated cells sorting; cell surface marker; reprogrammable mouse model; derivation of mouse embryonic fibroblasts
51728
Play Button
Generation of Induced Pluripotent Stem Cells by Reprogramming Human Fibroblasts with the Stemgent Human TF Lentivirus Set
Authors: Dongmei Wu, Brad Hamilton, Charles Martin, Yan Gao, Mike Ye, Shuyuan Yao.
Institutions: Stemgent.
In 2006, Yamanaka and colleagues first demonstrated that retrovirus-mediated delivery and expression of Oct4, Sox2, c-Myc and Klf4 is capable of inducing the pluripotent state in mouse fibroblasts.1 The same group also reported the successful reprogramming of human somatic cells into induced pluripotent stem (iPS) cells using human versions of the same transcription factors delivered by retroviral vectors.2 Additionally, James Thomson et al. reported that the lentivirus-mediated co-expression of another set of factors (Oct4, Sox2, Nanog and Lin28) was capable of reprogramming human somatic cells into iPS cells.3 iPS cells are similar to ES cells in morphology, proliferation and the ability to differentiate into all tissue types of the body. Human iPS cells have a distinct advantage over ES cells as they exhibit key properties of ES cells without the ethical dilemma of embryo destruction. The generation of patient-specific iPS cells circumvents an important roadblock to personalized regenerative medicine therapies by eliminating the potential for immune rejection of non-autologous transplanted cells. Here we demonstrate the protocol for reprogramming human fibroblast cells using the Stemgent Human TF Lentivirus Set. We also show that cells reprogrammed with this set begin to show iPS morphology four days post-transduction. Using the Stemolecule Y27632, we selected for iPS cells and observed correct morphology after three sequential rounds of colony picking and passaging. We also demonstrate that after reprogramming cells displayed the pluripotency marker AP, surface markers TRA-1-81, TRA-1-60, SSEA-4, and SSEA-3, and nuclear markers Oct4, Sox2 and Nanog.
Developmental Biology, Issue 34, iPS, reprogramming, lentivirus, stem cell, induced pluripotent cell, pluripotency, fibroblast, embryonic stem cells, ES cells, iPS cells
1553
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
51850
Play Button
Generating iPS Cells from MEFS through Forced Expression of Sox-2, Oct-4, c-Myc, and Klf4
Authors: G. Grant Welstead, Tobias Brambrink, Rudolf Jaenisch.
Institutions: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology.
Pluripotency can be induced in differentiated murine by viral transduction of Oct4, Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006; Wernig, et al., 2007; Okita, et al., 2007; Maherali, et al., 2007). We have devised a reprogramming strategy in which these four transcription factors are expressed from doxycycline (dox)-inducible lentiviral vectors (Brambrink et al., 2008). Using these inducible constructs, we can derive induced pluripotent stem (iPS) cells from mouse embryonic fibroblasts (MEFs). In this video, we demonstrate the procedure for the generation of inducible lentiviruses that express the four transcription factors and show how to infect MEFs with these viruses in order to produce iPS cells. By using inducible lentiviruses, the expression of the four factors in controlled by the addition of doxycyline to the culture medium. The advantage of this system over the traditional retroviral infection is the ability to turn the genes on and off so that the kinetics of reprogramming and gene expression requirements can be analyzed in detail.
Cell Biology, Issue 14, Reprogramming, inducible lentiviruses, iPS cells, MEFs, ES cells, virus transduction, doxycycline
734
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.