JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Increased arterial stiffness in systemic lupus erythematosus (SLE) patients at low risk for cardiovascular disease: a cross-sectional controlled study.
PLoS ONE
PUBLISHED: 01-01-2014
Cardiovascular disease (CVD) is a major cause of death in systemic lupus erythematosus (SLE) patients. Although the risk for cardiovascular events in patients with SLE is significant, the absolute number of events per year in any given cohort remains small. Thus, CVD risks stratification in patients with SLE focuses on surrogate markers for atherosclerosis at an early stage, such as reduced elasticity of arteries. Our study was designed to determine whether arterial stiffness is increased in SLE patients at low risk for CVD and analyze the role for traditional and non-traditional CVD risk factors on arterial stiffness in SLE. Carotid-femoral pulse wave velocity (PWV) was prospectively assessed as a measure of arterial stiffness in 41 SLE patients and 35 controls (CTL). Adjustment on age or Framingham score was performed using a logistic regression model. Factors associated with PWV were identified separately in SLE patients and in controls using Pearson's correlation coefficient for univariate analysis and multiple linear regression for multivariate analysis. SLE patients and controls displayed a low 10-year risk for CVD according to Framingham score (1.8±3.6% in SLE vs 1.6±2.8% in CTL, p?=?0.46). Pulse wave velocity was, however, higher in SLE patients (7.1±1.6 m/s) as compared to controls (6.3±0.8 m/s; p?=?0.01, after Framingham score adjustment) and correlated with internal carotid wall thickness (p?=?0.0017). In multivariable analysis, only systolic blood pressure (p?=?0.0005) and cumulative dose of glucocorticoids (p?=?0.01) were associated with PWV in SLE patients. Interestingly, the link between systolic blood pressure (SBP) and arterial stiffness was also confirmed in SLE patients with normal systolic blood pressure. In conclusion, arterial stiffness is increased in SLE patients despite a low risk for CVD according to Framingham score and is associated with systolic blood pressure and glucocorticoid therapy.
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Published: 06-16-2014
ABSTRACT
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
20 Related JoVE Articles!
Play Button
Measuring Ascending Aortic Stiffness In Vivo in Mice Using Ultrasound
Authors: Maggie M. Kuo, Viachaslau Barodka, Theodore P. Abraham, Jochen Steppan, Artin A. Shoukas, Mark Butlin, Alberto Avolio, Dan E. Berkowitz, Lakshmi Santhanam.
Institutions: Johns Hopkins University, Johns Hopkins University, Johns Hopkins University, Macquarie University.
We present a protocol for measuring in vivo aortic stiffness in mice using high-resolution ultrasound imaging. Aortic diameter is measured by ultrasound and aortic blood pressure is measured invasively with a solid-state pressure catheter. Blood pressure is raised then lowered incrementally by intravenous infusion of vasoactive drugs phenylephrine and sodium nitroprusside. Aortic diameter is measured for each pressure step to characterize the pressure-diameter relationship of the ascending aorta. Stiffness indices derived from the pressure-diameter relationship can be calculated from the data collected. Calculation of arterial compliance is described in this protocol. This technique can be used to investigate mechanisms underlying increased aortic stiffness associated with cardiovascular disease and aging. The technique produces a physiologically relevant measure of stiffness compared to ex vivo approaches because physiological influences on aortic stiffness are incorporated in the measurement. The primary limitation of this technique is the measurement error introduced from the movement of the aorta during the cardiac cycle. This motion can be compensated by adjusting the location of the probe with the aortic movement as well as making multiple measurements of the aortic pressure-diameter relationship and expanding the experimental group size.
Medicine, Issue 94, Aortic stiffness, ultrasound, in vivo, aortic compliance, elastic modulus, mouse model, cardiovascular disease
52200
Play Button
Pulse Wave Velocity Testing in the Baltimore Longitudinal Study of Aging
Authors: Melissa David, Omar Malti, Majd AlGhatrif, Jeanette Wright, Marco Canepa, James B. Strait.
Institutions: National Institute of Aging.
