JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Long-term oral feeding of lutein-fortified milk increases voluntary running distance in rats.
PUBLISHED: 01-01-2014
To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg) daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered) compared with control rats (vehicle administered). This increase was not apparent in rats administered lutein alone. In the lutein-fortified-milk exercise group compared with the sedentary control group, carnitine palitroyltransferase 1 (CPT-1), total AMP-activated protein kinase (tAMPK), and phosphorylated AMP-activated protein kinase (pAMPK) contents were significantly increased in the gastrocnemius muscle, with a concomitant decrease in triglyceride and total cholesterol levels in the blood and liver. Furthermore, the lutein level in blood of lutein-administered rats significantly decreased with exercise. These results suggest that lutein-fortified milk may enhance the effect of exercise by effective utilization of lipids when combined with voluntary running.
Authors: Hao Chen, Jessica N. Perez, Eleni Constantopoulos, Laurel McKee, Jessica Regan, Patricia B. Hoyer, Heddwen L. Brooks, John Konhilas.
Published: 04-07-2014
The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.
21 Related JoVE Articles!
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Novel Apparatus and Method for Drug Reinforcement
Authors: Allison A. Feduccia, Christine L. Duvauchelle.
Institutions: University of Texas at Austin.
Animal models of reinforcement have proven to be useful for understanding the neurobiological mechanisms underlying drug addiction. Operant drug self-administration and conditioned place preference (CPP) procedures are expansively used in animal research to model various components of drug reinforcement, consumption, and addiction in humans. For this study, we used a novel approach to studying drug reinforcement in rats by combining traditional CPP and self-administration methodologies. We assembled an apparatus using two Med Associate operant chambers, sensory stimuli, and a Plexiglas-constructed neutral zone. These modifications allowed our experiments to encompass motivational aspects of drug intake through self-administration and drug-free assessment of drug/cue conditioning strength with the CPP test. In our experiments, rats self-administered cocaine (0.75 mg/kg/inj, i.v.) during either four (e.g., the "short-term") or eight (e.g., the "long-term") alternating-day sessions in an operant environment containing distinctive sensory cues (e.g., olfactory and visual). On the alternate days, in the other (differently-cued) operant environment, saline was available for self-infusion (0.1 ml, i.v.). Twenty-four hours after the last self-administration/cue-pairing session, a CPP test was conducted. Consistent with typical CPP findings, there was a significant preference for the chamber associated with cocaine self-administration. In addition, in animals undergoing the long-term experiment, a significant positive correlation between CPP magnitude and the number of cocaine-reinforced lever responses. In conclusion, this apparatus and approach is time and cost effective, can be used to examine a wide array of topics pertaining to drug abuse, and provides more flexibility in experimental design than CPP or self-administration methods alone.
Neuroscience, Issue 42, conditioned place preference (CPP), self-administration, rat, behavioral neuroscience, drug reinforcement, cocaine, animal models
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
Play Button
Assessing Functional Performance in the Mdx Mouse Model
Authors: Annemieke Aartsma-Rus, Maaike van Putten.
Institutions: Leiden University Medical Center.
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder for which no cure is available. Nevertheless, several potential pharmaceutical compounds and gene therapy approaches have progressed into clinical trials. With improvement in muscle function being the most important end point in these trials, a lot of emphasis has been placed on setting up reliable, reproducible, and easy to perform functional tests to pre clinically assess muscle function, strength, condition, and coordination in the mdx mouse model for DMD. Both invasive and noninvasive tests are available. Tests that do not exacerbate the disease can be used to determine the natural history of the disease and the effects of therapeutic interventions (e.g. forelimb grip strength test, two different hanging tests using either a wire or a grid and rotarod running). Alternatively, forced treadmill running can be used to enhance disease progression and/or assess protective effects of therapeutic interventions on disease pathology. We here describe how to perform these most commonly used functional tests in a reliable and reproducible manner. Using these protocols based on standard operating procedures enables comparison of data between different laboratories.
Behavior, Issue 85, Duchenne muscular dystrophy, neuromuscular disorders, outcome measures, functional testing, mouse model, grip strength, hanging test wire, hanging test grid, rotarod running, treadmill running
Play Button
Construction of Vapor Chambers Used to Expose Mice to Alcohol During the Equivalent of all Three Trimesters of Human Development
Authors: Russell A. Morton, Marvin R. Diaz, Lauren A. Topper, C. Fernando Valenzuela.
