JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Insights into the origin of nematode chemosensory GPCRs: putative orthologs of the Srw family are found across several phyla of protostomes.
PUBLISHED: 01-01-2014
Nematode chemosensory GPCRs in Caenorhabditis elegans (NemChRs) are classified into 19 gene families, and are initially thought to have split from the ancestral Rhodopsin family of GPCRs. However, earlier studies have shown that among all 19 NemChR gene families, only the srw family has a clear sequence relationship to the ancestral Rhodopsin GPCR family. Yet, the phylogenetic relationships between the srw family of NemChRs and the Rhodopsin subfamilies are not fully understood. Also, a widespread search was not previously performed to check for the presence of putative srw family-like sequences or the other 18 NemChR families in several new protostome species outside the nematode lineage. In this study, we have investigated for the presence of 19 NemChR families across 26 eukaryotic species, covering basal eukaryotic branches and provide the first evidence that the srw family of NemChRs is indeed present across several phyla of protostomes. We could identify 29 putative orthologs of the srw family in insects (15 genes), molluscs (11 genes) and Schistosoma mansoni (3 genes). Furthermore, using HMM-HMM profile based comparisons and phylogenetic analysis we show that among all Rhodopsin subfamilies, the peptide and SOG (somatostatin/opioid/galanin) subfamilies are phylogenetically the closest relatives to the srw family of NemChRs. Taken together, we demonstrate that the srw family split from the large Rhodopsin family, possibly from the peptide and/or SOG subfamilies, well before the split of the nematode lineage, somewhere close to the divergence of the common ancestor of protostomes. Our analysis also suggests that the srsx family of NemChRs shares a clear sequence homology with the Rhodopsin subfamilies, as well as with few of the vertebrate olfactory receptors. Overall, this study provides further insights into the evolutionary events that shaped the GPCR chemosensory system in protostome species.
Authors: Saranga Naganathan, Amy Grunbeck, He Tian, Thomas Huber, Thomas P. Sakmar.
Published: 09-13-2013
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
22 Related JoVE Articles!
Play Button
In vivo and In vitro Rearing of Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae)
Authors: John G. McMullen II, S. Patricia Stock.
Institutions: University of Arizona, University of Arizona.
Entomopathogenic nematodes (EPN) (Steinernematidae and Heterorhabditidae) have a mutualistic partnership with Gram-negative Gamma-Proteobacteria in the family Enterobacteriaceae. Xenorhabdus bacteria are associated with steinernematids nematodes while Photorhabdus are symbionts of heterorhabditids. Together nematodes and bacteria form a potent insecticidal complex that kills a wide range of insect species in an intimate and specific partnership. Herein, we demonstrate in vivo and in vitro techniques commonly used in the rearing of these nematodes under laboratory conditions. Furthermore, these techniques represent key steps for the successful establishment of EPN cultures and also form the basis for other bioassays that utilize these organisms for research. The production of aposymbiotic (symbiont–free) nematodes is often critical for an in-depth and multifaceted approach to the study of symbiosis. This protocol does not require the addition of antibiotics and can be accomplished in a short amount of time with standard laboratory equipment. Nematodes produced in this manner are relatively robust, although their survivorship in storage may vary depending on the species used. The techniques detailed in this presentation correspond to those described by various authors and refined by P. Stock’s Laboratory, University of Arizona (Tucson, AZ, USA). These techniques are distinct from the body of techniques that are used in the mass production of these organisms for pest management purposes.
Bioengineering, Issue 91, entomology, nematology, microbiology, entomopathogenic, nematodes, bacteria, rearing, in vivo, in vitro
Play Button
The ITS2 Database
Authors: Benjamin Merget, Christian Koetschan, Thomas Hackl, Frank Förster, Thomas Dandekar, Tobias Müller, Jörg Schultz, Matthias Wolf.
Institutions: University of Würzburg, University of Würzburg.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8. The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.