Carotid-femoral pulse wave velocity is considered the gold standard for measurements of central arterial stiffness obtained through noninvasive methods1. Subjects are placed in the supine position and allowed to rest quietly for at least 10 min prior to the start of the exam. The proper cuff size is selected and a blood pressure is obtained using an oscillometric device. Once a resting blood pressure has been obtained, pressure waveforms are acquired from the right femoral and right common carotid arteries. The system then automatically calculates the pulse transit time between these two sites (using the carotid artery as a surrogate for the descending aorta). Body surface measurements are used to determine the distance traveled by the pulse wave between the two sampling sites. This distance is then divided by the pulse transit time resulting in the pulse wave velocity. The measurements are performed in triplicate and the average is used for analysis.
Medicine, Issue 84, Pulse Wave Velocity (PWV), Pulse Wave Analysis (PWA), Arterial stiffness, Aging, Cardiovascular, Carotid-femoral pulse
50817
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
52070
Play Button
Measuring Left Ventricular Pressure in Late Embryonic and Neonatal Mice
Authors: Victoria P. Le, Attila Kovacs, Jessica E. Wagenseil.
Institutions: Saint Louis University, Washington University School of Medicine.
Blood pressure increases significantly during embryonic and postnatal development in vertebrate animals. In the mouse, blood flow is first detectable around embryonic day (E) 8.51. Systolic left ventricular (LV) pressure is 2 mmHg at E9.5 and 11 mmHg at E14.52. At these mid-embryonic stages, the LV is clearly visible through the chest wall for invasive pressure measurements because the ribs and skin are not fully developed. Between E14.5 and birth (approximately E21) imaging methods must be used to view the LV. After birth, mean arterial pressure increases from 30 - 70 mmHg from postnatal day (P) 2 - 353. Beyond P20, arterial pressure can be measured with solid-state catheters (i.e. Millar or Scisense). Before P20, these catheters are too big for developing mouse arteries and arterial pressure must be measured with custom pulled plastic catheters attached to fluid-filled pressure transducers3 or glass micropipettes attached to servo null pressure transducers4. Our recent work has shown that the greatest increase in blood pressure occurs during the late embryonic to early postnatal period in mice5-7. This large increase in blood pressure may influence smooth muscle cell (SMC) phenotype in developing arteries and trigger important mechanotransduction events. In human disease, where the mechanical properties of developing arteries are compromised by defects in extracellular matrix proteins (i.e. Marfan's Syndrome8 and Supravalvular Aortic Stenosis9) the rapid changes in blood pressure during this period may contribute to disease phenotype and severity through alterations in mechanotransduction signals. Therefore, it is important to be able to measure blood pressure changes during late embryonic and neonatal periods in mouse models of human disease. We describe a method for measuring LV pressure in late embryonic (E18) and early postnatal (P1 - 20) mice. A needle attached to a fluid-filled pressure transducer is inserted into the LV under ultrasound guidance. Care is taken to maintain normal cardiac function during the experimental protocol, especially for the embryonic mice. Representative data are presented and limitations of the protocol are discussed.
Bioengineering, Issue 60, systolic, diastolic, pulse, heart, artery, postnatal development
3756
Play Button
Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
Authors: Patrick De Boever, Tijs Louwies, Eline Provost, Luc Int Panis, Tim S. Nawrot.
Institutions: Flemish Institute for Technological Research (VITO), Hasselt University, Hasselt University, Leuven University.
The microcirculation consists of blood vessels with diameters less than 150 µm. It makes up a large part of the circulatory system and plays an important role in maintaining cardiovascular health. The retina is a tissue that lines the interior of the eye and it is the only tissue that allows for a non-invasive analysis of the microvasculature. Nowadays, high-quality fundus images can be acquired using digital cameras. Retinal images can be collected in 5 min or less, even without dilatation of the pupils. This unobtrusive and fast procedure for visualizing the microcirculation is attractive to apply in epidemiological studies and to monitor cardiovascular health from early age up to old age. Systemic diseases that affect the circulation can result in progressive morphological changes in the retinal vasculature. For example, changes in the vessel calibers of retinal arteries and veins have been associated with hypertension, atherosclerosis, and increased risk of stroke and myocardial infarction. The vessel widths are derived using image analysis software and the width of the six largest arteries and veins are summarized in the Central Retinal Arteriolar Equivalent (CRAE) and the Central Retinal Venular Equivalent (CRVE). The latter features have been shown useful to study the impact of modifiable lifestyle and environmental cardiovascular disease risk factors. The procedures to acquire fundus images and the analysis steps to obtain CRAE and CRVE are described. Coefficients of variation of repeated measures of CRAE and CRVE are less than 2% and within-rater reliability is very high. Using a panel study, the rapid response of the retinal vessel calibers to short-term changes in particulate air pollution, a known risk factor for cardiovascular mortality and morbidity, is reported. In conclusion, retinal imaging is proposed as a convenient and instrumental tool for epidemiological studies to study microvascular responses to cardiovascular disease risk factors.
