JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133.
PUBLISHED: 01-01-2014
Avian reovirus (ARV) is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV.
Authors: Juan Ayllon, Adolfo García-Sastre, Luis Martínez-Sobrido.
Published: 10-11-2013
Newcastle disease virus (NDV), the prototype member of the Avulavirus genus of the family Paramyxoviridae1, is a non-segmented, negative-sense, single-stranded, enveloped RNA virus (Figure 1) with potential applications as a vector for vaccination and treatment of human diseases. In-depth exploration of these applications has only become possible after the establishment of reverse genetics techniques to rescue recombinant viruses from plasmids encoding their complete genomes as cDNA2-5. Viral cDNA can be conveniently modified in vitro by using standard cloning procedures to alter the genotype of the virus and/or to include new transcriptional units. Rescue of such genetically modified viruses provides a valuable tool to understand factors affecting multiple stages of infection, as well as allows for the development and improvement of vectors for the expression and delivery of antigens for vaccination and therapy. Here we describe a protocol for the rescue of recombinant NDVs.
25 Related JoVE Articles!
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Localization and Relative Quantification of Carbon Nanotubes in Cells with Multispectral Imaging Flow Cytometry
Authors: Iris Marangon, Nicole Boggetto, Cécilia Ménard-Moyon, Nathalie Luciani, Claire Wilhelm, Alberto Bianco, Florence Gazeau.
Institutions: CNRS/Université Paris Diderot, CNRS/Université Paris Diderot, CNRS/Institut de Biologie Moléculaire et Cellulaire.
Carbon-based nanomaterials, like carbon nanotubes (CNTs), belong to this type of nanoparticles which are very difficult to discriminate from carbon-rich cell structures and de facto there is still no quantitative method to assess their distribution at cell and tissue levels. What we propose here is an innovative method allowing the detection and quantification of CNTs in cells using a multispectral imaging flow cytometer (ImageStream, Amnis). This newly developed device integrates both a high-throughput of cells and high resolution imaging, providing thus images for each cell directly in flow and therefore statistically relevant image analysis. Each cell image is acquired on bright-field (BF), dark-field (DF), and fluorescent channels, giving access respectively to the level and the distribution of light absorption, light scattered and fluorescence for each cell. The analysis consists then in a pixel-by-pixel comparison of each image, of the 7,000-10,000 cells acquired for each condition of the experiment. Localization and quantification of CNTs is made possible thanks to some particular intrinsic properties of CNTs: strong light absorbance and scattering; indeed CNTs appear as strongly absorbed dark spots on BF and bright spots on DF with a precise colocalization. This methodology could have a considerable impact on studies about interactions between nanomaterials and cells given that this protocol is applicable for a large range of nanomaterials, insofar as they are capable of absorbing (and/or scattering) strongly enough the light.
Bioengineering, Issue 82, bioengineering, imaging flow cytometry, Carbon Nanotubes, bio-nano-interactions, cellular uptake, cell trafficking
Play Button
Assays for the Identification of Novel Antivirals against Bluetongue Virus
Authors: Linlin Gu, Stewart W. Schneller, Qianjun Li.
Institutions: University of Alabama at Birmingham, Auburn University.
To identify potential antivirals against BTV, we have developed, optimized and validated three assays presented here. The CPE-based assay was the first assay developed to evaluate whether a compound showed any antiviral efficacy and have been used to screen large compound library. Meanwhile, cytotoxicity of antivirals could also be evaluated using the CPE-based assay. The dose-response assay was designed to determine the range of efficacy for the selected antiviral, i.e. 50% inhibitory concentration (IC50) or effective concentration (EC50), as well as its range of cytotoxicity (CC50). The ToA assay was employed for the initial MoA study to determine the underlying mechanism of the novel antivirals during BTV viral lifecycle or the possible effect on host cellular machinery. These assays are vital for the evaluation of antiviral efficacy in cell culture system, and have been used for our recent researches leading to the identification of a number of novel antivirals against BTV.
Immunology, Issue 80, Drug Discovery, Drug Evaluation, Preclinical, Evaluation Studies as Topic, Drug Evaluation, Feasibility Studies, Biological Assay, Technology, Pharmaceutical, High-Throughput Screening Assays, Animal Diseases, Investigative Techniques, Antiviral, Efficacy, Bluetongue Virus, Cytopathic effect, Dose response, Time-of-Addition, Mechanism-of-Action
Play Button
Dissecting Innate Immune Signaling in Viral Evasion of Cytokine Production
Authors: Junjie Zhang, Lining Zhu, Pinghui Feng.