Genetics, Issue 61, alignment, internal transcribed spacer 2, molecular systematics, secondary structure, ribosomal RNA, phylogenetic tree, homology modeling, phylogeny
Play Button
Imaging Pheromone Sensing in a Mouse Vomeronasal Acute Tissue Slice Preparation
Authors: Julien Brechbühl, Gaëlle Luyet, Fabian Moine, Ivan Rodriguez, Marie-Christine Broillet.
Institutions: University of Lausanne, University of Geneva.
Peter Karlson and Martin Lüscher used the term pheromone for the first time in 19591 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules2 secreted and/or contained in biological fluids3,4, such as urine, a liquid known to be a main source of pheromones3. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions5,6, hierarchical organisations3 and sexual interactions7,8 and are consequently directly correlated with the survival of a given species9,10,11. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO)10,12, a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen13,14 allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs)15. Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection16. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize17,18. Two main vomeronasal receptor families, V1Rs and V2Rs19,20,21,22, are composed respectively by 24023 and 12024 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs)25 and formyl peptide receptors (FPRs)26,27 are also expressed in VSNs. Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons28 TRPC2 independent transduction channels have been suggested6,29. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex. Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line30, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.
Neuroscience, Issue 58, Vomeronasal organ, VNO, pheromone, calcium imaging, tissue slice preparation, floating immunohistochemistry, GFP
Play Button
Soil Sampling and Isolation of Entomopathogenic Nematodes (Steinernematidae, Heterorhabditidae)
Authors: Rousel A. Orozco, Ming-Min Lee, S. Patricia Stock.
Institutions: University of Arizona.
Entomopathogenic nematodes (a.k.a. EPN) represent a group of soil-inhabiting nematodes that parasitize a wide range of insects. These nematodes belong to two families: Steinernematidae and Heterorhabditidae. Until now, more than 70 species have been described in the Steinernematidae and there are about 20 species in the Heterorhabditidae. The nematodes have a mutualistic partnership with Enterobacteriaceae bacteria and together they act as a potent insecticidal complex that kills a wide range of insect species. Herein, we focus on the most common techniques considered for collecting EPN from soil. The second part of this presentation focuses on the insect-baiting technique, a widely used approach for the isolation of EPN from soil samples, and the modified White trap technique which is used for the recovery of these nematodes from infected insects. These methods and techniques are key steps for the successful establishment of EPN cultures in the laboratory and also form the basis for other bioassays that consider these nematodes as model organisms for research in other biological disciplines. The techniques shown in this presentation correspond to those performed and/or designed by members of S. P. Stock laboratory as well as those described by various authors.
Environmental Sciences, Issue 89, Entomology, Nematology, Steinernema, Heterorhabditis, nematodes, soil sampling, insect-bait, modified White-trap
Play Button
Annotation of Plant Gene Function via Combined Genomics, Metabolomics and Informatics
Authors: Takayuki Tohge, Alisdair R. Fernie.
Institutions: Max-Planck-Institut.
Given the ever expanding number of model plant species for which complete genome sequences are available and the abundance of bio-resources such as knockout mutants, wild accessions and advanced breeding populations, there is a rising burden for gene functional annotation. In this protocol, annotation of plant gene function using combined co-expression gene analysis, metabolomics and informatics is provided (Figure 1). This approach is based on the theory of using target genes of known function to allow the identification of non-annotated genes likely to be involved in a certain metabolic process, with the identification of target compounds via metabolomics. Strategies are put forward for applying this information on populations generated by both forward and reverse genetics approaches in spite of none of these are effortless. By corollary this approach can also be used as an approach to characterise unknown peaks representing new or specific secondary metabolites in the limited tissues, plant species or stress treatment, which is currently the important trial to understanding plant metabolism.
Plant Biology, Issue 64, Genetics, Bioinformatics, Metabolomics, Plant metabolism, Transcriptome analysis, Functional annotation, Computational biology, Plant biology, Theoretical biology, Spectroscopy and structural analysis
Play Button
In Vivo Imaging of Dauer-specific Neuronal Remodeling in C. elegans
Authors: Nathan E. Schroeder, Kristen M. Flatt.