Medicine, Issue 92, retina, microvasculature, image analysis, Central Retinal Arteriolar Equivalent, Central Retinal Venular Equivalent, air pollution, particulate matter, black carbon
51904
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Human Neutrophil Flow Chamber Adhesion Assay
Authors: Yebin Zhou, Dennis F. Kucik, Alexander J. Szalai, Jeffrey C. Edberg.
Institutions: University of Alabama at Birmingham, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham, University of Alabama at Birmingham, University of Alabama at Birmingham.
Neutrophil firm adhesion to endothelial cells plays a critical role in inflammation in both health and disease. The process of neutrophil firm adhesion involves many different adhesion molecules including members of the β2 integrin family and their counter-receptors of the ICAM family. Recently, naturally occurring genetic variants in both β2 integrins and ICAMs are reported to be associated with autoimmune disease. Thus, the quantitative adhesive capacity of neutrophils from individuals with varying allelic forms of these adhesion molecules is important to study in relation to mechanisms underlying development of autoimmunity. Adhesion studies in flow chamber systems can create an environment with fluid shear stress similar to that observed in the blood vessel environment in vivo. Here, we present a method using a flow chamber assay system to study the quantitative adhesive properties of human peripheral blood neutrophils to human umbilical vein endothelial cell (HUVEC) and to purified ligand substrates. With this method, the neutrophil adhesive capacities from donors with different allelic variants in adhesion receptors can be assessed and compared. This method can also be modified to assess adhesion of other primary cell types or cell lines.
Immunology, Issue 89, neutrophil adhesion, flow chamber, human umbilical vein endothelial cell (HUVEC), purified ligand
51410
Play Button
Anti-Nuclear Antibody Screening Using HEp-2 Cells
Authors: Carol Buchner, Cassandra Bryant, Anna Eslami, Gabriella Lakos.
Institutions: INOVA Diagnostics, Inc., INOVA Diagnostics, Inc., INOVA Diagnostics, Inc., INOVA Diagnostics, Inc..
The American College of Rheumatology position statement on ANA testing stipulates the use of IIF as the gold standard method for ANA screening1. Although IIF is an excellent screening test in expert hands, the technical difficulties of processing and reading IIF slides – such as the labor intensive slide processing, manual reading, the need for experienced, trained technologists and the use of dark room – make the IIF method difficult to fit in the workflow of modern, automated laboratories. The first and crucial step towards high quality ANA screening is careful slide processing. This procedure is labor intensive, and requires full understanding of the process, as well as attention to details and experience. Slide reading is performed by fluorescent microscopy in dark rooms, and is done by trained technologists who are familiar with the various patterns, in the context of cell cycle and the morphology of interphase and dividing cells. Provided that IIF is the first line screening tool for SARD, understanding the steps to correctly perform this technique is critical. Recently, digital imaging systems have been developed for the automated reading of IIF slides. These systems, such as the NOVA View Automated Fluorescent Microscope, are designed to streamline the routine IIF workflow. NOVA View acquires and stores high resolution digital images of the wells, thereby separating image acquisition from interpretation; images are viewed an interpreted on high resolution computer monitors. It stores images for future reference and supports the operator’s interpretation by providing fluorescent light intensity data on the images. It also preliminarily categorizes results as positive or negative, and provides pattern recognition for positive samples. In summary, it eliminates the need for darkroom, and automates and streamlines the IIF reading/interpretation workflow. Most importantly, it increases consistency between readers and readings. Moreover, with the use of barcoded slides, transcription errors are eliminated by providing sample traceability and positive patient identification. This results in increased patient data integrity and safety. The overall goal of this video is to demonstrate the IIF procedure, including slide processing, identification of common IIF patterns, and the introduction of new advancements to simplify and harmonize this technique.
Bioengineering, Issue 88, Antinuclear antibody (ANA), HEp-2, indirect immunofluorescence (IIF), systemic autoimmune rheumatic disease (SARD), dense fine speckled (DFS70)
51211
Play Button
Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT)
Authors: Nehal N. Mehta, Drew A. Torigian, Joel M. Gelfand, Babak Saboury, Abass Alavi.
