JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
MicroRNA buffering and altered variance of gene expression in response to Salmonella infection.
PLoS ONE
PUBLISHED: 01-01-2014
One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.
Authors: Anne Katchy, Cecilia Williams.
Published: 02-21-2014
ABSTRACT
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
20 Related JoVE Articles!
Play Button
Chronic Salmonella Infected Mouse Model
Authors: Shaoping Wu, Rong Lu, Yong-guo Zhang, Jun Sun.
Institutions: University of Rochester.
The bacterial infected mouse model is a powerful model system for studying areas such as infection, inflammation, immunology, signal transduction, and tumorigenesis. Many researchers have taken advantage of the colitis induced by Salmonella typhimurium for the studies on the early phase of inflammation and infection. However, only few reports are on the chronic infection in vivo. Mice with Salmonella persistent existence in the gastrointestinal tract allow us to explore the long-term host-bacterial interaction, signal transduction, and tumorigenesis. We have established a chronic bacterial infected mouse model with Salmonella typhimurium colonization in the mouse intestine over 6 months. To use this system, it is necessary for the researcher to learn how to prepare the bacterial culture and gavage the animals. We detail a methodology for prepare bacterial culture and gavage mice. We also show how to detect the Salmonella persistence in the gastrointestinal tract. Overall, this protocol will aid researchers using the bacterial infected mouse model to address fundamentally important biological and microbiological questions.
Microbiology, Issue 39, Salmonella, intestine, colitis, chronic infection, mouse model
1947
Play Button
Quantification of the Respiratory Burst Response as an Indicator of Innate Immune Health in Zebrafish
Authors: Michelle F. Goody, Eric Peterman, Con Sullivan, Carol H. Kim.
Institutions: University of Maine.
The phagocyte respiratory burst is part of the innate immune response to pathogen infection and involves the production of reactive oxygen species (ROS). ROS are toxic and function to kill phagocytized microorganisms. In vivo quantification of phagocyte-derived ROS provides information regarding an organism's ability to mount a robust innate immune response. Here we describe a protocol to quantify and compare ROS in whole zebrafish embryos upon chemical induction of the phagocyte respiratory burst. This method makes use of a non-fluorescent compound that becomes fluorescent upon oxidation by ROS. Individual zebrafish embryos are pipetted into the wells of a microplate and incubated in this fluorogenic substrate with or without a chemical inducer of the respiratory burst. Fluorescence in each well is quantified at desired time points using a microplate reader. Fluorescence readings are adjusted to eliminate background fluorescence and then compared using an unpaired t-test. This method allows for comparison of the respiratory burst potential of zebrafish embryos at different developmental stages and in response to experimental manipulations such as protein knockdown, overexpression, or treatment with pharmacological agents. This method can also be used to monitor the respiratory burst response in whole dissected kidneys or cell preparations from kidneys of adult zebrafish and some other fish species. We believe that the relative simplicity and adaptability of this protocol will complement existing protocols and will be of interest to researchers who seek to better understand the innate immune response.
Immunology, Issue 79, Phagocytes, Immune System, Zebrafish, Reactive Oxygen Species, Immune System Processes, Host-Pathogen Interactions, Respiratory Burst, Immune System Phenomena, innate immunity, bacteria, virus, infection]
50667
Play Button
MicroRNA In situ Hybridization for Formalin Fixed Kidney Tissues
Authors: Alison J. Kriegel, Mingyu Liang.
Institutions: Medical College of Wisconsin.
In this article we describe a method for colorimetric detection of miRNA in the kidney through in situ hybridization with digoxigenin tagged microRNA probes. This protocol, originally developed by Kloosterman and colleagues for broad use with Exiqon miRNA probes1, has been modified to overcome challenges inherent in miRNA analysis in kidney tissues. These include issues such as structure identification and hard to remove residual probe and antibody. Use of relatively thin, 5 mm thick, tissue sections allowed for clear visualization of kidney structures, while a strong probe signal was retained in cells. Additionally, probe concentration and incubation conditions were optimized to facilitate visualization of microRNA expression with low background and nonspecific signal. Here, the optimized protocol is described, covering the initial tissue collection and preparation through the mounting of slides at the end of the procedure. The basic components of this protocol can be altered for application to other tissues and cell culture models.