Institutions: Keck School of Medicine, University of Southern California.
In response to a viral infection, the host innate immune response is activated to up-regulate gene expression and production of antiviral cytokines. Conversely, viruses have evolved intricate strategies to evade and exploit host immune signaling for survival and propagation. Viral immune evasion, entailing host defense and viral evasion, provides one of the most fascinating and dynamic interfaces to discern the host-virus interaction. These studies advance our understanding in innate immune regulation and pave our way to develop novel antiviral therapies. Murine γHV68 is a natural pathogen of murine rodents. γHV68 infection of mice provides a tractable small animal model to examine the antiviral response to human KSHV and EBV of which perturbation of in vivo virus-host interactions is not applicable. Here we describe a protocol to determine the antiviral cytokine production. This protocol can be adapted to other viruses and signaling pathways. Recently, we have discovered that γHV68 hijacks MAVS and IKKβ, key innate immune signaling components downstream of the cytosolic RIG-I and MDA5, to abrogate NFΚB activation and antiviral cytokine production. Specifically, γHV68 infection activates IKKβ and that activated IKKβ phosphorylates RelA to accelerate RelA degradation. As such, γHV68 efficiently uncouples NFΚB activation from its upstream activated IKKβ, negating antiviral cytokine gene expression. This study elucidates an intricate strategy whereby the upstream innate immune activation is intercepted by a viral pathogen to nullify the immediate downstream transcriptional activation and evade antiviral cytokine production.
Immunology, Issue 85, Herpesviridae, Cytokines, Antiviral Agents, Innate, gamma-HV68, mice infection, MEF, antiviral cytokine
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
A New Approach for the Comparative Analysis of Multiprotein Complexes Based on 15N Metabolic Labeling and Quantitative Mass Spectrometry
Authors: Kerstin Trompelt, Janina Steinbeck, Mia Terashima, Michael Hippler.
Institutions: University of Münster, Carnegie Institution for Science.
The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling (14N/15N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions.
Microbiology, Issue 85, Sucrose density gradients, Chlamydomonas, multiprotein complexes, 15N metabolic labeling, thylakoids
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
High-throughput Screening for Broad-spectrum Chemical Inhibitors of RNA Viruses
Authors: Marianne Lucas-Hourani, Hélène Munier-Lehmann, Olivier Helynck, Anastassia Komarova, Philippe Desprès, Frédéric Tangy, Pierre-Olivier Vidalain.
Institutions: Institut Pasteur, CNRS UMR3569, Institut Pasteur, CNRS UMR3523, Institut Pasteur.
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.
Immunology, Issue 87, Viral infections, high-throughput screening assays, broad-spectrum antivirals, chikungunya virus, measles virus, luciferase reporter, chemical libraries
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Viral Tracing of Genetically Defined Neural Circuitry
Authors: Kevin Beier, Constance Cepko.
Institutions: Harvard Medical School, Harvard Medical School.
Classical methods for studying neuronal circuits are fairly low throughput. Transsynaptic viruses, particularly the pseudorabies (PRV) and rabies virus (RABV), and more recently vesicular stomatitis virus (VSV), for studying circuitry, is becoming increasingly popular. These higher throughput methods use viruses that transmit between neurons in either the anterograde or retrograde direction. Recently, a modified RABV for monosynaptic retrograde tracing was developed. (Figure 1A). In this method, the glycoprotein (G) gene is deleted from the viral genome, and resupplied only in targeted neurons. Infection specificity is achieved by substituting a chimeric G, composed of the extracellular domain of the ASLV-A glycoprotein and the cytoplasmic domain of the RABV-G (A/RG), for the normal RABV-G1. This chimeric G specifically infects cells expressing the TVA receptor1. The gene encoding TVA can been delivered by various methods2-8. Following RABV-G infection of a TVA-expressing neuron, the RABV can transmit to other, synaptically connected neurons in a retrograde direction by nature of its own G which was co-delivered with the TVA receptor. This technique labels a relatively large number of inputs (5-10%)2 onto a defined cell type, providing a sampling of all of the inputs onto a defined starter cell type. We recently modified this technique to use VSV as a transsynaptic tracer9. VSV has several advantages, including the rapidity of gene expression. Here we detail a new viral tracing system using VSV useful for probing microcircuitry with increased resolution. While the original published strategies by Wickersham et al.4 and Beier et al.9 permit labeling of any neurons that project onto initially-infected TVA-expressing-cells, here VSV was engineered to transmit only to TVA-expressing cells (Figure 1B). The virus is first pseudotyped with RABV-G to permit infection of neurons downstream of TVA-expressing neurons. After infecting this first population of cells, the virus released can only infect TVA-expressing cells. Because the transsynaptic viral spread is limited to TVA-expressing cells, presence of absence of connectivity from defined cell types can be explored with high resolution. An experimental flow chart of these experiments is shown in Figure 2. Here we show a model circuit, that of direction-selectivity in the mouse retina. We examine the connectivity of starburst amacrine cells (SACs) to retinal ganglion cells (RGCs).