Institutions: University of New Mexico Health Sciences Center.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Medicine, Issue 89, fetal, ethanol, exposure, paradigm, vapor, development, alcoholism, teratogenic, animal, mouse, model
Play Button
Assessment of Murine Exercise Endurance Without the Use of a Shock Grid: An Alternative to Forced Exercise
Authors: Jennifer D. Conner, Tami Wolden-Hanson, LeBris S. Quinn.
Institutions: VA Puget Sound Health Care System, Seattle Institute for Biomedical and Clinical Research, University of Washington, VA Puget Sound Health Care System.
Using laboratory mouse models, the molecular pathways responsible for the metabolic benefits of endurance exercise are beginning to be defined. The most common method for assessing exercise endurance in mice utilizes forced running on a motorized treadmill equipped with a shock grid. Animals who quit running are pushed by the moving treadmill belt onto a grid that delivers an electric foot shock; to escape the negative stimulus, the mice return to running on the belt. However, avoidance behavior and psychological stress due to use of a shock apparatus can interfere with quantitation of running endurance, as well as confound measurements of postexercise serum hormone and cytokine levels. Here, we demonstrate and validate a refined method to measure running endurance in naïve C57BL/6 laboratory mice on a motorized treadmill without utilizing a shock grid. When mice are preacclimated to the treadmill, they run voluntarily with gait speeds specific to each mouse. Use of the shock grid is replaced by gentle encouragement by a human operator using a tongue depressor, coupled with sensitivity to the voluntary willingness to run on the part of the mouse. Clear endpoints for quantifying running time-to-exhaustion for each mouse are defined and reflected in behavioral signs of exhaustion such as splayed posture and labored breathing. This method is a humane refinement which also decreases the confounding effects of stress on experimental parameters.
Behavior, Issue 90, Exercise, Mouse, Treadmill, Endurance, Refinement
Play Button
A Procedure to Observe Context-induced Renewal of Pavlovian-conditioned Alcohol-seeking Behavior in Rats
Authors: Jean-Marie Maddux, Franca Lacroix, Nadia Chaudhri.
Institutions: Concordia University.
Environmental contexts in which drugs of abuse are consumed can trigger craving, a subjective Pavlovian-conditioned response that can facilitate drug-seeking behavior and prompt relapse in abstinent drug users. We have developed a procedure to study the behavioral and neural processes that mediate the impact of context on alcohol-seeking behavior in rats. Following acclimation to the taste and pharmacological effects of 15% ethanol in the home cage, male Long-Evans rats receive Pavlovian discrimination training (PDT) in conditioning chambers. In each daily (Mon-Fri) PDT session, 16 trials each of two different 10 sec auditory conditioned stimuli occur. During one stimulus, the CS+, 0.2 ml of 15% ethanol is delivered into a fluid port for oral consumption. The second stimulus, the CS-, is not paired with ethanol. Across sessions, entries into the fluid port during the CS+ increase, whereas entries during the CS- stabilize at a lower level, indicating that a predictive association between the CS+ and ethanol is acquired. During PDT each chamber is equipped with a specific configuration of visual, olfactory and tactile contextual stimuli. Following PDT, extinction training is conducted in the same chamber that is now equipped with a different configuration of contextual stimuli. The CS+ and CS- are presented as before, but ethanol is withheld, which causes a gradual decline in port entries during the CS+. At test, rats are placed back into the PDT context and presented with the CS+ and CS- as before, but without ethanol. This manipulation triggers a robust and selective increase in the number of port entries made during the alcohol predictive CS+, with no change in responding during the CS-. This effect, referred to as context-induced renewal, illustrates the powerful capacity of contexts associated with alcohol consumption to stimulate alcohol-seeking behavior in response to Pavlovian alcohol cues.
Behavior, Issue 91, Behavioral neuroscience, alcoholism, relapse, addiction, Pavlovian conditioning, ethanol, reinstatement, discrimination, conditioned approach
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
A Novel Procedure for Evaluating the Reinforcing Properties of Tastants in Laboratory Rats: Operant Intraoral Self-administration
Authors: AnneMarie Levy, Cheryl L. Limebeer, Justin Ferdinand, Ucal Shillingford, Linda A. Parker, Francesco Leri.