Basic Protocol, Issue 81, microRNA, in situ hybridization, kidney, renal tubules, microRNA probe
50785
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
50823
Play Button
Cerebrospinal Fluid MicroRNA Profiling Using Quantitative Real Time PCR
Authors: Marco Pacifici, Serena Delbue, Ferdous Kadri, Francesca Peruzzi.
Institutions: LSU Health Sciences Center, University of Milan.
MicroRNAs (miRNAs) constitute a potent layer of gene regulation by guiding RISC to target sites located on mRNAs and, consequently, by modulating their translational repression. Changes in miRNA expression have been shown to be involved in the development of all major complex diseases. Furthermore, recent findings showed that miRNAs can be secreted to the extracellular environment and enter the bloodstream and other body fluids where they can circulate with high stability. The function of such circulating miRNAs remains largely elusive, but systematic high throughput approaches, such as miRNA profiling arrays, have lead to the identification of miRNA signatures in several pathological conditions, including neurodegenerative disorders and several types of cancers. In this context, the identification of miRNA expression profile in the cerebrospinal fluid, as reported in our recent study, makes miRNAs attractive candidates for biomarker analysis. There are several tools available for profiling microRNAs, such as microarrays, quantitative real-time PCR (qPCR), and deep sequencing. Here, we describe a sensitive method to profile microRNAs in cerebrospinal fluids by quantitative real-time PCR. We used the Exiqon microRNA ready-to-use PCR human panels I and II V2.R, which allows detection of 742 unique human microRNAs. We performed the arrays in triplicate runs and we processed and analyzed data using the GenEx Professional 5 software. Using this protocol, we have successfully profiled microRNAs in various types of cell lines and primary cells, CSF, plasma, and formalin-fixed paraffin-embedded tissues.
Medicine, Issue 83, microRNAs, biomarkers, miRNA profiling, qPCR, cerebrospinal fluid, RNA, DNA
51172
Play Button
MicroRNA Expression Profiles of Human iPS Cells, Retinal Pigment Epithelium Derived From iPS, and Fetal Retinal Pigment Epithelium
Authors: Whitney A. Greene, Alberto. Muñiz, Mark L. Plamper, Ramesh R. Kaini, Heuy-Ching Wang.
Institutions: JBSA Fort Sam Houston.
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.
Molecular Biology, Issue 88, microRNA, microarray, human induced-pluripotent stem cells, retinal pigmented epithelium
51589
Play Button
A Protocol to Infect Caenorhabditis elegans with Salmonella typhimurium
Authors: Jiuli Zhang, Kailiang Jia.
Institutions: Florida Atlantic University.
In the last decade, C. elegans has emerged as an invertebrate organism to study interactions between hosts and pathogens, including the host defense against gram-negative bacterium Salmonella typhimurium. Salmonella establishes persistent infection in the intestine of C. elegans and results in early death of infected animals. A number of immunity mechanisms have been identified in C. elegans to defend against Salmonella infections. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has been shown to limit the Salmonella replication in C. elegans and in mammals. Here, a protocol is described to infect C. elegans with Salmonella typhimurium, in which the worms are exposed to Salmonella for a limited time, similar to Salmonella infection in humans. Salmonella infection significantly shortens the lifespan of C. elegans. Using the essential autophagy gene bec-1 as an example, we combined this infection method with C. elegans RNAi feeding approach and showed this protocol can be used to examine the function of C. elegans host genes in defense against Salmonella infection. Since C. elegans whole genome RNAi libraries are available, this protocol makes it possible to comprehensively screen for C. elegans genes that protect against Salmonella and other intestinal pathogens using genome-wide RNAi libraries.
Immunology, Issue 88, C. elegans, Salmonella typhimurium, autophagy, infection, pathogen, host, RNAi
51703
Play Button
High-throughput Assay to Phenotype Salmonella enterica Typhimurium Association, Invasion, and Replication in Macrophages
Authors: Jing Wu, Roberta Pugh, Richard C. Laughlin, Helene Andrews-Polymenis, Michael McClelland, Andreas J. Bäumler, L. Garry Adams.
Institutions: Texas A&M University, Texas A&M University System Health Science Center, University of California, Irvine, University of California, Davis.
Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.
Infectious Diseases, Issue 90, Salmonella enterica Typhimurium, association, invasion, replication, phenotype, intracellular pathogens, macrophages
51759
Play Button
Measuring Growth and Gene Expression Dynamics of Tumor-Targeted S. Typhimurium Bacteria
Authors: Tal Danino, Arthur Prindle, Jeff Hasty, Sangeeta Bhatia.