Neuroscience, Issue 68, Genetics, Molecular Biology, Virology, Virus, VSV, transsynaptic tracing, TVA, retrograde, neuron, synapse
Play Button
Generation of Recombinant Influenza Virus from Plasmid DNA
Authors: Luis Martínez-Sobrido, Adolfo García-Sastre.
Institutions: University of Rochester School of Medicine and Dentistry, Mount Sinai School of Medicine .
Efforts by a number of influenza research groups have been pivotal in the development and improvement of influenza A virus reverse genetics. Originally established in 1999 1,2 plasmid-based reverse genetic techniques to generate recombinant viruses have revolutionized the influenza research field because specific questions have been answered by genetically engineered, infectious, recombinant influenza viruses. Such studies include virus replication, function of viral proteins, the contribution of specific mutations in viral proteins in viral replication and/or pathogenesis and, also, viral vectors using recombinant influenza viruses expressing foreign proteins 3.
Microbiology, Issue 42, influenza viruses, plasmid transfection, recombinant virus, reverse genetics techniques, HA assay
Play Button
Subcutaneous Infection of Methicillin Resistant Staphylococcus Aureus (MRSA)
Authors: Ching Wen Tseng, Marisel Sanchez-Martinez, Andrea Arruda, George Y. Liu.
Institutions: Cedars-Sinai Medical Center.
MRSA is a worldwide threat to public health, and MRSA skin and soft-tissue infections now account for more than half of all soft-tissue infections in the United States. Among soft-tissue infections, myositis, pyomyositis, and necrotizing fasciitis have been increasingly reported in association with MRSA arising from the community. To understand the interplay between MRSA and host immunity leading to more severe infection, the availability of animal models is critical, permitting the study of host and bacterial factors. Several infection models have been introduced to assess the pathogenesis of S. aureus during superficial skin infection. Here, we describe a subcutaneous infection model that examines the skin, subcutaneous, and muscle pathologies.
Infection, Issue 48, Subcutaneous infection, Staphylococcus aureus, MRSA
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
Analysis of Neural Crest Migration and Differentiation by Cross-species Transplantation
Authors: Shannon L. Griswold, Peter Y. Lwigale.
Institutions: Rice University .
Avian embryos provide a unique platform for studying many vertebrate developmental processes, due to the easy access of the embryos within the egg. Chimeric avian embryos, in which quail donor tissue is transplanted into a chick embryo in ovo, combine the power of indelible genetic labeling of cell populations with the ease of manipulation presented by the avian embryo. Quail-chick chimeras are a classical tool for tracing migratory neural crest cells (NCCs)1-3. NCCs are a transient migratory population of cells in the embryo, which originate in the dorsal region of the developing neural tube4. They undergo an epithelial to mesenchymal transition and subsequently migrate to other regions of the embryo, where they differentiate into various cell types including cartilage5-13, melanocytes11,14-20, neurons and glia21-32. NCCs are multipotent, and their ultimate fate is influenced by 1) the region of the neural tube in which they originate along the rostro-caudal axis of the embryo11,33-37, 2) signals from neighboring cells as they migrate38-44, and 3) the microenvironment of their ultimate destination within the embryo45,46. Tracing these cells from their point of origin at the neural tube, to their final position and fate within the embryo, provides important insight into the developmental processes that regulate patterning and organogenesis. Transplantation of complementary regions of donor neural tube (homotopic grafting) or different regions of donor neural tube (heterotopic grafting) can reveal differences in pre-specification of NCCs along the rostro-caudal axis2,47. This technique can be further adapted to transplant a unilateral compartment of the neural tube, such that one side is derived from donor tissue, and the contralateral side remains unperturbed in the host embryo, yielding an internal control within the same sample2,47. It can also be adapted for transplantation of brain segments in later embryos, after HH10, when the anterior neural tube has closed47. Here we report techniques for generating quail-chick chimeras via neural tube transplantation, which allow for tracing of migratory NCCs derived from a discrete segment of the neural tube. Species-specific labeling of the donor-derived cells with the quail-specific QCPN antibody48-56 allows the researcher to distinguish donor and host cells at the experimental end point. This technique is straightforward, inexpensive, and has many applications, including fate-mapping, cell lineage tracing, and identifying pre-patterning events along the rostro-caudal axis45. Because of the ease of access to the avian embryo, the quail-chick graft technique may be combined with other manipulations, including but not limited to lens ablation40, injection of inhibitory molecules57,58, or genetic manipulation via electroporation of expression plasmids59-61, to identify the response of particular migratory streams of NCCs to perturbations in the embryo's developmental program. Furthermore, this grafting technique may also be used to generate other interspecific chimeric embryos such as quail-duck chimeras to study NCC contribution to craniofacial morphogenesis, or mouse-chick chimeras to combine the power of mouse genetics with the ease of manipulation of the avian embryo.62
Neuroscience, Issue 60, Neural crest, chick, quail, chimera, fate map, cell migration, cell differentiation
Play Button
High-throughput Detection Method for Influenza Virus
Authors: Pawan Kumar, Allison E. Bartoszek, Thomas M. Moran, Jack Gorski, Sanjib Bhattacharyya, Jose F. Navidad, Monica S. Thakar, Subramaniam Malarkannan.
