JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Thrombocytopenia is associated with acute respiratory distress syndrome mortality: an international study.
PUBLISHED: 01-01-2014
Early detection of the Acute Respiratory Distress Syndrome (ARDS) has the potential to improve the prognosis of critically ill patients admitted to the intensive care unit (ICU). However, no reliable biomarkers are currently available for accurate early detection of ARDS in patients with predisposing conditions.
Authors: Varsha Suresh Kumar, Ruxana T. Sadikot, Jeanette E. Purcell, Asrar B. Malik, Yuru Liu.
Published: 10-29-2014
In order to study human acute lung injury and pneumonia, it is important to develop animal models to mimic various pathological features of this disease. Here we have developed a mouse lung injury model by intra-tracheal injection of bacteria Pseudomonas aeruginosa (P. aeruginosa or PA). Using this model, we were able to show lung inflammation at the early phase of injury. In addition, alveolar epithelial barrier leakiness was observed by analyzing bronchoalveolar lavage (BAL); and alveolar cell death was observed by Tunel assay using tissue prepared from injured lungs. At a later phase following injury, we observed cell proliferation required for the repair process. The injury was resolved 7 days from the initiation of P. aeruginosa injection. This model mimics the sequential course of lung inflammation, injury and repair during pneumonia. This clinically relevant animal model is suitable for studying pathology, mechanism of repair, following acute lung injury, and also can be used to test potential therapeutic agents for this disease.
24 Related JoVE Articles!
Play Button
Quantitative Visualization and Detection of Skin Cancer Using Dynamic Thermal Imaging
Authors: Cila Herman, Muge Pirtini Cetingul.
Institutions: The Johns Hopkins University.
In 2010 approximately 68,720 melanomas will be diagnosed in the US alone, with around 8,650 resulting in death 1. To date, the only effective treatment for melanoma remains surgical excision, therefore, the key to extended survival is early detection 2,3. Considering the large numbers of patients diagnosed every year and the limitations in accessing specialized care quickly, the development of objective in vivo diagnostic instruments to aid the diagnosis is essential. New techniques to detect skin cancer, especially non-invasive diagnostic tools, are being explored in numerous laboratories. Along with the surgical methods, techniques such as digital photography, dermoscopy, multispectral imaging systems (MelaFind), laser-based systems (confocal scanning laser microscopy, laser doppler perfusion imaging, optical coherence tomography), ultrasound, magnetic resonance imaging, are being tested. Each technique offers unique advantages and disadvantages, many of which pose a compromise between effectiveness and accuracy versus ease of use and cost considerations. Details about these techniques and comparisons are available in the literature 4. Infrared (IR) imaging was shown to be a useful method to diagnose the signs of certain diseases by measuring the local skin temperature. There is a large body of evidence showing that disease or deviation from normal functioning are accompanied by changes of the temperature of the body, which again affect the temperature of the skin 5,6. Accurate data about the temperature of the human body and skin can provide a wealth of information on the processes responsible for heat generation and thermoregulation, in particular the deviation from normal conditions, often caused by disease. However, IR imaging has not been widely recognized in medicine due to the premature use of the technology 7,8 several decades ago, when temperature measurement accuracy and the spatial resolution were inadequate and sophisticated image processing tools were unavailable. This situation changed dramatically in the late 1990s-2000s. Advances in IR instrumentation, implementation of digital image processing algorithms and dynamic IR imaging, which enables scientists to analyze not only the spatial, but also the temporal thermal behavior of the skin 9, allowed breakthroughs in the field. In our research, we explore the feasibility of IR imaging, combined with theoretical and experimental studies, as a cost effective, non-invasive, in vivo optical measurement technique for tumor detection, with emphasis on the screening and early detection of melanoma 10-13. In this study, we show data obtained in a patient study in which patients that possess a pigmented lesion with a clinical indication for biopsy are selected for imaging. We compared the difference in thermal responses between healthy and malignant tissue and compared our data with biopsy results. We concluded that the increased metabolic activity of the melanoma lesion can be detected by dynamic infrared imaging.
Medicine, Issue 51, Infrared imaging, quantitative thermal analysis, image processing, skin cancer, melanoma, transient thermal response, skin thermal models, skin phantom experiment, patient study
Play Button
Bioluminescence Imaging of NADPH Oxidase Activity in Different Animal Models
Authors: Wei Han, Hui Li, Brahm H. Segal, Timothy S. Blackwell.