Institutions: Massachusetts Institute of Technology, University of California, San Diego , University of California, San Diego , University of California, San Diego , Broad Institute of Harvard and MIT, Brigham and Women's Hospital, Massachusetts Institute of Technology, Howard Hughes Medical Institute.
The goal of these experiments is to generate quantitative time-course data on the growth and gene expression dynamics of attenuated S. typhimurium bacterial colonies growing inside tumors. We generated model xenograft tumors in mice by subcutaneous injection of a human ovarian cancer cell line, OVCAR-8 (NCI DCTD Tumor Repository, Frederick, MD). We transformed attenuated strains of S. typhimurium bacteria (ELH430:SL1344 phoPQ- 1) with a constitutively expressed luciferase (luxCDABE) plasmid for visualization2. These strains specifically colonize tumors while remaining essentially non-virulent to the mouse1. Once measurable tumors were established, bacteria were injected intravenously via the tail vein with varying dosage. Tumor-localized, bacterial gene expression was monitored in real time over the course of 60 hours using an in vivo imaging system (IVIS). At each time point, tumors were excised, homogenized, and plated to quantitate bacterial colonies for correlation with gene expression data. Together, this data yields a quantitative measure of the in vivo growth and gene expression dynamics of bacteria growing inside tumors.
Infection, Issue 77, Cancer Biology, Immunology, Infectious Diseases, Microbiology, Genetics, Molecular Biology, Cellular Biology, Bioengineering, Biomedical Engineering, Bacteria, Synthetic Biology, Biological Agents, Time-Lapse Imaging, Synthetic Biology, dynamics (physics), Synthetic Biology, cancer therapy, bacteria population dynamics, in-vivo imaging, cell, imaging
50540
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
50455
Play Button
Purification and microRNA Profiling of Exosomes Derived from Blood and Culture Media
Authors: Marguerite K. McDonald, Kathryn E. Capasso, Seena K. Ajit.
Institutions: Drexel University College of Medicine.
Stable miRNAs are present in all body fluids and some circulating miRNAs are protected from degradation by sequestration in small vesicles called exosomes. Exosomes can fuse with the plasma membrane resulting in the transfer of RNA and proteins to the target cell. Their biological functions include immune response, antigen presentation, and intracellular communication. Delivery of miRNAs that can regulate gene expression in the recipient cells via blood has opened novel avenues for target intervention. In addition to offering a strategy for delivery of drugs or RNA therapeutic agents, exosomal contents can serve as biomarkers that can aid in diagnosis, determining treatment options and prognosis. Here we will describe the procedure for quantitatively analyzing miRNAs and messenger RNAs (mRNA) from exosomes secreted in blood and cell culture media. Purified exosomes will be characterized using western blot analysis for exosomal markers and PCR for mRNAs of interest. Transmission electron microscopy (TEM) and immunogold labeling will be used to validate exosomal morphology and integrity. Total RNA will be purified from these exosomes to ensure that we can study both mRNA and miRNA from the same sample. After validating RNA integrity by Bioanalyzer, we will perform a medium throughput quantitative real time PCR (qPCR) to identify the exosomal miRNA using Taqman Low Density Array (TLDA) cards and gene expression studies for transcripts of interest. These protocols can be used to quantify changes in exosomal miRNAs in patients, rodent models and cell culture media before and after pharmacological intervention. Exosomal contents vary due to the source of origin and the physiological conditions of cells that secrete exosomes. These variations can provide insight on how cells and systems cope with stress or physiological perturbations. Our representative data show variations in miRNAs present in exosomes purified from mouse blood, human blood and human cell culture media. Here we will describe the procedure for quantitatively analyzing miRNAs and messenger RNAs (mRNA) from exosomes secreted in blood and cell culture media. Purified exosomes will be characterized using western blot analysis for exosomal markers and PCR for mRNAs of interest. Transmission electron microscopy (TEM) and immunogold labeling will be used to validate exosomal morphology and integrity. Total RNA will be purified from these exosomes to ensure that we can study both mRNA and miRNA from the same sample. After validating RNA integrity by Bioanalyzer, we will perform a medium throughput quantitative real time PCR (qPCR) to identify the exosomal miRNA using Taqman Low Density Array (TLDA) cards and gene expression studies for transcripts of interest. These protocols can be used to quantify changes in exosomal miRNAs in patients, rodent models and cell culture media before and after pharmacological intervention. Exosomal contents vary due to the source of origin and the physiological conditions of cells that secrete exosomes. These variations can provide insight on how cells and systems cope with stress or physiological perturbations. Our representative data show variations in miRNAs present in exosomes purified from mouse blood, human blood and human cell culture media
Genetics, Issue 76, Molecular Biology, Cellular Biology, Medicine, Biochemistry, Genomics, Pharmacology, Exosomes, RNA, MicroRNAs, Biomarkers, Pharmacological, Exosomes, microRNA, qPCR, PCR, blood, biomarker, TLDA, profiling, sequencing, cell culture
50294
Play Button
Profiling of Pre-micro RNAs and microRNAs using Quantitative Real-time PCR (qPCR) Arrays
Authors: Pauline Chugh, Kristen Tamburro, Dirk P Dittmer.