Institutions: University of Illinois Urbana-Champaign.
The mechanisms controlling stress-induced phenotypic plasticity in animals are frequently complex and difficult to study in vivo. A classic example of stress-induced plasticity is the dauer stage of C. elegans. Dauers are an alternative developmental larval stage formed under conditions of low concentrations of bacterial food and high concentrations of a dauer pheromone. Dauers display extensive developmental and behavioral plasticity. For example, a set of four inner-labial quadrant (IL2Q) neurons undergo extensive reversible remodeling during dauer formation. Utilizing the well-known environmental pathways regulating dauer entry, a previously established method for the production of crude dauer pheromone from large-scale liquid nematode cultures is demonstrated. With this method, a concentration of 50,000 - 75,000 nematodes/ml of liquid culture is sufficient to produce a highly potent crude dauer pheromone. The crude pheromone potency is determined by a dose-response bioassay. Finally, the methods used for in vivo time-lapse imaging of the IL2Qs during dauer formation are described.
Neuroscience, Issue 91, C. elegans, dauer, dendrite, arborization, phenotypic plasticity, stress, imaging, pheromone
Play Button
Purification of the Cystic Fibrosis Transmembrane Conductance Regulator Protein Expressed in Saccharomyces cerevisiae
Authors: Naomi Pollock, Natasha Cant, Tracy Rimington, Robert C. Ford.
Institutions: University of Manchester.
Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis (CF), an autosomal recessive disease that currently limits the average life expectancy of sufferers to <40 years of age. The development of novel drug molecules to restore the activity of CFTR is an important goal in the treatment CF, and the isolation of functionally active CFTR is a useful step towards achieving this goal. We describe two methods for the purification of CFTR from a eukaryotic heterologous expression system, S. cerevisiae. Like prokaryotic systems, S. cerevisiae can be rapidly grown in the lab at low cost, but can also traffic and posttranslationally modify large membrane proteins. The selection of detergents for solubilization and purification is a critical step in the purification of any membrane protein. Having screened for the solubility of CFTR in several detergents, we have chosen two contrasting detergents for use in the purification that allow the final CFTR preparation to be tailored to the subsequently planned experiments. In this method, we provide comparison of the purification of CFTR in dodecyl-β-D-maltoside (DDM) and 1-tetradecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (LPG-14). Protein purified in DDM by this method shows ATPase activity in functional assays. Protein purified in LPG-14 shows high purity and yield, can be employed to study post-translational modifications, and can be used for structural methods such as small-angle X-ray scattering and electron microscopy. However it displays significantly lower ATPase activity.
Biochemistry, Issue 87, Membrane protein, cystic fibrosis, CFTR, ABCC7, protein purification, Cystic Fibrosis Foundation, green fluorescent protein
Play Button
Identifying DNA Mutations in Purified Hematopoietic Stem/Progenitor Cells
Authors: Ziming Cheng, Ting Zhou, Azhar Merchant, Thomas J. Prihoda, Brian L. Wickes, Guogang Xu, Christi A. Walter, Vivienne I. Rebel.
Institutions: UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio.
In recent years, it has become apparent that genomic instability is tightly related to many developmental disorders, cancers, and aging. Given that stem cells are responsible for ensuring tissue homeostasis and repair throughout life, it is reasonable to hypothesize that the stem cell population is critical for preserving genomic integrity of tissues. Therefore, significant interest has arisen in assessing the impact of endogenous and environmental factors on genomic integrity in stem cells and their progeny, aiming to understand the etiology of stem-cell based diseases. LacI transgenic mice carry a recoverable λ phage vector encoding the LacI reporter system, in which the LacI gene serves as the mutation reporter. The result of a mutated LacI gene is the production of β-galactosidase that cleaves a chromogenic substrate, turning it blue. The LacI reporter system is carried in all cells, including stem/progenitor cells and can easily be recovered and used to subsequently infect E. coli. After incubating infected E. coli on agarose that contains the correct substrate, plaques can be scored; blue plaques indicate a mutant LacI gene, while clear plaques harbor wild-type. The frequency of blue (among clear) plaques indicates the mutant frequency in the original cell population the DNA was extracted from. Sequencing the mutant LacI gene will show the location of the mutations in the gene and the type of mutation. The LacI transgenic mouse model is well-established as an in vivo mutagenesis assay. Moreover, the mice and the reagents for the assay are commercially available. Here we describe in detail how this model can be adapted to measure the frequency of spontaneously occurring DNA mutants in stem cell-enriched Lin-IL7R-Sca-1+cKit++(LSK) cells and other subpopulations of the hematopoietic system.