Institutions: Vanderbilt University School of Medicine, Roswell Park Cancer Institute, University at Buffalo School of Medicine.
NADPH oxidase is a critical enzyme that mediates antibacterial and antifungal host defense. In addition to its role in antimicrobial host defense, NADPH oxidase has critical signaling functions that modulate the inflammatory response 1. Thus, the development of a method to measure in "real-time" the kinetics of NADPH oxidase-derived ROS generation is expected to be a valuable research tool to understand mechanisms relevant to host defense, inflammation, and injury. Chronic granulomatous disease (CGD) is an inherited disorder of the NADPH oxidase characterized by severe infections and excessive inflammation. Activation of the phagocyte NADPH oxidase requires translocation of its cytosolic subunits (p47phox, p67phox, and p40phox) and Rac to a membrane-bound flavocytochrome (composed of a gp91phox and p22phox heterodimer). Loss of function mutations in any of these NADPH oxidase components result in CGD. Similar to patients with CGD, gp91phox -deficient mice and p47phox-deficient mice have defective phagocyte NADPH oxidase activity and impaired host defense 2, 13. In addition to phagocytes, which contain the NADPH oxidase components described above, a variety of other cell types express different isoforms of NADPH oxidase. Here, we describe a method to quantify ROS production in living mice and to delineate the contribution of NADPH oxidase to ROS generation in models of inflammation and injury. This method is based on ROS reacting with L-012 (an analogue of luminol) to emit luminescence that is recorded by a charge-coupled device (CCD). In the original description of the L-012 probe, L-012-dependent chemiluminescence was completely abolished by superoxide dismutase, indicating that the main ROS detected in this reaction was superoxide anion 14. Subsequent studies have shown that L-012 can detect other free radicals, including reactive nitrogen species 15, 16. Kielland et al. 16 showed that topical application of phorbol myristate acetate, a potent activator of NADPH oxidase, led to NADPH oxidase-dependent ROS generation that could be detected in mice using the luminescent probe L-012. In this model, they showed that L-012-dependent luminescence was abolished in p47phox-deficient mice. We compared ROS generation in wildtype mice and NADPH oxidase-deficient p47phox-/- mice 2 in the following three models: 1) intratracheal administration of zymosan, a pro-inflammatory fungal cell wall-derived product that can activate NADPH oxidase; 2) cecal ligation and puncture (CLP), a model of intra-abdominal sepsis with secondary acute lung inflammation and injury; and 3) oral carbon tetrachloride (CCl4), a model of ROS-dependent hepatic injury. These models were specifically selected to evaluate NADPH oxidase-dependent ROS generation in the context of non-infectious inflammation, polymicrobial sepsis, and toxin-induced organ injury, respectively. Comparing bioluminescence in wildtype mice to p47phox-/- mice enables us to delineate the specific contribution of ROS generated by p47phox-containing NADPH oxidase to the bioluminescent signal in these models. Bioluminescence imaging results that demonstrated increased ROS levels in wildtype mice compared to p47phox-/- mice indicated that NADPH oxidase is the major source of ROS generation in response to inflammatory stimuli. This method provides a minimally invasive approach for "real-time" monitoring of ROS generation during inflammation in vivo.
Immunology, Issue 68, Molecular Biology, NADPH oxidase, reactive oxygen species, bioluminescence imaging
Play Button
Nerve Excitability Assessment in Chemotherapy-induced Neurotoxicity
Authors: Susanna B. Park, Cindy S-Y. Lin, Matthew C. Kiernan.
Institutions: University of New South Wales , University of New South Wales , University of New South Wales .