Institutions: University of Guelph.
This paper describes a novel method for studying the bio-behavioral basis of addiction to food. This method combines the surgical component of taste reactivity with the behavioral aspects of operant self-administration of drugs. Under very brief general anaesthesia, rats are implanted with an intraoral (IO) cannula that allows delivery of test solutions directly in the oral cavity. Animals are then tested in operant self-administration chambers whereby they can press a lever to receive IO infusions of test solutions. IO self-administration has several advantages over experimental procedures that involve drinking a solution from a spout or operant responding for solid pellets or solutions delivered in a receptacle. Here, we show that IO self-administration can be employed to study self-administration of high fructose corn syrup (HFCS). Rats were first tested for self-administration on a progressive ratio (PR) schedule, which assesses the maximum amount of operant behavior that will be emitted for different concentrations of HFCS (i.e. 8%, 25%, and 50%). Following this test, rats self-administered these concentrations on a continuous schedule of reinforcement (i.e. one infusion for each lever press) for 10 consecutive days (1 session/day; each lasting 3 hr), and then they were retested on the PR schedule. On the continuous reinforcement schedule, rats took fewer infusions of higher concentrations, although the lowest concentration of HFCS (8%) maintained more variable self-administration. Furthermore, the PR tests revealed that 8% had lower reinforcing value than 25% and 50%. These results indicate that IO self-administration can be employed to study acquisition and maintenance of responding for sweet solutions. The sensitivity of the operant response to differences in concentration and schedule of reinforcement makes IO self-administration an ideal procedure to investigate the neurobiology of voluntary intake of sweets.
Behavior, Issue 84, Administration, Oral, Conditioning, Operant, Reinforcement (Psychology), Reinforcement Schedule, Taste, Neurosciences, Intraoral infusions, operant chambers, self-administration, high fructose corn syrup, progressive ratio, breakpoint, addiction
Play Button
A Procedure for Studying the Footshock-Induced Reinstatement of Cocaine Seeking in Laboratory Rats
Authors: David A. Kupferschmidt, Zenya J. Brown, Suzanne Erb.
Institutions: University of Toronto Scarborough.
The most insidious aspect of drug addiction is the high propensity for relapse. Animal models of relapse, known as reinstatement procedures, have been used extensively to study the neurobiology and phenomenology of relapse to drug use. Although procedural variations have emerged over the past several decades, the most conventional reinstatement procedures are based on the drug self-administration (SA) model. In this model, an animal is trained to perform an operant response to obtain drug. Subsequently, the behavior is extinguished by withholding response-contingent reinforcement. Reinstatement of drug seeking is then triggered by a discrete event, such as an injection of the training drug, re-exposure to drug-associated cues, or exposure to a stressor 1. Reinstatement procedures were originally developed to study the ability of acute non-contingent exposure to the training drug to reinstate drug seeking in rats and monkeys 1, 2. Reinstatement procedures have since been modified to study the role of environmental stimuli, including drug-associated cues and exposure to various forms of stress, in relapse to drug seeking 1, 3, 4. Over the past 15 years, a major focus of the reinstatement literature has been on the role of stress in drug relapse. One of the most commonly used forms of stress for studying this relationship is acute exposures to mild, intermittent, electric footshocks. The ability of footshock stress to induce reinstatement of drug seeking was originally demonstrated by Shaham and colleagues (1995) in rats with a history of intravenous heroin SA5. Subsequently, the effect was generalized to rats with histories of intravenous cocaine, methamphetamine, and nicotine SA, as well as oral ethanol SA 3, 6. Although footshock-induced reinstatement of drug seeking can be achieved reliably and robustly, it is an effect that tends to be sensitive to certain parametrical variables. These include the arrangement of extinction and reinstatement test sessions, the intensity and duration of footshock stress, and the presence of drug-associated cues during extinction and testing for reinstatement. Here we present a protocol for footshock-induced reinstatement of cocaine seeking that we have used with consistent success to study the relationship between stress and cocaine seeking.
Neuroscience, Issue 47, Relapse, Reinstatement, Cocaine, Rat, Footshock, Stress, Intravenous, Self-administration, Operant Conditioning
Play Button
Measuring Circadian and Acute Light Responses in Mice using Wheel Running Activity
Authors: Tara A. LeGates, Cara M. Altimus.