Institutions: University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine.
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC)1 and carotid intimal medial thickness (C-IMT)2 provide information about the burden of disease. However, despite multiple validation studies of CAC3-5, and C-IMT2,6, these modalities do not accurately assess plaque characteristics7,8, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events9-13. [18F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism14,15. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity16, an important source of cellular inflammation in vessel walls. More recently, we17,18 and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries9,16,19,20. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors21,22 and is also highly associated with overall burden of atherosclerosis23. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy24 as well as longer term therapeutic lifestyle changes (16 months)25. The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability26. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.9,20,27,28
Medicine, Issue 63, FDG-PET/CT, atherosclerosis, vascular inflammation, quantitative radiology, imaging
3777
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
52127
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
50765
Play Button
Antibody Transfection into Neurons as a Tool to Study Disease Pathogenesis
Authors: Joshua N. Douglas, Lidia A. Gardner, Sangmin Lee, Yoojin Shin, Chassidy J. Groover, Michael C. Levin.
Institutions: Veterans Administration Medical Center, Memphis, TN, University of Tennessee Health Science Center, Memphis, TN, University of Tennessee Health Science Center, Memphis, TN.
Antibodies provide the ability to gain novel insight into various events taking place in living systems. The ability to produce highly specific antibodies to target proteins has allowed for very precise biological questions to be addressed. Importantly, antibodies have been implicated in the pathogenesis of a number of human diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), paraneoplastic syndromes, multiple sclerosis (MS) and human T-lymphotropic virus type 1 (HTLV-1) associated myelopathy/tropical spastic paraparesis (HAM/TSP) 1-9. How antibodies cause disease is an area of ongoing investigation, and data suggests that interactions between antibodies and various intracellular molecules results in inflammation, altered cellular messaging, and apoptosis 10. It has been shown that patients with MS and HAM/TSP produce autoantibodies to the intracellular RNA binding protein heterogeneous ribonuclear protein A1 (hnRNP A1) 3, 5-7, 9, 11. Recent data indicate that antibodies to both intra-neuronal and surface antigens are pathogenic 3, 5-9, 11. Thus, a procedure that allows for the study of intracellular antibody:protein interactions would lend great insight into disease pathogenesis. Genes are commonly transfected into primary cells and cell lines in culture, however transfection of antibodies into cells has been hindered by alteration of antibody structure or poor transfection efficiency 12. Other methods of transfection include antibody transfection based on cationic liposomes (consisting of DOTAP/DOPE) and polyethylenimines (PEI); both of which resulted in a ten-fold decrease in antibody transfection compared to controls 12. The method performed in our study is similar to cationic lipid-mediated methods and uses a lipid-based mechanism to form non-covalent complexes with the antibodies through electrostatic and hydrophobic interactions 13. We utilized Ab-DeliverIN reagent, which is a lipid formulation capable of capturing antibodies through non-covalent electrostatic and hydrophobic interactions and delivering them inside cells. Thus chemical and genetic couplings are not necessary for delivery of functional antibodies into living cells. This method has enabled us to perform various antibody tracing and protein localization experiments, as well as the analyses of the molecular consequences of intracellular antibody:protein interactions 9. In this protocol, we will show how to transfect antibodies into neurons rapidly, reproducibly and with a high degree of transfection efficiency. As an example, we will use anti-hnRNP A1 and anti-IgG antibodies. For easy quantification of transfection efficiency we used anti-hnRNP A1 antibodies labelled with Atto-550-NHS and FITC-labeled IgG. Atto550 NHS is a new label with high molecular absorbtion and quantum yield. Excitation source and fluorescent filters for Atto550 are similar to Cy3 (Ex. 556 Em. 578). In addition, Atto550 has high photostability. FITC-labeled IgG were used as a control to show that this method is versatile and not dye dependent. This approach and the data that is generated will assist in understanding of the role that antibodies to intracellular target antigens might play in the pathogenesis of human diseases.
Neuroscience, Issue 67, Medicine, Molecular Biology, Immunology, Transfection, antibodies, neuron, immunocytochemistry, fluorescent microscopy, autoimmunity
4154
Play Button
Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
Authors: Natalie Vanicek, Stephanie A. King, Risha Gohil, Ian C. Chetter, Patrick A Coughlin.
Institutions: University of Sydney, University of Hull, Hull and East Yorkshire Hospitals, Addenbrookes Hospital.