Institutions: University of North Carolina at Chapel Hill.
Quantitative real-time PCR (QPCR) has emerged as an accurate and valuable tool in profiling gene expression levels. One of its many advantages is a lower detection limit compared to other methods of gene expression profiling while using smaller amounts of input for each assay. Automated qPCR setup has improved this field by allowing for greater reproducibility. Its convenient and rapid setup allows for high-throughput experiments, enabling the profiling of many different genes simultaneously in each experiment. This method along with internal plate controls also reduces experimental variables common to other techniques. We recently developed a qPCR assay for profiling of pre-microRNAs (pre-miRNAs) using a set of 186 primer pairs. MicroRNAs have emerged as a novel class of small, non-coding RNAs with the ability to regulate many mRNA targets at the post-transcriptional level. These small RNAs are first transcribed by RNA polymerase II as a primary miRNA (pri-miRNA) transcript, which is then cleaved into the precursor miRNA (pre-miRNA). Pre-miRNAs are exported to the cytoplasm where Dicer cleaves the hairpin loop to yield mature miRNAs. Increases in miRNA levels can be observed at both the precursor and mature miRNA levels and profiling of both of these forms can be useful. There are several commercially available assays for mature miRNAs; however, their high cost may deter researchers from this profiling technique. Here, we discuss a cost-effective, reliable, SYBR-based qPCR method of profiling pre-miRNAs. Changes in pre-miRNA levels often reflect mature miRNA changes and can be a useful indicator of mature miRNA expression. However, simultaneous profiling of both pre-miRNAs and mature miRNAs may be optimal as they can contribute nonredundant information and provide insight into microRNA processing. Furthermore, the technique described here can be expanded to encompass the profiling of other library sets for specific pathways or pathogens.
Biochemistry, Issue 46, pre-microRNAs, qPCR, profiling, Tecan Freedom Evo, robot
2210
Play Button
An Allelotyping PCR for Identifying Salmonella enterica serovars Enteritidis, Hadar, Heidelberg, and Typhimurium
Authors: John J. Maurer, Margie D. Lee, Ying Cheng, Adriana Pedroso.
Institutions: University of Georgia.
Current commercial PCRs tests for identifying Salmonella target genes unique to this genus. However, there are two species, six subspecies, and over 2,500 different Salmonella serovars, and not all are equal in their significance to public health. For example, finding S. enterica subspecies IIIa Arizona on a table egg layer farm is insignificant compared to the isolation of S. enterica subspecies I serovar Enteritidis, the leading cause of salmonellosis linked to the consumption of table eggs. Serovars are identified based on antigenic differences in lipopolysaccharide (LPS)(O antigen) and flagellin (H1 and H2 antigens). These antigenic differences are the outward appearance of the diversity of genes and gene alleles associated with this phenotype. We have developed an allelotyping, multiplex PCR that keys on genetic differences between four major S. enterica subspecies I serovars found in poultry and associated with significant human disease in the US. The PCR primer pairs were targeted to key genes or sequences unique to a specific Salmonella serovar and designed to produce an amplicon with size specific for that gene or allele. Salmonella serovar is assigned to an isolate based on the combination of PCR test results for specific LPS and flagellin gene alleles. The multiplex PCRs described in this article are specific for the detection of S. enterica subspecies I serovars Enteritidis, Hadar, Heidelberg, and Typhimurium. Here we demonstrate how to use the multiplex PCRs to identify serovar for a Salmonella isolate.
