JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Quantifying ant activity using vibration measurements.
PUBLISHED: 01-01-2014
Ant behaviour is of great interest due to their sociality. Ant behaviour is typically observed visually, however there are many circumstances where visual observation is not possible. It may be possible to assess ant behaviour using vibration signals produced by their physical movement. We demonstrate through a series of bioassays with different stimuli that the level of activity of meat ants (Iridomyrmex purpureus) can be quantified using vibrations, corresponding to observations with video. We found that ants exposed to physical shaking produced the highest average vibration amplitudes followed by ants with stones to drag, then ants with neighbours, illuminated ants and ants in darkness. In addition, we devised a novel method based on wavelet decomposition to separate the vibration signal owing to the initial ant behaviour from the substrate response, which will allow signals recorded from different substrates to be compared directly. Our results indicate the potential to use vibration signals to classify some ant behaviours in situations where visual observation could be difficult.
Authors: Helgi I. Ingólfsson, R. Lea Sanford, Ruchi Kapoor, Olaf S. Andersen.
Published: 10-13-2010
Many drugs and other small molecules used to modulate biological function are amphiphiles that adsorb at the bilayer/solution interface and thereby alter lipid bilayer properties. This is important because membrane proteins are energetically coupled to their host bilayer by hydrophobic interactions. Changes in bilayer properties thus alter membrane protein function, which provides an indirect way for amphiphiles to modulate protein function and a possible mechanism for "off-target" drug effects. We have previously developed an electrophysiological assay for detecting changes in lipid bilayer properties using linear gramicidin channels as probes 3,12. Gramicidin channels are mini-proteins formed by the transbilayer dimerization of two non-conducting subunits. They are sensitive to changes in their membrane environment, which makes them powerful probes for monitoring changes in lipid bilayer properties as sensed by bilayer spanning proteins. We now demonstrate a fluorescence assay for detecting changes in bilayer properties using the same channels as probes. The assay is based on measuring the time-course of fluorescence quenching from fluorophore-loaded large unilamellar vesicles due to the entry of a quencher through the gramicidin channels. We use the fluorescence indicator/quencher pair 8-aminonaphthalene-1,3,6-trisulfonate (ANTS)/Tl+ that has been successfully used in other fluorescence quenching assays 5,13. Tl+ permeates the lipid bilayer slowly 8 but passes readily through conducting gramicidin channels 1,14. The method is scalable and suitable for both mechanistic studies and high-throughput screening of small molecules for bilayer-perturbing, and potential "off-target", effects. We find that results using this method are in good agreement with previous electrophysiological results 12.
23 Related JoVE Articles!
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Differential Imaging of Biological Structures with Doubly-resonant Coherent Anti-stokes Raman Scattering (CARS)
Authors: Tyler J. Weeks, Thomas R. Huser.
Institutions: University of California, Davis, University of California, Davis.
Coherent Raman imaging techniques have seen a dramatic increase in activity over the past decade due to their promise to enable label-free optical imaging with high molecular specificity 1. The sensitivity of these techniques, however, is many orders of magnitude weaker than fluorescence, requiring milli-molar molecular concentrations 1,2. Here, we describe a technique that can enable the detection of weak or low concentrations of Raman-active molecules by amplifying their signal with that obtained from strong or abundant Raman scatterers. The interaction of short pulsed lasers in a biological sample generates a variety of coherent Raman scattering signals, each of which carry unique chemical information about the sample. Typically, only one of these signals, e.g. Coherent Anti-stokes Raman scattering (CARS), is used to generate an image while the others are discarded. However, when these other signals, including 3-color CARS and four-wave mixing (FWM), are collected and compared to the CARS signal, otherwise difficult to detect information can be extracted 3. For example, doubly-resonant CARS (DR-CARS) is the result of the constructive interference between two resonant signals 4. We demonstrate how tuning of the three lasers required to produce DR-CARS signals to the 2845 cm-1 CH stretch vibration in lipids and the 2120 cm-1 CD stretching vibration of a deuterated molecule (e.g. deuterated sugars, fatty acids, etc.) can be utilized to probe both Raman resonances simultaneously. Under these conditions, in addition to CARS signals from each resonance, a combined DR-CARS signal probing both is also generated. We demonstrate how detecting the difference between the DR-CARS signal and the amplifying signal from an abundant molecule's vibration can be used to enhance the sensitivity for the weaker signal. We further demonstrate that this approach even extends to applications where both signals are generated from different molecules, such that e.g. using the strong Raman signal of a solvent can enhance the weak Raman signal of a dilute solute.