Institutions: Blood Research Institute, Mount Sinai School of Medicine , Blood Research Institute, City of Milwaukee Health Department Laboratory, Medical College of Wisconsin , Medical College of Wisconsin .
Influenza virus is a respiratory pathogen that causes a high degree of morbidity and mortality every year in multiple parts of the world. Therefore, precise diagnosis of the infecting strain and rapid high-throughput screening of vast numbers of clinical samples is paramount to control the spread of pandemic infections. Current clinical diagnoses of influenza infections are based on serologic testing, polymerase chain reaction, direct specimen immunofluorescence and cell culture 1,2. Here, we report the development of a novel diagnostic technique used to detect live influenza viruses. We used the mouse-adapted human A/PR/8/34 (PR8, H1N1) virus 3 to test the efficacy of this technique using MDCK cells 4. MDCK cells (104 or 5 x 103 per well) were cultured in 96- or 384-well plates, infected with PR8 and viral proteins were detected using anti-M2 followed by an IR dye-conjugated secondary antibody. M2 5 and hemagglutinin 1 are two major marker proteins used in many different diagnostic assays. Employing IR-dye-conjugated secondary antibodies minimized the autofluorescence associated with other fluorescent dyes. The use of anti-M2 antibody allowed us to use the antigen-specific fluorescence intensity as a direct metric of viral quantity. To enumerate the fluorescence intensity, we used the LI-COR Odyssey-based IR scanner. This system uses two channel laser-based IR detections to identify fluorophores and differentiate them from background noise. The first channel excites at 680 nm and emits at 700 nm to help quantify the background. The second channel detects fluorophores that excite at 780 nm and emit at 800 nm. Scanning of PR8-infected MDCK cells in the IR scanner indicated a viral titer-dependent bright fluorescence. A positive correlation of fluorescence intensity to virus titer starting from 102-105 PFU could be consistently observed. Minimal but detectable positivity consistently seen with 102-103 PFU PR8 viral titers demonstrated the high sensitivity of the near-IR dyes. The signal-to-noise ratio was determined by comparing the mock-infected or isotype antibody-treated MDCK cells. Using the fluorescence intensities from 96- or 384-well plate formats, we constructed standard titration curves. In these calculations, the first variable is the viral titer while the second variable is the fluorescence intensity. Therefore, we used the exponential distribution to generate a curve-fit to determine the polynomial relationship between the viral titers and fluorescence intensities. Collectively, we conclude that IR dye-based protein detection system can help diagnose infecting viral strains and precisely enumerate the titer of the infecting pathogens.
Immunology, Issue 60, Influenza virus, Virus titer, Epithelial cells
Play Button
Parasite Induced Genetically Driven Autoimmune Chagas Heart Disease in the Chicken Model
Authors: Antonio R. L. Teixeira, Nadjar Nitz, Francisco M. Bernal, Mariana M. Hecht.
Institutions: University of Brasilia.