Immunology, Issue 53, PCR, Salmonella, multiplex, Serovar
3130
Play Button
Performing Custom MicroRNA Microarray Experiments
Authors: Xiaoxiao Zhang, Yan Zeng.
Institutions: University of Minnesota , University of Minnesota .
microRNAs (miRNAs) are a large family of ˜ 22 nucleotides (nt) long RNA molecules that are widely expressed in eukaryotes 1. Complex genomes encode at least hundreds of miRNAs, which primarily inhibit the expression of a vast number of target genes post-transcriptionally 2, 3. miRNAs control a broad range of biological processes 1. In addition, altered miRNA expression has been associated with human diseases such as cancers, and miRNAs may serve as biomarkers for diseases and prognosis 4, 5. It is important, therefore, to understand the expression and functions of miRNAs under many different conditions. Three major approaches have been employed to profile miRNA expression: real-time PCR, microarray, and deep sequencing. The technique of miRNA microarray has the advantage of being high-throughput, generally less expensive, and most of the experimental and analysis steps can be carried out in a molecular biology laboratory at most universities, medical schools and associated hospitals. Here, we describe a method for performing custom miRNA microarray experiments. A miRNA probe set will be printed on glass slides to produce miRNA microarrays. RNA is isolated using a method or reagent that preserves small RNA species, and then labeled with a fluorescence dye. As a control, reference DNA oligonucleotides corresponding to a subset of miRNAs are also labeled with a different fluorescence dye. The reference DNA will serve to demonstrate the quality of the slide and hybridization and will also be used for data normalization. The RNA and DNA are mixed and hybridized to a microarray slide containing probes for most of the miRNAs in the database. After washing, the slide is scanned to obtain images, and intensities of the individual spots quantified. These raw signals will be further processed and analyzed as the expression data of the corresponding miRNAs. Microarray slides can be stripped and regenerated to reduce the cost of microarrays and to enhance the consistency of microarray experiments. The same principles and procedures are applicable to other types of custom microarray experiments.
Molecular Biology, Issue 56, Genetics, microRNA, custom microarray, oligonucleotide probes, RNA labeling
3250
Play Button
Genome-wide Screen for miRNA Targets Using the MISSION Target ID Library
Authors: Matthew J. Coussens, Kevin Forbes, Carol Kreader, Jack Sago, Carrie Cupp, John Swarthout.
Institutions: Sigma-Aldrich.
The Target ID Library is designed to assist in discovery and identification of microRNA (miRNA) targets. The Target ID Library is a plasmid-based, genome-wide cDNA library cloned into the 3'UTR downstream from the dual-selection fusion protein, thymidine kinase-zeocin (TKzeo). The first round of selection is for stable transformants, followed with introduction of a miRNA of interest, and finally, selecting for cDNAs containing the miRNA's target. Selected cDNAs are identified by sequencing (see Figure 1-3 for Target ID Library Workflow and details). To ensure broad coverage of the human transcriptome, Target ID Library cDNAs were generated via oligo-dT priming using a pool of total RNA prepared from multiple human tissues and cell lines. Resulting cDNA range from 0.5 to 4 kb, with an average size of 1.2 kb, and were cloned into the p3΄TKzeo dual-selection plasmid (see Figure 4 for plasmid map). The gene targets represented in the library can be found on the Sigma-Aldrich webpage. Results from Illumina sequencing (Table 3), show that the library includes 16,922 of the 21,518 unique genes in UCSC RefGene (79%), or 14,000 genes with 10 or more reads (66%).
Genetics, Issue 62, Target ID, miRNA, ncRNA, RNAi, genomics
3303
Play Button
Identifying Targets of Human microRNAs with the LightSwitch Luciferase Assay System using 3'UTR-reporter Constructs and a microRNA Mimic in Adherent Cells
Authors: Shelley Force Aldred, Patrick Collins, Nathan Trinklein.
Institutions: SwitchGear Genomics.