Cellular Biology, Issue 44, Raman scattering, Four-wave mixing, Coherent anti-Stokes Raman scattering, Microscopy, Coherent Raman Scattering
Play Button
Chemotactic Response of Marine Micro-Organisms to Micro-Scale Nutrient Layers
Authors: Justin R. Seymour, Marcos, Roman Stocker.
Institutions: MIT - Massachusetts Institute of Technology.
The degree to which planktonic microbes can exploit microscale resource patches will have considerable implications for oceanic trophodynamics and biogeochemical flux. However, to take advantage of nutrient patches in the ocean, swimming microbes must overcome the influences of physical forces including molecular diffusion and turbulent shear, which will limit the availability of patches and the ability of bacteria to locate them. Until recently, methodological limitations have precluded direct examinations of microbial behaviour within patchy habitats and realistic small-scale flow conditions. Hence, much of our current knowledge regarding microbial behaviour in the ocean has been procured from theoretical predictions. To obtain new information on microbial foraging behaviour in the ocean we have applied soft lithographic fabrication techniques to develop 2 microfluidic devices, which we have used to create (i) microscale nutrient patches with dimensions and diffusive characteristics relevant to oceanic processes and (ii) microscale vortices, with shear rates corresponding to those expected in the ocean. These microfluidic devices have permitted a first direct examination of microbial swimming and chemotactic behaviour within a heterogeneous and dynamic seascape. The combined use of epifluorescence and phase contrast microscopy allow direct examinations of the physical dimensions and diffusive characteristics of nutrient patches, while observing the population-level aggregative response, in addition to the swimming behaviour of individual microbes. These experiments have revealed that some species of phytoplankton, heterotrophic bacteria and phagotrophic protists are adept at locating and exploiting diffusing microscale resource patches within very short time frames. We have also shown that up to moderate shear rates, marine bacteria are able to fight the flow and swim through their environment at their own accord. However, beyond a threshold high shear level, bacteria are aligned in the shear flow and are less capable of swimming without disturbance from the flow. Microfluidics represents a novel and inexpensive approach for studying aquatic microbial ecology, and due to its suitability for accurately creating realistic flow fields and substrate gradients at the microscale, is ideally applicable to examinations of microbial behaviour at the smallest scales of interaction. We therefore suggest that microfluidics represents a valuable tool for obtaining a better understanding of the ecology of microorganisms in the ocean.
Microbiology, issue 4, microbial community, chemotaxis, microfluidics
Play Button
Measurement of Bioelectric Current with a Vibrating Probe
Authors: Brian Reid, Min Zhao.
Institutions: University of California, Davis.
Electric fields, generated by active transport of ions, are present in many biological systems and often serve important functions in tissues and organs. For example, they play an important role in directing cell migration during wound healing. Here we describe the manufacture and use of ultrasensitive vibrating probes for measuring extracellular electric currents. The probe is an insulated, sharpened metal wire with a small platinum-black tip (30-35 μm), which can detect ionic currents in the μA/cm2 range in physiological saline. The probe is vibrated at about 200 Hz by a piezoelectric bender. In the presence of an ionic current, the probe detects a voltage difference between the extremes of its movement. A lock-in amplifier filters out extraneous noise by locking on to the probe's frequency of vibration. Data are recorded onto computer. The probe is calibrated at the start and end of experiments in appropriate saline, using a chamber which applies a current of exactly 1.5 μA/cm2. We describe how to make the probes, set up the system and calibrate. We also demonstrate the technique of cornea measurement, and show some representative results from different specimens (cornea, skin, brain).