Institutions: John Hopkins University.
Circadian rhythms are physiological functions that cycle over a period of approximately 24 hours (circadian- circa: approximate and diem: day)1, 2. They are responsible for timing our sleep/wake cycles and hormone secretion. Since this timing is not precisely 24-hours, it is synchronized to the solar day by light input. This is accomplished via photic input from the retina to the suprachiasmatic nucleus (SCN) which serves as the master pacemaker synchronizing peripheral clocks in other regions of the brain and peripheral tissues to the environmental light dark cycle3-7. The alignment of rhythms to this environmental light dark cycle organizes particular physiological events to the correct temporal niche, which is crucial for survival8. For example, mice sleep during the day and are active at night. This ability to consolidate activity to either the light or dark portion of the day is referred to as circadian photoentrainment and requires light input to the circadian clock9. Activity of mice at night is robust particularly in the presence of a running wheel. Measuring this behavior is a minimally invasive method that can be used to evaluate the functionality of the circadian system as well as light input to this system. Methods that will covered here are used to examine the circadian clock, light input to this system, as well as the direct influence of light on wheel running behavior.
Neuroscience, Issue 48, mouse, circadian, behavior, wheel running
Play Button
Finger-stick Blood Sampling Methodology for the Determination of Exercise-induced Lymphocyte Apoptosis
Authors: James Navalta, Brian McFarlin, Richard Simpson, Elizabeth Fedor, Holly Kell, Scott Lyons, Scott Arnett, Mark Schafer.
Institutions: Western Kentucky University, University of Houston.
Exercise is a physiological stimulus capable of inducing apoptosis in immune cells. To date, various limitations have been identified with the measurement of this phenomenon, particularly relating to the amount of time required to isolate and treat a blood sample prior to the assessment of cell death. Because of this, it is difficult to determine whether reported increases in immune cell apoptosis can be contributed to the actual effect of exercise on the system, or are a reflection of the time and processing necessary to eventually obtain this measurement. In this article we demonstrate a rapid and minimally invasive procedure for the analysis of exercise-induced lymphocyte apoptosis. Unlike other techniques, whole blood is added to an antibody panel immediately upon obtaining a sample. Following the incubation period, red blood cells are lysed and samples are ready to be analyzed. The use of a finger-stick sampling procedure reduces the volume of blood required, and minimizes the discomfort to subjects.
Immunology, Issue 48, Leukocyte phenotyping, programmed cell death, muscular activity, technique development
Play Button
Manual Restraint and Common Compound Administration Routes in Mice and Rats
Authors: Elton Machholz, Guy Mulder, Casimira Ruiz, Brian F. Corning, Kathleen R. Pritchett-Corning.
Institutions: Charles River , Charles River.
Being able to safely and effectively restrain mice and rats is an important part of conducting research. Working confidently and humanely with mice and rats requires a basic competency in handling and restraint methods. This article will present the basic principles required to safely handle animals. One-handed, two-handed, and restraint with specially designed restraint objects will be illustrated. Often, another part of the research or testing use of animals is the effective administration of compounds to mice and rats. Although there are a large number of possible administration routes (limited only by the size and organs of the animal), most are not used regularly in research. This video will illustrate several of the more common routes, including intravenous, intramuscular, subcutaneous, and oral gavage. The goal of this article is to expose a viewer unfamiliar with these techniques to basic restraint and substance administration routes. This video does not replace required hands-on training at your facility, but is meant to augment and supplement that training.
Basic Protocols, Issue 67, Anatomy, Medicine, Rodents, training, handling, restraint, injections, oral gavage
Play Button
Endurance Training Protocol and Longitudinal Performance Assays for Drosophila melanogaster
Authors: Martin J. Tinkerhess, Sara Ginzberg, Nicole Piazza, Robert J. Wessells.
Institutions: University of Michigan Medical School.