MicroRNAs (miRNAs) are important regulators of gene expression and play a role in many biological processes. More than 700 human miRNAs have been identified so far with each having up to hundreds of unique target mRNAs. Computational tools, expression and proteomics assays, and chromatin-immunoprecipitation-based techniques provide important clues for identifying mRNAs that are direct targets of a particular miRNA. In addition, 3'UTR-reporter assays have become an important component of thorough miRNA target studies because they provide functional evidence for and quantitate the effects of specific miRNA-3'UTR interactions in a cell-based system. To enable more researchers to leverage 3'UTR-reporter assays and to support the scale-up of such assays to high-throughput levels, we have created a genome-wide collection of human 3'UTR luciferase reporters in the highly-optimized LightSwitch Luciferase Assay System. The system also includes synthetic miRNA target reporter constructs for use as positive controls, various endogenous 3'UTR reporter constructs, and a series of standardized experimental protocols. Here we describe a method for co-transfection of individual 3'UTR-reporter constructs along with a miRNA mimic that is efficient, reproducible, and amenable to high-throughput analysis.
Genetics, Issue 55, MicroRNA, miRNA, mimic, Clone, 3' UTR, Assay, vector, LightSwitch, luciferase, co-transfection, 3'UTR REPORTER, mirna target, microrna target, reporter, GoClone, Reporter construct
3343
Play Button
Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens
Authors: Erica L. Benard, Astrid M. van der Sar, Felix Ellett, Graham J. Lieschke, Herman P. Spaink, Annemarie H. Meijer.
Institutions: Leiden University, VU University Medical Center, Monash University.
Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions 1. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage 2, 3. The site of micro-injection of bacteria into the embryo (Figure 1) determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle 4-6. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection 7. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization 8. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.
Immunology, Issue 61, Zebrafish embryo, innate immunity, macrophages, infection, Salmonella, Mycobacterium, micro-injection, fluorescence imaging, Danio rerio
3781
Play Button
MicroRNA Detection in Prostate Tumors by Quantitative Real-time PCR (qPCR)
Authors: Aida Gordanpour, Robert K. Nam, Linda Sugar, Stephanie Bacopulos, Arun Seth.
Institutions: University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada, Sunnybrook Health Sciences Centre, Toronto, Canada, Sunnybrook Research Institute.
MicroRNAs (miRNAs) are single-stranded, 18–24 nucleotide long, non-coding RNA molecules. They are involved in virtually every cellular process including development1, apoptosis2, and cell cycle regulation3. MiRNAs are estimated to regulate the expression of 30% to 90% of human genes4 by binding to their target messenger RNAs (mRNAs)5. Widespread dysregulation of miRNAs has been reported in various diseases and cancer subtypes6. Due to their prevalence and unique structure, these small molecules are likely to be the next generation of biomarkers, therapeutic agents and/or targets. Methods used to investigate miRNA expression include SYBR green I dye- based as well as Taqman-probe based qPCR. If miRNAs are to be effectively used in the clinical setting, it is imperative that their detection in fresh and/or archived clinical samples be accurate, reproducible, and specific. qPCR has been widely used for validating expression of miRNAs in whole genome analyses such as microarray studies7. The samples used in this protocol were from patients who underwent radical prostatectomy for clinically localized prostate cancer; however other tissues and cell lines can be substituted in. Prostate specimens were snap-frozen in liquid nitrogen after resection. Clinical variables and follow-up information for each patient were collected for subsequent analysis8. Quantification of miRNA levels in prostate tumor samples. The main steps in qPCR analysis of tumors are: Total RNA extraction, cDNA synthesis, and detection of qPCR products using miRNA-specific primers. Total RNA, which includes mRNA, miRNA, and other small RNAs were extracted from specimens using TRIzol reagent. Qiagen's miScript System was used to synthesize cDNA and perform qPCR (Figure 1). Endogenous miRNAs are not polyadenylated, therefore during the reverse transcription process, a poly(A) polymerase polyadenylates the miRNA. The miRNA is used as a template to synthesize cDNA using oligo-dT and Reverse Transcriptase. A universal tag sequence on the 5' end of oligo-dT primers facilitates the amplification of cDNA in the PCR step. PCR product amplification is detected by the level of fluorescence emitted by SYBR Green, a dye which intercalates into double stranded DNA. Specific miRNA primers, along with a Universal Primer that binds to the universal tag sequence will amplify specific miRNA sequences. The miScript Primer Assays are available for over a thousand human-specific miRNAs, and hundreds of murine-specific miRNAs. Relative quantification method was used here to quantify the expression of miRNAs. To correct for variability amongst different samples, expression levels of a target miRNA is normalized to the expression levels of a reference gene. The choice of a gene on which to normalize the expression of targets is critical in relative quantification method of analysis. Examples of reference genes typically used in this capacity are the small RNAs RNU6B, RNU44, and RNU48 as they are considered to be stably expressed across most samples. In this protocol, RNU6B is used as the reference gene.