Chemotherapy-induced neurotoxicity is a serious consequence of cancer treatment, which occurs with some of the most commonly used chemotherapies1,2. Chemotherapy-induced peripheral neuropathy produces symptoms of numbness and paraesthesia in the limbs and may progress to difficulties with fine motor skills and walking, leading to functional impairment. In addition to producing troubling symptoms, chemotherapy-induced neuropathy may limit treatment success leading to dose reduction or early cessation of treatment. Neuropathic symptoms may persist long-term, leaving permanent nerve damage in patients with an otherwise good prognosis3. As chemotherapy is utilised more often as a preventative measure, and survival rates increase, the importance of long-lasting and significant neurotoxicity will increase. There are no established neuroprotective or treatment options and a lack of sensitive assessment methods. Appropriate assessment of neurotoxicity will be critical as a prognostic factor and as suitable endpoints for future trials of neuroprotective agents. Current methods to assess the severity of chemotherapy-induced neuropathy utilise clinician-based grading scales which have been demonstrated to lack sensitivity to change and inter-observer objectivity4. Conventional nerve conduction studies provide information about compound action potential amplitude and conduction velocity, which are relatively non-specific measures and do not provide insight into ion channel function or resting membrane potential. Accordingly, prior studies have demonstrated that conventional nerve conduction studies are not sensitive to early change in chemotherapy-induced neurotoxicity4-6. In comparison, nerve excitability studies utilize threshold tracking techniques which have been developed to enable assessment of ion channels, pumps and exchangers in vivo in large myelinated human axons7-9. Nerve excitability techniques have been established as a tool to examine the development and severity of chemotherapy-induced neurotoxicity10-13. Comprising a number of excitability parameters, nerve excitability studies can be used to assess acute neurotoxicity arising immediately following infusion and the development of chronic, cumulative neurotoxicity. Nerve excitability techniques are feasible in the clinical setting, with each test requiring only 5 -10 minutes to complete. Nerve excitability equipment is readily commercially available, and a portable system has been devised so that patients can be tested in situ in the infusion centre setting. In addition, these techniques can be adapted for use in multiple chemotherapies. In patients treated with the chemotherapy oxaliplatin, primarily utilised for colorectal cancer, nerve excitability techniques provide a method to identify patients at-risk for neurotoxicity prior to the onset of chronic neuropathy. Nerve excitability studies have revealed the development of an acute Na+ channelopathy in motor and sensory axons10-13. Importantly, patients who demonstrated changes in excitability in early treatment were subsequently more likely to develop moderate to severe neurotoxicity11. However, across treatment, striking longitudinal changes were identified only in sensory axons which were able to predict clinical neurological outcome in 80% of patients10. These changes demonstrated a different pattern to those seen acutely following oxaliplatin infusion, and most likely reflect the development of significant axonal damage and membrane potential change in sensory nerves which develops longitudinally during oxaliplatin treatment10. Significant abnormalities developed during early treatment, prior to any reduction in conventional measures of nerve function, suggesting that excitability parameters may provide a sensitive biomarker.
Neuroscience, Issue 62, Chemotherapy, Neurotoxicity, Neuropathy, Nerve excitability, Ion channel function, Oxaliplatin, oncology, medicine
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
Play Button
A Murine Model of Cervical Spinal Cord Injury to Study Post-lesional Respiratory Neuroplasticity
Authors: Emilie Keomani, Thérèse B. Deramaudt, Michel Petitjean, Marcel Bonay, Frédéric Lofaso, Stéphane Vinit.
Institutions: Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, Université de Versailles Saint-Quentin-en-Yvelines.
A cervical spinal cord injury induces permanent paralysis, and often leads to respiratory distress. To date, no efficient therapeutics have been developed to improve/ameliorate the respiratory failure following high cervical spinal cord injury (SCI). Here we propose a murine pre-clinical model of high SCI at the cervical 2 (C2) metameric level to study diverse post-lesional respiratory neuroplasticity. The technique consists of a surgical partial injury at the C2 level, which will induce a hemiparalysis of the diaphragm due to a deafferentation of the phrenic motoneurons from the respiratory centers located in the brainstem. The contralateral side of the injury remains intact and allows the animal recovery. Unlike other SCIs which affect the locomotor function (at the thoracic and lumbar level), the respiratory function does not require animal motivation and the quantification of the deficit/recovery can be easily performed (diaphragm and phrenic nerve recordings, whole body ventilation). This pre-clinical C2 SCI model is a powerful, useful, and reliable pre-clinical model to study various respiratory and non-respiratory neuroplasticity events at different levels (molecular to physiology) and to test diverse putative therapeutic strategies which might improve the respiration in SCI patients.
Physiology, Issue 87, rat, cervical spinal cord injury, respiratory deficit, crossed phrenic phenomenon, respiratory neuroplasticity
Play Button
Establishing a Liquid-covered Culture of Polarized Human Airway Epithelial Calu-3 Cells to Study Host Cell Response to Respiratory Pathogens In vitro
Authors: Jennifer L. Harcourt, Lia M. Haynes.
Institutions: Centers for Disease Control and Prevention (CDC).