Computerized dynamic posturography with the EquiTest is an objective technique for measuring postural strategies under challenging static and dynamic conditions. As part of a diagnostic assessment, the early detection of postural deficits is important so that appropriate and targeted interventions can be prescribed. The Sensory Organization Test (SOT) on the EquiTest determines an individual's use of the sensory systems (somatosensory, visual, and vestibular) that are responsible for postural control. Somatosensory and visual input are altered by the calibrated sway-referenced support surface and visual surround, which move in the anterior-posterior direction in response to the individual's postural sway. This creates a conflicting sensory experience. The Motor Control Test (MCT) challenges postural control by creating unexpected postural disturbances in the form of backwards and forwards translations. The translations are graded in magnitude and the time to recover from the perturbation is computed. Intermittent claudication, the most common symptom of peripheral arterial disease, is characterized by a cramping pain in the lower limbs and caused by muscle ischemia secondary to reduced blood flow to working muscles during physical exertion. Claudicants often display poor balance, making them susceptible to falls and activity avoidance. The Ankle Brachial Pressure Index (ABPI) is a noninvasive method for indicating the presence of peripheral arterial disease and intermittent claudication, a common symptom in the lower extremities. ABPI is measured as the highest systolic pressure from either the dorsalis pedis or posterior tibial artery divided by the highest brachial artery systolic pressure from either arm. This paper will focus on the use of computerized dynamic posturography in the assessment of balance in claudicants.
Medicine, Issue 82, Posture, Computerized dynamic posturography, Ankle brachial pressure index, Peripheral arterial disease, Intermittent claudication, Balance, Posture, EquiTest, Sensory Organization Test, Motor Control Test
51077
Play Button
Quantitative Autonomic Testing
Authors: Peter Novak.
Institutions: University of Massachusetts Medical School.
Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.
Medicine, Issue 53, Deep breathing, Valsalva maneuver, tilt test, sudomotor testing, Composite Autonomic Severity Score, CASS
2502
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
50319
Play Button
Quantification of Global Diastolic Function by Kinematic Modeling-based Analysis of Transmitral Flow via the Parametrized Diastolic Filling Formalism
Authors: Sina Mossahebi, Simeng Zhu, Howard Chen, Leonid Shmuylovich, Erina Ghosh, Sándor J. Kovács.
Institutions: Washington University in St. Louis, Washington University in St. Louis, Washington University in St. Louis, Washington University in St. Louis, Washington University in St. Louis.
Quantitative cardiac function assessment remains a challenge for physiologists and clinicians. Although historically invasive methods have comprised the only means available, the development of noninvasive imaging modalities (echocardiography, MRI, CT) having high temporal and spatial resolution provide a new window for quantitative diastolic function assessment. Echocardiography is the agreed upon standard for diastolic function assessment, but indexes in current clinical use merely utilize selected features of chamber dimension (M-mode) or blood/tissue motion (Doppler) waveforms without incorporating the physiologic causal determinants of the motion itself. The recognition that all left ventricles (LV) initiate filling by serving as mechanical suction pumps allows global diastolic function to be assessed based on laws of motion that apply to all chambers. What differentiates one heart from another are the parameters of the equation of motion that governs filling. Accordingly, development of the Parametrized Diastolic Filling (PDF) formalism has shown that the entire range of clinically observed early transmitral flow (Doppler E-wave) patterns are extremely well fit by the laws of damped oscillatory motion. This permits analysis of individual E-waves in accordance with a causal mechanism (recoil-initiated suction) that yields three (numerically) unique lumped parameters whose physiologic analogues are chamber stiffness (k), viscoelasticity/relaxation (c), and load (xo). The recording of transmitral flow (Doppler E-waves) is standard practice in clinical cardiology and, therefore, the echocardiographic recording method is only briefly reviewed. Our focus is on determination of the PDF parameters from routinely recorded E-wave data. As the highlighted results indicate, once the PDF parameters have been obtained from a suitable number of load varying E-waves, the investigator is free to use the parameters or construct indexes from the parameters (such as stored energy 1/2kxo2, maximum A-V pressure gradient kxo, load independent index of diastolic function, etc.) and select the aspect of physiology or pathophysiology to be quantified.