One of the most pressing problems facing modern medical researchers is the surging levels of obesity, with the consequent increase in associated disorders such as diabetes and cardiovascular disease 1-3. An important topic of research into these associated health problems involves the role of endurance exercise as a beneficial intervention. Exercise training is an inexpensive, non-invasive intervention with several beneficial results, including reduction in excess body fat 4, increased insulin sensitivity in skeletal muscle 5, increased anti-inflammatory and antioxidative responses 6, and improved contractile capacity in cardiomyocytes 7. Low intensity exercise is known to increase mitochondrial activity and biogenesis in humans 8 and mice, with the transcriptional coactivator PGC1-α as an important intermediate 9,10. Despite the importance of exercise as a tool for combating several important age-related diseases, extensive longitudinal genetic studies have been impeded by the lack of an endurance training protocol for a short-lived genetic model species. The variety of genetic tools available for use with Drosophila, together with its short lifespan and inexpensive maintenance, make it an appealing model for further study of these genetic mechanisms. With this in mind we have developed a novel apparatus, known as the Power Tower, for large scale exercise-training in Drosophila melanogaster 11. The Power Tower utilizes the flies' instinctive negative geotaxis behavior to repetitively induce rapid climbing. Each time the machine lifts, then drops, the platform of flies, the flies are induced to climb. Flies continue to respond as long as the machine is in operation or until they become too fatigued to respond. Thus, the researcher can use this machine to provide simultaneous training to large numbers of age-matched and genetically identical flies. Additionally, we describe associated assays useful to track longitudinal progress of fly cohorts during training.
Physiology, Issue 61, Drosophila, endurance, exercise, training
Play Button
Recording and Analysis of Circadian Rhythms in Running-wheel Activity in Rodents
Authors: Michael Verwey, Barry Robinson, Shimon Amir.
Institutions: McGill University , Concordia University.
When rodents have free access to a running wheel in their home cage, voluntary use of this wheel will depend on the time of day1-5. Nocturnal rodents, including rats, hamsters, and mice, are active during the night and relatively inactive during the day. Many other behavioral and physiological measures also exhibit daily rhythms, but in rodents, running-wheel activity serves as a particularly reliable and convenient measure of the output of the master circadian clock, the suprachiasmatic nucleus (SCN) of the hypothalamus. In general, through a process called entrainment, the daily pattern of running-wheel activity will naturally align with the environmental light-dark cycle (LD cycle; e.g. 12 hr-light:12 hr-dark). However circadian rhythms are endogenously generated patterns in behavior that exhibit a ~24 hr period, and persist in constant darkness. Thus, in the absence of an LD cycle, the recording and analysis of running-wheel activity can be used to determine the subjective time-of-day. Because these rhythms are directed by the circadian clock the subjective time-of-day is referred to as the circadian time (CT). In contrast, when an LD cycle is present, the time-of-day that is determined by the environmental LD cycle is called the zeitgeber time (ZT). Although circadian rhythms in running-wheel activity are typically linked to the SCN clock6-8, circadian oscillators in many other regions of the brain and body9-14 could also be involved in the regulation of daily activity rhythms. For instance, daily rhythms in food-anticipatory activity do not require the SCN15,16 and instead, are correlated with changes in the activity of extra-SCN oscillators17-20. Thus, running-wheel activity recordings can provide important behavioral information not only about the output of the master SCN clock, but also on the activity of extra-SCN oscillators. Below we describe the equipment and methods used to record, analyze and display circadian locomotor activity rhythms in laboratory rodents.
Neuroscience, Issue 71, Medicine, Neurobiology, Physiology, Anatomy, Psychology, Psychiatry, Behavior, Suprachiasmatic nucleus, locomotor activity, mouse, rat, hamster, light-dark cycle, free-running activity, entrainment, circadian period, circadian rhythm, phase shift, animal model
Play Button
Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia
Authors: Sandra Christoph, Alisa B. Lee-Sherick, Susan Sather, Deborah DeRyckere, Douglas K. Graham.
Institutions: University of Colorado Anschutz Medical Campus, University Hospital of Essen.
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds.
Medicine, Issue 79, Leukemia, Receptor Protein-Tyrosine Kinases, Molecular Targeted Therapy, Therapeutics, novel small molecule inhibitor, receptor tyrosine kinase, leukemia
Play Button
Meal Duration as a Measure of Orofacial Nociceptive Responses in Rodents
Authors: Phillip R. Kramer, Larry L. Bellinger.
Institutions: Texas A&M University Baylor College of Dentistry.