The apical and basolateral surfaces of airway epithelial cells demonstrate directional responses to pathogen exposure in vivo. Thus, ideal in vitro models for examining cellular responses to respiratory pathogens polarize, forming apical and basolateral surfaces. One such model is differentiated normal human bronchial epithelial cells (NHBE). However, this system requires lung tissue samples, expertise isolating and culturing epithelial cells from tissue, and time to generate an air-liquid interface culture. Calu-3 cells, derived from a human bronchial adenocarcinoma, are an alternative model for examining the response of proximal airway epithelial cells to respiratory insult1, pharmacological compounds2-6, and bacterial7-9 and viral pathogens, including influenza virus, rhinovirus and severe acute respiratory syndrome - associated coronavirus10-14. Recently, we demonstrated that Calu-3 cells are susceptible to respiratory syncytial virus (RSV) infection in a manner consistent with NHBE15,16 . Here, we detail the establishment of a polarized, liquid-covered culture (LCC) of Calu-3 cells, focusing on the technical details of growing and culturing Calu-3 cells, maintaining cells that have been cultured into LCC, and we present the method for performing respiratory virus infection of polarized Calu-3 cells. To consistently obtain polarized Calu-3 LCC, Calu-3 cells must be carefully subcultured before culturing in Transwell inserts. Calu-3 monolayer cultures should remain below 90% confluence, should be subcultured fewer than 10 times from frozen stock, and should regularly be supplied with fresh medium. Once cultured in Transwells, Calu-3 LCC must be handled with care. Irregular media changes and mechanical or physical disruption of the cell layers or plates negatively impact polarization for several hours or days. Polarization is monitored by evaluating trans-epithelial electrical resistance (TEER) and is verified by evaluating the passive equilibration of sodium fluorescein between the apical and basolateral compartments17,18 . Once TEER plateaus at or above 1,000 Ω×cm2, Calu-3 LCC are ready to use to examine cellular responses to respiratory pathogens.
Infection, Issue 72, Immunology, Infectious Diseases, Medicine, Microbiology, Virology, Cellular Biology, Molecular Biology, Pathology, Respiratory Syncytial Viruses, Respiratory Syncytial Virus, Human, Cell Polarity, life sciences, Calu-3, polarized cell culture, epithelial cells, respiratory virus, liquid covered culture, virus, cell culture
Play Button
Measuring Respiratory Function in Mice Using Unrestrained Whole-body Plethysmography
Authors: Rebecca Lim, Marcus J. Zavou, Phillipa-Louise Milton, Siow Teng Chan, Jean L. Tan, Hayley Dickinson, Sean V. Murphy, Graham Jenkin, Euan M. Wallace.
Institutions: Monash Institute of Medical Research, Monash Medical Centre, Animal Resource Centre, Perth, Australia, Wake Forest Institute for Regenerative Medicine.
Respiratory dysfunction is one of the leading causes of morbidity and mortality in the world and the rates of mortality continue to rise. Quantitative assessment of lung function in rodent models is an important tool in the development of future therapies. Commonly used techniques for assessing respiratory function including invasive plethysmography and forced oscillation. While these techniques provide valuable information, data collection can be fraught with artefacts and experimental variability due to the need for anesthesia and/or invasive instrumentation of the animal. In contrast, unrestrained whole-body plethysmography (UWBP) offers a precise, non-invasive, quantitative way by which to analyze respiratory parameters. This technique avoids the use of anesthesia and restraints, which is common to traditional plethysmography techniques. This video will demonstrate the UWBP procedure including the equipment set up, calibration and lung function recording. It will explain how to analyze the collected data, as well as identify experimental outliers and artefacts that results from animal movement. The respiratory parameters obtained using this technique include tidal volume, minute volume, inspiratory duty cycle, inspiratory flow rate and the ratio of inspiration time to expiration time. UWBP does not rely on specialized skills and is inexpensive to perform. A key feature of UWBP, and most appealing to potential users, is the ability to perform repeated measures of lung function on the same animal.
Physiology, Issue 90, Unrestrained Whole Body Plethysmography, Lung function, Respiratory Disease, Rodents
Play Button
Murine Ileocolic Bowel Resection with Primary Anastomosis
Authors: Troy Perry, Anna Borowiec, Bryan Dicken, Richard Fedorak, Karen Madsen.
Institutions: University of Alberta, University of Alberta.