Bioengineering, Issue 47, electric, field, current, vibrating, probe
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Coordinate Mapping of Hyolaryngeal Mechanics in Swallowing
Authors: Thomas Z. Thompson, Farres Obeidin, Alisa A. Davidoff, Cody L. Hightower, Christohper Z. Johnson, Sonya L. Rice, Rebecca-Lyn Sokolove, Brandon K. Taylor, John M. Tuck, William G. Pearson, Jr..
Institutions: Georgia Regents University, New York University, Georgia Regents University, Georgia Regents University.
Characterizing hyolaryngeal movement is important to dysphagia research. Prior methods require multiple measurements to obtain one kinematic measurement whereas coordinate mapping of hyolaryngeal mechanics using Modified Barium Swallow (MBS) uses one set of coordinates to calculate multiple variables of interest. For demonstration purposes, ten kinematic measurements were generated from one set of coordinates to determine differences in swallowing two different bolus types. Calculations of hyoid excursion against the vertebrae and mandible are correlated to determine the importance of axes of reference. To demonstrate coordinate mapping methodology, 40 MBS studies were randomly selected from a dataset of healthy normal subjects with no known swallowing impairment. A 5 ml thin-liquid bolus and a 5 ml pudding swallows were measured from each subject. Nine coordinates, mapping the cranial base, mandible, vertebrae and elements of the hyolaryngeal complex, were recorded at the frames of minimum and maximum hyolaryngeal excursion. Coordinates were mathematically converted into ten variables of hyolaryngeal mechanics. Inter-rater reliability was evaluated by Intraclass correlation coefficients (ICC). Two-tailed t-tests were used to evaluate differences in kinematics by bolus viscosity. Hyoid excursion measurements against different axes of reference were correlated. Inter-rater reliability among six raters for the 18 coordinates ranged from ICC = 0.90 - 0.97. A slate of ten kinematic measurements was compared by subject between the six raters. One outlier was rejected, and the mean of the remaining reliability scores was ICC = 0.91, 0.84 - 0.96, 95% CI. Two-tailed t-tests with Bonferroni corrections comparing ten kinematic variables (5 ml thin-liquid vs. 5 ml pudding swallows) showed statistically significant differences in hyoid excursion, superior laryngeal movement, and pharyngeal shortening (p < 0.005). Pearson correlations of hyoid excursion measurements from two different axes of reference were: r = 0.62, r2 = 0.38, (thin-liquid); r = 0.52, r2 = 0.27, (pudding). Obtaining landmark coordinates is a reliable method to generate multiple kinematic variables from video fluoroscopic images useful in dysphagia research.
Medicine, Issue 87, videofluoroscopy, modified barium swallow studies, hyolaryngeal kinematics, deglutition, dysphagia, dysphagia research, hyolaryngeal complex
Play Button
Voltage-sensitive Dye Recording from Axons, Dendrites and Dendritic Spines of Individual Neurons in Brain Slices
Authors: Marko Popovic, Xin Gao, Dejan Zecevic.
Institutions: Yale University School of Medicine .