Bioengineering, Issue 91, cardiovascular physiology, ventricular mechanics, diastolic function, mathematical modeling, Doppler echocardiography, hemodynamics, biomechanics
51471
Play Button
Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
Authors: Clare L. Protheroe, Henrike (Rianne) J.C. Ravensbergen, Jessica A. Inskip, Victoria E. Claydon.
Institutions: Simon Fraser University .
Orthostatic tolerance (OT) refers to the ability to maintain cardiovascular stability when upright, against the hydrostatic effects of gravity, and hence to maintain cerebral perfusion and prevent syncope (fainting). Various techniques are available to assess OT and the effects of gravitational stress upon the circulation, typically by reproducing a presyncopal event (near-fainting episode) in a controlled laboratory environment. The time and/or degree of stress required to provoke this response provides the measure of OT. Any technique used to determine OT should: enable distinction between patients with orthostatic intolerance (of various causes) and asymptomatic control subjects; be highly reproducible, enabling evaluation of therapeutic interventions; avoid invasive procedures, which are known to impair OT1. In the late 1980s head-upright tilt testing was first utilized for diagnosing syncope2. Since then it has been used to assess OT in patients with syncope of unknown cause, as well as in healthy subjects to study postural cardiovascular reflexes2-6. Tilting protocols comprise three categories: passive tilt; passive tilt accompanied by pharmacological provocation; and passive tilt with combined lower body negative pressure (LBNP). However, the effects of tilt testing (and other orthostatic stress testing modalities) are often poorly reproducible, with low sensitivity and specificity to diagnose orthostatic intolerance7. Typically, a passive tilt includes 20-60 min of orthostatic stress continued until the onset of presyncope in patients2-6. However, the main drawback of this procedure is its inability to invoke presyncope in all individuals undergoing the test, and corresponding low sensitivity8,9. Thus, different methods were explored to increase the orthostatic stress and improve sensitivity. Pharmacological provocation has been used to increase the orthostatic challenge, for example using isoprenaline4,7,10,11 or sublingual nitrate12,13. However, the main drawback of these approaches are increases in sensitivity at the cost of unacceptable decreases in specificity10,14, with a high positive response rate immediately after administration15. Furthermore, invasive procedures associated with some pharmacological provocations greatly increase the false positive rate1. Another approach is to combine passive tilt testing with LBNP, providing a stronger orthostatic stress without invasive procedures or drug side-effects, using the technique pioneered by Professor Roger Hainsworth in the 1990s16-18. This approach provokes presyncope in almost all subjects (allowing for symptom recognition in patients with syncope), while discriminating between patients with syncope and healthy controls, with a specificity of 92%, sensitivity of 85%, and repeatability of 1.1±0.6 min16,17. This allows not only diagnosis and pathophysiological assessment19-22, but also the evaluation of treatments for orthostatic intolerance due to its high repeatability23-30. For these reasons, we argue this should be the "gold standard" for orthostatic stress testing, and accordingly this will be the method described in this paper.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Neurobiology, Kinesiology, Cardiology, tilt test, lower body negative pressure, orthostatic stress, syncope, orthostatic tolerance, fainting, gravitational stress, head upright, stroke, clinical techniques
4315
Play Button
A New Single Chamber Implantable Defibrillator with Atrial Sensing: A Practical Demonstration of Sensing and Ease of Implantation
Authors: Dietmar Bänsch, Ralph Schneider, Ibrahim Akin, Cristoph A. Nienaber.
Institutions: University Hospital of Rostock, Germany.
Implantable cardioverter-defibrillators (ICDs) terminate ventricular tachycardia (VT) and ventricular fibrillation (VF) with high efficacy and can protect patients from sudden cardiac death (SCD). However, inappropriate shocks may occur if tachycardias are misdiagnosed. Inappropriate shocks are harmful and impair patient quality of life. The risk of inappropriate therapy increases with lower detection rates programmed in the ICD. Single-chamber detection poses greater risks for misdiagnosis when compared with dual-chamber devices that have the benefit of additional atrial information. However, using a dual-chamber device merely for the sake of detection is generally not accepted, since the risks associated with the second electrode may outweigh the benefits of detection. Therefore, BIOTRONIK developed a ventricular lead called the LinoxSMART S DX, which allows for the detection of atrial signals from two electrodes positioned at the atrial part of the ventricular electrode. This device contains two ring electrodes; one that contacts the atrial wall at the junction of the superior vena cava (SVC) and one positioned at the free floating part of the electrode in the atrium. The excellent signal quality can only be achieved by a special filter setting in the ICD (Lumax 540 and 740 VR-T DX, BIOTRONIK). Here, the ease of implantation of the system will be demonstrated.