Infection, Issue 84, In vivo mutagenesis, hematopoietic stem/progenitor cells, LacI mouse model, DNA mutations, E. coli
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
Characterization of G Protein-coupled Receptors by a Fluorescence-based Calcium Mobilization Assay
Authors: Jelle Caers, Katleen Peymen, Nick Suetens, Liesbet Temmerman, Tom Janssen, Liliane Schoofs, Isabel Beets.
Institutions: KU Leuven.
For more than 20 years, reverse pharmacology has been the preeminent strategy to discover the activating ligands of orphan G protein-coupled receptors (GPCRs). The onset of a reverse pharmacology assay is the cloning and subsequent transfection of a GPCR of interest in a cellular expression system. The heterologous expressed receptor is then challenged with a compound library of candidate ligands to identify the receptor-activating ligand(s). Receptor activation can be assessed by measuring changes in concentration of second messenger reporter molecules, like calcium or cAMP. The fluorescence-based calcium mobilization assay described here is a frequently used medium-throughput reverse pharmacology assay. The orphan GPCR is transiently expressed in human embryonic kidney 293T (HEK293T) cells and a promiscuous Gα16 construct is co-transfected. Following ligand binding, activation of the Gα16 subunit induces the release of calcium from the endoplasmic reticulum. Prior to ligand screening, the receptor-expressing cells are loaded with a fluorescent calcium indicator, Fluo-4 acetoxymethyl. The fluorescent signal of Fluo-4 is negligible in cells under resting conditions, but can be amplified more than a 100-fold upon the interaction with calcium ions that are released after receptor activation. The described technique does not require the time-consuming establishment of stably transfected cell lines in which the transfected genetic material is integrated into the host cell genome. Instead, a transient transfection, generating temporary expression of the target gene, is sufficient to perform the screening assay. The setup allows medium-throughput screening of hundreds of compounds. Co-transfection of the promiscuous Gα16, which couples to most GPCRs, allows the intracellular signaling pathway to be redirected towards the release of calcium, regardless of the native signaling pathway in endogenous settings. The HEK293T cells are easy to handle and have proven their efficacy throughout the years in receptor deorphanization assays. However, optimization of the assay for specific receptors may remain necessary.
Cellular Biology, Issue 89, G protein-coupled receptor (GPCR), calcium mobilization assay, reverse pharmacology, deorphanization, cellular expression system, HEK293T, Fluo-4, FlexStation
Play Button
Visualizing Bacteria in Nematodes using Fluorescent Microscopy
Authors: Kristen E. Murfin, John Chaston, Heidi Goodrich-Blair.
Institutions: University of Wisconsin-Madison.
Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic 1-3. One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis 4. Steinernema nematodes are entomopathogenic, using their bacterial symbiont to kill insects 5. For transmission between insect hosts, the bacteria colonize the intestine of the nematode's infective juvenile stage 6-8. Recently, several other nematode species have been shown to utilize bacteria to kill insects 9-13, and investigations have begun examining the interactions between the nematodes and bacteria in these systems 9. We describe a method for visualization of a bacterial symbiont within or on a nematode host, taking advantage of the optical transparency of nematodes when viewed by microscopy. The bacteria are engineered to express a fluorescent protein, allowing their visualization by fluorescence microscopy. Many plasmids are available that carry genes encoding proteins that fluoresce at different wavelengths (i.e. green or red), and conjugation of plasmids from a donor Escherichia coli strain into a recipient bacterial symbiont is successful for a broad range of bacteria. The methods described were developed to investigate the association between Steinernema carpocapsae and Xenorhabdus nematophila 14. Similar methods have been used to investigate other nematode-bacterium associations 9,15-18and the approach therefore is generally applicable. The method allows characterization of bacterial presence and localization within nematodes at different stages of development, providing insights into the nature of the association and the process of colonization 14,16,19. Microscopic analysis reveals both colonization frequency within a population and localization of bacteria to host tissues 14,16,19-21. This is an advantage over other methods of monitoring bacteria within nematode populations, such as sonication 22or grinding 23, which can provide average levels of colonization, but may not, for example, discriminate populations with a high frequency of low symbiont loads from populations with a low frequency of high symbiont loads. Discriminating the frequency and load of colonizing bacteria can be especially important when screening or characterizing bacterial mutants for colonization phenotypes 21,24. Indeed, fluorescence microscopy has been used in high throughput screening of bacterial mutants for defects in colonization 17,18, and is less laborious than other methods, including sonication 22,25-27and individual nematode dissection 28,29.
Microbiology, Issue 68, Molecular Biology, Bacteriology, Developmental Biology, Colonization, Xenorhabdus, Steinernema, symbiosis, nematode, bacteria, fluorescence microscopy
Play Button
Measuring Glutathione-induced Feeding Response in Hydra
Authors: Ram Kulkarni, Sanjeev Galande.
Institutions: India Institute of Science Education and Research, Pune.
Hydra is among the most primitive organisms possessing a nervous system and chemosensation for detecting reduced glutathione (GSH) for capturing the prey. The movement of prey organisms causes mechanosensory discharge of the stinging cells called nematocysts from hydra, which are inserted into the prey. The feeding response in hydra, which includes curling of the tentacles to bring the prey towards the mouth, opening of the mouth and consequent engulfing of the prey, is triggered by GSH present in the fluid released from the injured prey. To be able to identify the molecular mechanism of the feeding response in hydra which is unknown to date, it is necessary to establish an assay to measure the feeding response. Here, we describe a simple method for the quantitation of the feeding response in which the distance between the apical end of the tentacle and mouth of hydra is measured and the ratio of such distance before and after the addition of GSH is determined. The ratio, called the relative tentacle spread, was found to give a measure of the feeding response. This assay was validated using a starvation model in which starved hydra show an enhanced feeding response in comparison with daily fed hydra.
Basic Protocols, Issue 93, Hydra, chemosensation, feeding response, feeding status, glutathione, prey, starvation
Play Button
High-throughput Analysis of Mammalian Olfactory Receptors: Measurement of Receptor Activation via Luciferase Activity
Authors: Casey Trimmer, Lindsey L. Snyder, Joel D. Mainland.
Institutions: Monell Chemical Senses Center.
Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system.
Neuroscience, Issue 88, Firefly luciferase, Renilla Luciferase, Dual-Glo Luciferase Assay, olfaction, Olfactory receptor, Odorant, GPCR, High-throughput
Play Button
Microarray-based Identification of Individual HERV Loci Expression: Application to Biomarker Discovery in Prostate Cancer
Authors: Philippe Pérot, Valérie Cheynet, Myriam Decaussin-Petrucci, Guy Oriol, Nathalie Mugnier, Claire Rodriguez-Lafrasse, Alain Ruffion, François Mallet.
Institutions: Joint Unit Hospices de Lyon-bioMérieux, BioMérieux, Hospices Civils de Lyon, Lyon 1 University, BioMérieux, Hospices Civils de Lyon, Hospices Civils de Lyon.