Understanding the biophysical properties and functional organization of single neurons and how they process information is fundamental for understanding how the brain works. The primary function of any nerve cell is to process electrical signals, usually from multiple sources. Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin on neuronal processes and summate at particular locations to influence action potential initiation. This goal has not been achieved in any neuron due to technical limitations of measurements that employ electrodes. To overcome this drawback, it is highly desirable to complement the patch-electrode approach with imaging techniques that permit extensive parallel recordings from all parts of a neuron. Here, we describe such a technique - optical recording of membrane potential transients with organic voltage-sensitive dyes (Vm-imaging) - characterized by sub-millisecond and sub-micrometer resolution. Our method is based on pioneering work on voltage-sensitive molecular probes 2. Many aspects of the initial technology have been continuously improved over several decades 3, 5, 11. Additionally, previous work documented two essential characteristics of Vm-imaging. Firstly, fluorescence signals are linearly proportional to membrane potential over the entire physiological range (-100 mV to +100 mV; 10, 14, 16). Secondly, loading neurons with the voltage-sensitive dye used here (JPW 3028) does not have detectable pharmacological effects. The recorded broadening of the spike during dye loading is completely reversible 4, 7. Additionally, experimental evidence shows that it is possible to obtain a significant number (up to hundreds) of recordings prior to any detectable phototoxic effects 4, 6, 12, 13. At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the Vm-imaging technique. The current sensitivity permits multiple site optical recordings of Vm transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie.
Neuroscience, Issue 69, Medicine, Physiology, Molecular Biology, Cellular Biology, voltage-sensitive dyes, brain, imaging, dendritic spines, axons, dendrites, neurons
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
Testing Visual Sensitivity to the Speed and Direction of Motion in Lizards
Authors: Kevin L. Woo.
Institutions: Macquarie University.
Testing visual sensitivity in any species provides basic information regarding behaviour, evolution, and ecology. However, testing specific features of the visual system provide more empirical evidence for functional applications. Investigation into the sensory system provides information about the sensory capacity, learning and memory ability, and establishes known baseline behaviour in which to gauge deviations (Burghardt, 1977). However, unlike mammalian or avian systems, testing for learning and memory in a reptile species is difficult. Furthermore, using an operant paradigm as a psychophysical measure of sensory ability is likewise as difficult. Historically, reptilian species have responded poorly to conditioning trials because of issues related to motivation, physiology, metabolism, and basic biological characteristics. Here, I demonstrate an operant paradigm used a novel model lizard species, the Jacky dragon (Amphibolurus muricatus) and describe how to test peripheral sensitivity to salient speed and motion characteristics. This method uses an innovative approach to assessing learning and sensory capacity in lizards. I employ the use of random-dot kinematograms (RDKs) to measure sensitivity to speed, and manipulate the level of signal strength by changing the proportion of dots moving in a coherent direction. RDKs do not represent a biologically meaningful stimulus, engages the visual system, and is a classic psychophysical tool used to measure sensitivity in humans and other animals. Here, RDKs are displayed to lizards using three video playback systems. Lizards are to select the direction (left or right) in which they perceive dots to be moving. Selection of the appropriate direction is reinforced by biologically important prey stimuli, simulated by computer-animated invertebrates.
Neuroscience, Issue 2, Visual sensitivity, motion perception, operant conditioning, speed, coherence, Jacky dragon (Amphibolurus muricatus)
Play Button
Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice
Authors: Hirotaka Shoji, Keizo Takao, Satoko Hattori, Tsuyoshi Miyakawa.
Institutions: Fujita Health University, Core Research for Evolutionary Science and Technology (CREST), National Institutes of Natural Sciences.
The contextual and cued fear conditioning test is one of the behavioral tests that assesses the ability of mice to learn and remember an association between environmental cues and aversive experiences. In this test, mice are placed into a conditioning chamber and are given parings of a conditioned stimulus (an auditory cue) and an aversive unconditioned stimulus (an electric footshock). After a delay time, the mice are exposed to the same conditioning chamber and a differently shaped chamber with presentation of the auditory cue. Freezing behavior during the test is measured as an index of fear memory. To analyze the behavior automatically, we have developed a video analyzing system using the ImageFZ application software program, which is available as a free download at Here, to show the details of our protocol, we demonstrate our procedure for the contextual and cued fear conditioning test in C57BL/6J mice using the ImageFZ system. In addition, we validated our protocol and the video analyzing system performance by comparing freezing time measured by the ImageFZ system or a photobeam-based computer measurement system with that scored by a human observer. As shown in our representative results, the data obtained by ImageFZ were similar to those analyzed by a human observer, indicating that the behavioral analysis using the ImageFZ system is highly reliable. The present movie article provides detailed information regarding the test procedures and will promote understanding of the experimental situation.