A lengthening in meal duration can be used to measure an increase in orofacial mechanical hyperalgesia having similarities to the guarding behavior of humans with orofacial pain. To measure meal duration unrestrained rats are continuously kept in sound attenuated, computerized feeding modules for days to weeks to record feeding behavior. These sound-attenuated chambers are equipped with chow pellet dispensers. The dispenser has a pellet trough with a photobeam placed at the bottom of the trough and when a rodent removes a pellet from the feeder trough this beam is no longer blocked, signaling the computer to drop another pellet. The computer records the date and time when the pellets were taken from the trough and from this data the experimenter can calculate the meal parameters. When calculating meal parameters a meal was defined based on previous work and was set at 10 min (in other words when the animal does not eat for 10 min that would be the end of the animal's meal) also the minimum meal size was set at 3 pellets. The meal duration, meal number, food intake, meal size and inter-meal interval can then be calculated by the software for any time period that the operator desires. Of the feeding parameters that can be calculated meal duration has been shown to be a continuous noninvasive biological marker of orofacial nociception in male rats and mice and female rats. Meal duration measurements are quantitative, require no training or animal manipulation, require cortical participation, and do not compete with other experimentally induced behaviors. These factors distinguish this assay from other operant or reflex methods for recording orofacial nociception.
Behavior, Issue 83, Pain, rat, nociception, myofacial, orofacial, tooth, temporomandibular joint (TMJ)
Play Button
Training Rats to Voluntarily Dive Underwater: Investigations of the Mammalian Diving Response
Authors: Paul F. McCulloch.
Institutions: Midwestern University.
Underwater submergence produces autonomic changes that are observed in virtually all diving animals. This reflexly-induced response consists of apnea, a parasympathetically-induced bradycardia and a sympathetically-induced alteration of vascular resistance that maintains blood flow to the heart, brain and exercising muscles. While many of the metabolic and cardiorespiratory aspects of the diving response have been studied in marine animals, investigations of the central integrative aspects of this brainstem reflex have been relatively lacking. Because the physiology and neuroanatomy of the rat are well characterized, the rat can be used to help ascertain the central pathways of the mammalian diving response. Detailed instructions are provided on how to train rats to swim and voluntarily dive underwater through a 5 m long Plexiglas maze. Considerations regarding tank design and procedure room requirements are also given. The behavioral training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence, thus minimizing activation of central stress pathways. The training procedures are not technically difficult, but they can be time-consuming. Since behavioral training of animals can only provide a model to be used with other experimental techniques, examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic training procedures may need to be modified to accommodate these techniques, are also provided. These experiments show that voluntarily diving rats exhibit the same cardiorespiratory changes typically seen in other diving animals. The ease with which rats can be trained to voluntarily dive underwater, and the already available data from rats collected in other neurophysiological studies, makes voluntarily diving rats a good behavioral model to be used in studies investigating the central aspects of the mammalian diving response.
Behavior, Issue 93, Rat, Rattus norvegicus, voluntary diving, diving response, diving reflex, autonomic reflex, central integration
Play Button
Hyponeophagia: A Measure of Anxiety in the Mouse
Authors: Rob M.J. Deacon.
Institutions: University of Oxford.
Before the present day, when fast-acting and potent rodenticides such as alpha-chloralose were not yet in use, the work of pest controllers was often hampered by a phenomenon known as "bait shyness". Mice and rats cannot vomit, due to the tightness of the cardiac sphincter of the stomach, so to overcome the problem of potential food toxicity they have evolved a strategy of first ingesting only very small amounts of novel substances. The amounts ingested then gradually increase until the animal has determined whether the substance is safe and nutritious. So the old rat-catchers would first put a palatable substance such as oatmeal, which was to be the vehicle for the toxin, in the infested area. Only when large amounts were being readily consumed would they then add the poison, in amounts calculated not to affect the taste of the vehicle. The poisoned bait, which the animals were now readily eating in large amounts, would then swiftly perform its function. Bait shyness is now used in the behavioural laboratory as a way of measuring anxiety. A highly palatable but novel substance, such as sweet corn, nuts or sweetened condensed milk, is offered to the mice (or rats) in a novel situation, such as a new cage. The latency to consume a defined amount of the new food is then measured. Robert M.J. Deacon can be reach at
Neuroscience, Issue 51, Anxiety, hyponeophagia, bait shyness, mice, hippocampus, strain differences, plus-maze
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.