The prostate-specific antigen (PSA) is the main diagnostic biomarker for prostate cancer in clinical use, but it lacks specificity and sensitivity, particularly in low dosage values1​​. ‘How to use PSA' remains a current issue, either for diagnosis as a gray zone corresponding to a concentration in serum of 2.5-10 ng/ml which does not allow a clear differentiation to be made between cancer and noncancer2 or for patient follow-up as analysis of post-operative PSA kinetic parameters can pose considerable challenges for their practical application3,4. Alternatively, noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease, e.g. PCA3 in prostate cancer5,6 and to reveal uncharacterized aspects of tumor biology. Moreover, data from the ENCODE project published in 2012 showed that different RNA types cover about 62% of the genome. It also appears that the amount of transcriptional regulatory motifs is at least 4.5x higher than the one corresponding to protein-coding exons. Thus, long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) constitute a wide range of putative/candidate transcriptional regulatory sequences, as it is their primary function in infectious retroviruses. HERVs, which are spread throughout the human genome, originate from ancestral and independent infections within the germ line, followed by copy-paste propagation processes and leading to multicopy families occupying 8% of the human genome (note that exons span 2% of our genome). Some HERV loci still express proteins that have been associated with several pathologies including cancer7-10. We have designed a high-density microarray, in Affymetrix format, aiming to optimally characterize individual HERV loci expression, in order to better understand whether they can be active, if they drive ncRNA transcription or modulate coding gene expression. This tool has been applied in the prostate cancer field (Figure 1).
Medicine, Issue 81, Cancer Biology, Genetics, Molecular Biology, Prostate, Retroviridae, Biomarkers, Pharmacological, Tumor Markers, Biological, Prostatectomy, Microarray Analysis, Gene Expression, Diagnosis, Human Endogenous Retroviruses, HERV, microarray, Transcriptome, prostate cancer, Affymetrix
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Choice and No-Choice Assays for Testing the Resistance of A. thaliana to Chewing Insects
Authors: Martin De Vos, Georg Jander.
Institutions: Cornell University.
Larvae of the small white cabbage butterfly are a pest in agricultural settings. This caterpillar species feeds from plants in the cabbage family, which include many crops such as cabbage, broccoli, Brussel sprouts etc. Rearing of the insects takes place on cabbage plants in the greenhouse. At least two cages are needed for the rearing of Pieris rapae. One for the larvae and the other to contain the adults, the butterflies. In order to investigate the role of plant hormones and toxic plant chemicals in resistance to this insect pest, we demonstrate two experiments. First, determination of the role of jasmonic acid (JA - a plant hormone often indicated in resistance to insects) in resistance to the chewing insect Pieris rapae. Caterpillar growth can be compared on wild-type and mutant plants impaired in production of JA. This experiment is considered "No Choice", because larvae are forced to subsist on a single plant which synthesizes or is deficient in JA. Second, we demonstrate an experiment that investigates the role of glucosinolates, which are used as oviposition (egg-laying) signals. Here, we use WT and mutant Arabidopsis impaired in glucosinolate production in a "Choice" experiment in which female butterflies are allowed to choose to lay their eggs on plants of either genotype. This video demonstrates the experimental setup for both assays as well as representative results.
Plant Biology, Issue 15, Annual Review, Plant Resistance, Herbivory, Arabidopsis thaliana, Pieris rapae, Caterpillars, Butterflies, Jasmonic Acid, Glucosinolates
Play Button
Imaging Neuronal Responses in Slice Preparations of Vomeronasal Organ Expressing a Genetically Encoded Calcium Sensor
Authors: Limei Ma, Sachiko Haga-Yamanaka, Qingfeng Elden Yu, Qiang Qiu, SangSeong Kim, C. Ron Yu.
Institutions: Stowers Institute for Medical Research, The University of Kansas School of Medicine.