Behavior, Issue 85, Fear, Learning, Memory, ImageFZ program, Mouse, contextual fear, cued fear
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
Play Button
Examining BCL-2 Family Function with Large Unilamellar Vesicles
Authors: James J. Asciolla, Thibaud T. Renault, Jerry E. Chipuk.
Institutions: Mount Sinai School of Medicine .
The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis1. Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)1. After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues2. In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)3-6. Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation7,8. In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members7,9. As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization10. LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)10. This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)11. As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.
Cancer Biology, Issue 68, Genetics, Molecular Biology, Apoptosis, BAX, BCL-2 family, large unilamellar vesicles, MOMP, outer mitochondrial membrane
Play Button
The Generation of Higher-order Laguerre-Gauss Optical Beams for High-precision Interferometry
Authors: Ludovico Carbone, Paul Fulda, Charlotte Bond, Frank Brueckner, Daniel Brown, Mengyao Wang, Deepali Lodhia, Rebecca Palmer, Andreas Freise.
Institutions: University of Birmingham.
Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry.
Physics, Issue 78, Optics, Astronomy, Astrophysics, Gravitational waves, Laser interferometry, Metrology, Thermal noise, Laguerre-Gauss modes, interferometry
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish
Authors: James J. Jun, André Longtin, Leonard Maler.
Institutions: University of Ottawa, University of Ottawa, University of Ottawa.
Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors.
Neuroscience, Issue 85, animal tracking, weakly electric fish, electric organ discharge, underwater infrared imaging, automated image tracking, sensory isolation chamber, exploratory behavior
Play Button
Construction and Characterization of a Novel Vocal Fold Bioreactor
Authors: Aidan B. Zerdoum, Zhixiang Tong, Brendan Bachman, Xinqiao Jia.
Institutions: University of Delaware, University of Delaware.
In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.
Bioengineering, Issue 90, vocal fold; bioreactor; speaker; silicone membrane; fibrous scaffold; mesenchymal stem cells; vibration; extracellular matrix
Play Button
Preterm EEG: A Multimodal Neurophysiological Protocol
Authors: Susanna Stjerna, Juha Voipio, Marjo Metsäranta, Kai Kaila, Sampsa Vanhatalo.
Institutions: University of Helsinki , University of Helsinki , University of Helsinki , University of Helsinki .
Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.
Neuroscience, Issue 60, neurophysiology, preterm baby, neonatal, EEG, evoked response, high density EEG, FbEEG, sensory evoked response, neonatal intensive care unit
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Single-unit In vivo Recordings from the Optic Chiasm of Rat
Authors: Daniel K. Freeman, Walter F. Heine, Christopher L. Passaglia.
Institutions: Boston University.
Information about the visual world is transmitted to the brain in sequences of action potentials in retinal ganglion cell axons that make up the optic nerve. In vivo recordings of ganglion cell spike trains in several animal models have revealed much of what is known about how the early visual system processes and encodes visual information. However, such recordings have been rare in one of the most common animal models, the rat, possibly owing to difficulty in detecting spikes fired by small diameter axons. The many retinal disease models involving rats motivate a need for characterizing the functional properties of ganglion cells without disturbing the eye, as with intraocular or in vitro recordings. Here, we demonstrate a method for recording ganglion cell spike trains from the optic chiasm of the anesthetized rat. We first show how to fabricate tungsten-in-glass electrodes that can pick up electrical activity from single ganglion cell axons in rat. The electrodes outperform all commercial ones that we have tried. We then illustrate our custom-designed stereotaxic system for in vivo visual neurophysiology experiments and our procedures for animal preparation and reliable and stable electrode placement in the optic chiasm.