Medicine, Issue 60, Implantable defibrillator, dual chamber, single chamber, tachycardia detection
3750
Play Button
Basics of Multivariate Analysis in Neuroimaging Data
Authors: Christian Georg Habeck.
Institutions: Columbia University.
Multivariate analysis techniques for neuroimaging data have recently received increasing attention as they have many attractive features that cannot be easily realized by the more commonly used univariate, voxel-wise, techniques1,5,6,7,8,9. Multivariate approaches evaluate correlation/covariance of activation across brain regions, rather than proceeding on a voxel-by-voxel basis. Thus, their results can be more easily interpreted as a signature of neural networks. Univariate approaches, on the other hand, cannot directly address interregional correlation in the brain. Multivariate approaches can also result in greater statistical power when compared with univariate techniques, which are forced to employ very stringent corrections for voxel-wise multiple comparisons. Further, multivariate techniques also lend themselves much better to prospective application of results from the analysis of one dataset to entirely new datasets. Multivariate techniques are thus well placed to provide information about mean differences and correlations with behavior, similarly to univariate approaches, with potentially greater statistical power and better reproducibility checks. In contrast to these advantages is the high barrier of entry to the use of multivariate approaches, preventing more widespread application in the community. To the neuroscientist becoming familiar with multivariate analysis techniques, an initial survey of the field might present a bewildering variety of approaches that, although algorithmically similar, are presented with different emphases, typically by people with mathematics backgrounds. We believe that multivariate analysis techniques have sufficient potential to warrant better dissemination. Researchers should be able to employ them in an informed and accessible manner. The current article is an attempt at a didactic introduction of multivariate techniques for the novice. A conceptual introduction is followed with a very simple application to a diagnostic data set from the Alzheimer s Disease Neuroimaging Initiative (ADNI), clearly demonstrating the superior performance of the multivariate approach.
JoVE Neuroscience, Issue 41, fMRI, PET, multivariate analysis, cognitive neuroscience, clinical neuroscience
1988
Play Button
Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
Authors: Andrea L. Axtell, Fatemeh A. Gomari, John P. Cooke.
Institutions: Stanford University .
The endothelium is a delicate monolayer of cells that lines all blood vessels, and which comprises the systemic and lymphatic capillaries. By virtue of the panoply of paracrine factors that it secretes, the endothelium regulates the contractile and proliferative state of the underlying vascular smooth muscle, as well as the interaction of the vessel wall with circulating blood elements. Because of its central role in mediating vessel tone and growth, its position as gateway to circulating immune cells, and its local regulation of hemostasis and coagulation, the the properly functioning endothelium is the key to cardiovascular health. Conversely, the earliest disorder in most vascular diseases is endothelial dysfunction. In the arterial circulation, the healthy endothelium generally exerts a vasodilator influence on the vascular smooth muscle. There are a number of methods to assess endothelial vasodilator function. The Endo-PAT 2000 is a new device that is used to assess endothelial vasodilator function in a rapid and non-invasive fashion. Unlike the commonly used technique of duplex ultra-sonography to assess flow-mediated vasodilation, it is totally non-operator-dependent, and the equipment is an order of magnitude less expensive. The device records endothelium-mediated changes in the digital pulse waveform known as the PAT ( peripheral Arterial Tone) signal, measured with a pair of novel modified plethysmographic probes situated on the finger index of each hand. Endothelium-mediated changes in the PAT signal are elicited by creating a downstream hyperemic response. Hyperemia is induced by occluding blood flow through the brachial artery for 5 minutes using an inflatable cuff on one hand. The response to reactive hyperemia is calculated automatically by the system. A PAT ratio is created using the post and pre occlusion values. These values are normalized to measurements from the contra-lateral arm, which serves as control for non-endothelial dependent systemic effects. Most notably, this normalization controls for fluctuations in sympathetic nerve outflow that may induce changes in peripheral arterial tone that are superimposed on the hyperemic response. In this video we demonstrate how to use the Endo-PAT 2000 to perform a clinically relevant assessment of endothelial vasodilator function.
Medicine, Issue 44, endothelium, endothelial dysfunction, Endo-PAT 2000, peripheral arterial tone, reactive hyperemia
2167
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.