The vomeronasal organ (VNO) detects chemosensory signals that carry information about the social, sexual and reproductive status of the individuals within the same species 1,2. These intraspecies signals, the pheromones, as well as signals from some predators 3, activate the vomeronasal sensory neurons (VSNs) with high levels of specificity and sensitivity 4. At least three distinct families of G-protein coupled receptors, V1R, V2R and FPR 5-14, are expressed in VNO neurons to mediate the detection of the chemosensory cues. To understand how pheromone information is encoded by the VNO, it is critical to analyze the response profiles of individual VSNs to various stimuli and identify the specific receptors that mediate these responses. The neuroepithelia of VNO are enclosed in a pair of vomer bones. The semi-blind tubular structure of VNO has one open end (the vomeronasal duct) connecting to the nasal cavity. VSNs extend their dendrites to the lumen part of the VNO, where the pheromone cues are in contact with the receptors expressed at the dendritic knobs. The cell bodies of the VSNs form pseudo-stratified layers with V1R and V2R expressed in the apical and basal layers respectively 6-8. Several techniques have been utilized to monitor responses of VSNs to sensory stimuli 4,12,15-19. Among these techniques, acute slice preparation offers several advantages. First, compared to dissociated VSNs 3,17, slice preparations maintain the neurons in their native morphology and the dendrites of the cells stay relatively intact. Second, the cell bodies of the VSNs are easily accessible in coronal slice of the VNO to allow electrophysiology studies and imaging experiments as compared to whole epithelium and whole-mount preparations 12,20. Third, this method can be combined with molecular cloning techniques to allow receptor identification. Sensory stimulation elicits strong Ca2+ influx in VSNs that is indicative of receptor activation 4,21. We thus develop transgenic mice that express G-CaMP2 in the olfactory sensory neurons, including the VSNs 15,22. The sensitivity and the genetic nature of the probe greatly facilitate Ca2+ imaging experiments. This method has eliminated the dye loading process used in previous studies 4,21. We also employ a ligand delivery system that enables application of various stimuli to the VNO slices. The combination of the two techniques allows us to monitor multiple neurons simultaneously in response to large numbers of stimuli. Finally, we have established a semi-automated analysis pipeline to assist image processing.
Neuroscience, Issue 58, Vomeronasal organ, VNO, pheromone, urine, slice preparation, G-CaMP2, calcium imaging
Play Button
Assaying Surface Expression of Chemosensory Receptors in Heterologous Cells
Authors: Sandeepa Dey, Senmiao Zhan, Hiroaki Matsunami.
Institutions: Duke University, Duke University.
The vivid world of odors is recognized by the sense of olfaction. Olfaction in mice is mediated by a repertoire of about 1200 G Protein Coupled Receptors (GPCRs) 1 that are postulated to bind volatile odorant molecules and converting the extracellular signal into an intracellular signal by coupling with G protein Gαolf. Binding of the odorants to the receptors is thought to follow a combinatorial rule, that is, one odorant may bind several receptors and one receptor may bind several odorants to varying degrees 2. Biochemical, signaling and ligand binding studies have been conveniently carried out for most GPCRs using heterologous cells. However use of heterologous cells for study of odorant receptors, was precluded for a long time since on transfection they failed to export to the surface. Saito et al have demonstrated single membrane pass Receptor Transporting Protein (RTP) family chaperones show enhanced expression in the olfactory sensory neurons and act as chaperones to traffic odorant receptors to the surface in heterologous cells, when co transfected together 3. To carry out biochemical assays for receptors using heterologous cells, one must first determine if the receptor shows robust surface expression in the cell line. This can be assayed by overexpressing the receptors with the chaperone RTP1S followed by live cell staining to fluorescently label the extracellular domain or a tag in the extracellular domain exclusively. Here we demonstrate a protocol to carry out live cell staining that can be used to detect odorant receptors on the surface of HEK293T cells conveniently. In addition, it may also be used to assay for surface expression of other chemosensory receptors or GPCRs.
Neuroscience, Issue 48, heterologous, receptors, cell, surface, staining
Play Button
Isolation of Genomic DNA from Mouse Tails
Authors: Tony Zangala.
Institutions: University of California, Irvine (UCI).
Basic Protocols, Issue 6, genomic, DNA, genotyping, mouse
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.