JoVE Neuroscience, Issue 38, retina, optic chiasm, tungsten electrodes, spike trains
Play Button
The Successive Alleys Test of Anxiety in Mice and Rats
Authors: Robert M.J. Deacon.
Institutions: University of Oxford.
The plus-maze was derived from the early work of Montgomery. He observed that rats tended to avoid the open arms of a maze, preferring the enclosed ones. Handley, Mithani and File et al. performed the first studies on the plus-maze design we use today, and in 1987 Lister published a design for use with mice. Time spent on, and entries into, the open arms are an index of anxiety; the lower these indices, the more anxious the mouse is. Alternatively, a mouse that spends most of its time in the closed arms is classed as anxious. One of the problems of the plus-maze is that, while time spent on, and entries into, the open arms is a fairly unambiguous measure of anxiety, time in the central area is more difficult to interpret, although time spent here has been classified as “decision making”. In many tests central area time is a considerable part of the total test time. Shepherd et al. produced an ingenious design to eliminate the central area, which they called the “zero maze”. However, although used by several groups, it has never been as widely adopted as the plus-maze. In the present article I describe a modification of the plus-maze design that not only eliminates the central area but also incorporates elements from other anxiety tests, such as the light-dark box and emergence tests. It is a linear series of four alleys, each having increasing anxiogenic properties. It has given similar results to the plus-maze in general. Although it may not be more sensitive than the plus-maze (more data is needed before a firm conclusion can be reached on this point), it provides a useful confirmation of plus-maze results which would be useful when, for example, only a single example of a mutant mouse was available, as, for example, in ENU-based mutagenesis programs.
Behavior, Issue 76, Neuroscience, Neurobiology, Medicine, Psychology, Mice, rats, anxiety-like behaviour, plus-maze, behaviour, prefrontal cortex, hippocampus, medial septum, successive alleys, animal model
Play Button
Computer-Generated Animal Model Stimuli
Authors: Kevin L. Woo.
Institutions: Macquarie University.
Communication between animals is diverse and complex. Animals may communicate using auditory, seismic, chemosensory, electrical, or visual signals. In particular, understanding the constraints on visual signal design for communication has been of great interest. Traditional methods for investigating animal interactions have used basic observational techniques, staged encounters, or physical manipulation of morphology. Less intrusive methods have tried to simulate conspecifics using crude playback tools, such as mirrors, still images, or models. As technology has become more advanced, video playback has emerged as another tool in which to examine visual communication (Rosenthal, 2000). However, to move one step further, the application of computer-animation now allows researchers to specifically isolate critical components necessary to elicit social responses from conspecifics, and manipulate these features to control interactions. Here, I provide detail on how to create an animation using the Jacky dragon as a model, but this process may be adaptable for other species. In building the animation, I elected to use Lightwave 3D to alter object morphology, add texture, install bones, and provide comparable weight shading that prevents exaggerated movement. The animation is then matched to select motor patterns to replicate critical movement features. Finally, the sequence must rendered into an individual clip for presentation. Although there are other adaptable techniques, this particular method had been demonstrated to be effective in eliciting both conspicuous and social responses in staged interactions.
Neuroscience, Issue 6, behavior, lizard, simulation, animation
Play Button
Brain Imaging Investigation of the Neural Correlates of Observing Virtual Social Interactions
Authors: Keen Sung, Sanda Dolcos, Sophie Flor-Henry, Crystal Zhou, Claudia Gasior, Jennifer Argo, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, University of Alberta, University of Alberta, University of Alberta, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
The ability to gauge social interactions is crucial in the assessment of others’ intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike 1. These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli 2. Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism 3.
Neuroscience, Issue 53, Social Perception, Social Knowledge, Social Cognition Network, Non-Verbal Communication, Decision-Making, Event-Related fMRI
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.