The Trypanosoma cruzi acute infections acquired in infancy and childhood seem asymptomatic, but approximately one third of the chronically infected cases show Chagas disease up to three decades or later. Autoimmunity and parasite persistence are competing theories to explain the pathogenesis of Chagas disease 1, 2. To separate roles played by parasite persistence and autoimmunity in Chagas disease we inoculate the T. cruzi in the air chamber of fertilized eggs. The mature chicken immune system is a tight biological barrier against T. cruzi and the infection is eradicated upon development of its immune system by the end of the first week of growth 3. The chicks are parasite-free at hatching, but they retain integrated parasite mitochondrial kinetoplast DNA (kDNA) minicircle within their genome that are transferred to their progeny. Documentation of the kDNA minicircle integration in the chicken genome was obtained by a targeted prime TAIL-PCR, Southern hybridizations, cloning, and sequencing 3, 4. The kDNA minicircle integrations rupture open reading frames for transcription and immune system factors, phosphatase (GTPase), adenylate cyclase and phosphorylases (PKC, NF-Kappa B activator, PI-3K) associated with cell physiology, growth, and differentiation 3, 5-7, and other gene functions. Severe myocarditis due to rejection of target heart fibers by effectors cytotoxic lymphocytes is seen in the kDNA mutated chickens, showing an inflammatory cardiomyopathy similar to that seen in human Chagas disease. Notably, heart failure and skeletal muscle weakness are present in adult chickens with kDNA rupture of the dystrophin gene in chromosome 1 8. Similar genotipic alterations are associated with tissue destruction carried out by effectors CD45+, CD8γδ+, CD8α lymphocytes. Thus this protozoan infection can induce genetically driven autoimmune disease.
Immunology, Issue 65, Infection, Genetics, Parasitology, Trypanosoma cruzi, Gallus gallus, transfer of mitochondrial kDNA minicircle, targeted-prime TAIL-PCR, genotype modifications, Chagas disease
Play Button
Vaccinia Virus Infection & Temporal Analysis of Virus Gene Expression: Part 3
Authors: Judy Yen, Ron Golan, Kathleen Rubins.
Institutions: MIT - Massachusetts Institute of Technology.
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (~ 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Microbiology, Issue 26, Vaccinia, virus, infection, HeLa, Microarray, amplified RNA, amino allyl, RNA, Ambion Amino Allyl MessageAmpII, gene expression
Play Button
Vaccinia Virus Infection & Temporal Analysis of Virus Gene Expression: Part 2
Authors: Judy Yen, Ron Golan, Kathleen Rubins.
Institutions: MIT - Massachusetts Institute of Technology.
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (~ 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Cellular Biology, Immunology, Microbiology, Issue 26, Vaccinia, virus, infection, HeLa, TRIzol reagent, total RNA, Microarray, amplification, amino allyl, RNA, Ambion Amino Allyl MessageAmpII, gene expression
Play Button
Vaccinia Virus Infection & Temporal Analysis of Virus Gene Expression: Part 1
Authors: Judy Yen, Ron Golan, Kathleen Rubins.
Institutions: MIT - Massachusetts Institute of Technology.
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (~ 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Cellular Biology, Immunology, Microbiology, Issue 26, Vaccinia, virus, infection, HeLa, TRIzol reagent, total RNA, Microarray, amplification, amino allyl, RNA, Ambion Amino Allyl MessageAmpII, gene expression
Play Button
Protocols for Oral Infection of Lepidopteran Larvae with Baculovirus
Authors: Wendy Sparks, Huarong Li, Bryony Bonning.
Institutions: Iowa State University.
Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. This video shows how lepidopteran larvae can be infected with polyhedra by droplet feeding and diet plug-based bioassays. This accompanying Springer Protocols section provides an overview of the baculovirus lifecycle and use of baculoviruses as insecticidal agents, including discussion of the pros and cons for use of baculoviruses as insecticides, and progress made in genetic enhancement of baculoviruses for improved insecticidal efficacy.
Plant Biology, Issue 19, Springer Protocols, Baculovirus insecticides, recombinant baculovirus, insect pest management
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Play Button
Testing the Physiological Barriers to Viral Transmission in Aphids Using Microinjection
Authors: Cecilia Tamborindeguy, Stewart Gray, Georg Jander.
Institutions: Cornell University, Cornell University.
Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insect gut to the hemolymph (the insect blood ) and then must pass through the salivary gland, in order to be transmitted back to a new plant. An aphid may take up different viruses when munching on a plant, however only a small fraction will pass through the gut and salivary gland, the two main barriers for transmission to infect more plants. In the lab, we use physalis plants to study PLRV transmission. In this host, symptoms are characterized by stunting and interveinal chlorosis (yellowing of the leaves between the veins with the veins remaining green). The video that we present demonstrates a method for performing aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut is preventing viral transmission. The video that we present demonstrates a method for performing Aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut or salivary gland is preventing viral transmission.
Plant Biology, Issue 15, Annual Review, Aphids, Plant Virus, Potato Leaf Roll Virus, Microinjection Technique
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.