Cancer Biology, Issue 63, Medicine, cancer, primer assay, Prostate, microRNA, tumor, qPCR
3874
Play Button
Detection of MicroRNAs in Microglia by Real-time PCR in Normal CNS and During Neuroinflammation
Authors: Tatiana Veremeyko, Sarah-Christine Starossom, Howard L. Weiner, Eugene D. Ponomarev.
Institutions: Harvard Medical School.
Microglia are cells of the myeloid lineage that reside in the central nervous system (CNS)1. These cells play an important role in pathologies of many diseases associated with neuroinflammation such as multiple sclerosis (MS)2. Microglia in a normal CNS express macrophage marker CD11b and exhibit a resting phenotype by expressing low levels of activation markers such as CD45. During pathological events in the CNS, microglia become activated as determined by upregulation of CD45 and other markers3. The factors that affect microglia phenotype and functions in the CNS are not well studied. MicroRNAs (miRNAs) are a growing family of conserved molecules (~22 nucleotides long) that are involved in many normal physiological processes such as cell growth and differentiation4 and pathologies such as inflammation5. MiRNAs downregulate the expression of certain target genes by binding complementary sequences of their mRNAs and play an important role in the activation of innate immune cells including macrophages6 and microglia7. In order to investigate miRNA-mediated pathways that define the microglial phenotype, biological function, and to distinguish microglia from other types of macrophages, it is important to quantitatively assess the expression of particular microRNAs in distinct subsets of CNS-resident microglia. Common methods for measuring the expression of miRNAs in the CNS include quantitative PCR from whole neuronal tissue and in situ hybridization. However, quantitative PCR from whole tissue homogenate does not allow the assessment of the expression of miRNA in microglia, which represent only 5-15% of the cells of neuronal tissue. Hybridization in situ allows the assessment of the expression of microRNA in specific cell types in the tissue sections, but this method is not entirely quantitative. In this report we describe a quantitative and sensitive method for the detection of miRNA by real-time PCR in microglia isolated from normal CNS or during neuroinflammation using experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. The described method will be useful to measure the level of expression of microRNAs in microglia in normal CNS or during neuroinflammation associated with various pathologies including MS, stroke, traumatic injury, Alzheimer's disease and brain tumors.
Immunology, Issue 65, Neuroscience, Genetics, microglia, macrophages, microRNA, brain, mouse, real-time PCR, neuroinflammation
4097
Play Button
Highly Efficient Ligation of Small RNA Molecules for MicroRNA Quantitation by High-Throughput Sequencing
Authors: Jerome E. Lee, Rui Yi.
Institutions: University of Colorado, Boulder, University of Colorado, Denver.
MiRNA cloning and high-throughput sequencing, termed miR-Seq, stands alone as a transcriptome-wide approach to quantify miRNAs with single nucleotide resolution. This technique captures miRNAs by attaching 3’ and 5’ oligonucleotide adapters to miRNA molecules and allows de novo miRNA discovery. Coupling with powerful next-generation sequencing platforms, miR-Seq has been instrumental in the study of miRNA biology. However, significant biases introduced by oligonucleotide ligation steps have prevented miR-Seq from being employed as an accurate quantitation tool. Previous studies demonstrate that biases in current miR-Seq methods often lead to inaccurate miRNA quantification with errors up to 1,000-fold for some miRNAs1,2. To resolve these biases imparted by RNA ligation, we have developed a small RNA ligation method that results in ligation efficiencies of over 95% for both 3’ and 5′ ligation steps. Benchmarking this improved library construction method using equimolar or differentially mixed synthetic miRNAs, consistently yields reads numbers with less than two-fold deviation from the expected value. Furthermore, this high-efficiency miR-Seq method permits accurate genome-wide miRNA profiling from in vivo total RNA samples2.
Molecular Biology, Issue 93, RNA, ligation, miRNA, miR-Seq, linker, oligonucleotide, high-throughput sequencing
52095
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.