Intestinal resections are frequently required for treatment of diseases involving the gastrointestinal tract, with Crohn’s disease and colon cancer being two common examples. Despite the frequency of these procedures, a significant knowledge gap remains in describing the inherent effects of intestinal resection on host physiology and disease pathophysiology. This article provides detailed instructions for an ileocolic resection with primary end-to-end anastomosis in mice, as well as essential aspects of peri-operative care to maximize post-operative success. When followed closely, this procedure yields a 95% long-term survival rate, no failure to thrive, and minimizes post-operative complications of bowel obstruction and anastomotic leak. The technical challenges of performing the procedure in mice are a barrier to its wide spread use in research. The skills described in this article can be acquired without previous surgical experience. Once mastered, the murine ileocolic resection procedure will provide a reproducible tool for studying the effects of intestinal resection in models of human disease.
Medicine, Issue 92, Ileocolic resection, anastomosis, Crohn's disease, mouse models, intestinal adaptation, short bowel syndrome
Play Button
The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects
Authors: Lukas Andereggen, Volker Neuschmelting, Michael von Gunten, Hans Rudolf Widmer, Jukka Takala, Stephan M. Jakob, Javier Fandino, Serge Marbacher.
Institutions: University and Bern University Hospital (Inselspital), Kantonsspital Aarau, Boston Children's Hospital, Boston Children's Hospital, University and Bern University Hospital (Inselspital), University Hospital Cologne, Länggasse Bern.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Medicine, Issue 92, Subarachnoid hemorrhage, animal models, rabbit, extracorporeal blood shunt, early brain injury, delayed cerebral vasospasm, microsurgery.
Play Button
Quantifying Single Microvessel Permeability in Isolated Blood-perfused Rat Lung Preparation
Authors: Kathirvel Kandasamy, Kaushik Parthasarathi.
Institutions: The University of Tennessee Health Science Center, The University of Tennessee Health Science Center.
The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement.
Anatomy, Issue 88, acute lung injury, capillaries, ex vivo lung preparation, FITC dextran, fluorescence microscopy, imaging, Metamorph, venule
Play Button
Normothermic Cardiac Arrest and Cardiopulmonary Resuscitation: A Mouse Model of Ischemia-Reperfusion Injury
Authors: Michael P. Hutchens, Richard J. Traystman, Tetsuhiro Fujiyoshi, Shin Nakayama, Paco S. Herson.
Institutions: Oregon Health & Sciences University, University of Colorado Denver.
Acute Kidney Injury (AKI) is a common, highly lethal, complication of critical illness which has a high mortality1-4 and which is most frequently caused by whole-body hypoperfusion.5,6 Successful reproduction of whole-body hypoperfusion in rodent models has been fraught with difficulty.7-9,9,10 Models which employ focal ischemia have repeatedly demonstrated results which do not translate to the clinical setting, and larger animal models which allow for whole body hypoperfusion lack access to the full toolset of genetic manipulation possible in the mouse.11,12 However, in recent years a mouse model of cardiac arrest and cardiopulmonary resuscitation has emerged which can be adapted to model AKI.13 This model reliably reproduces physiologic, functional, anatomic, and histologic outcomes seen in clinical AKI, is rapidly repeatable, and offers all of the significant advantages of a murine surgical model, including access to genetic manipulative techniques, low cost relative to large animals, and ease of use. Our group has developed extensive experience with use of this model to assess a number of organ-specific outcomes in AKI.14,15
Medicine, Issue 54, AKI, Acute Kidney Injury, Acute Renal Failure, Cardiac Arrest, Cardiopulmonary Resuscitation, Mouse Model, Chest Compressions, CA/CPR. stereology, perfusion-fixation
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
High-throughput Flow Cytometry Cell-based Assay to Detect Antibodies to N-Methyl-D-aspartate Receptor or Dopamine-2 Receptor in Human Serum
Authors: Mazen Amatoury, Vera Merheb, Jessica Langer, Xin Maggie Wang, Russell Clive Dale, Fabienne Brilot.
Institutions: The University of Sydney, Westmead Millennium Institute for Medical Research.
Over the recent years, antibodies against surface and conformational proteins involved in neurotransmission have been detected in autoimmune CNS diseases in children and adults. These antibodies have been used to guide diagnosis and treatment. Cell-based assays have improved the detection of antibodies in patient serum. They are based on the surface expression of brain antigens on eukaryotic cells, which are then incubated with diluted patient sera followed by fluorochrome-conjugated secondary antibodies. After washing, secondary antibody binding is then analyzed by flow cytometry. Our group has developed a high-throughput flow cytometry live cell-based assay to reliably detect antibodies against specific neurotransmitter receptors. This flow cytometry method is straight forward, quantitative, efficient, and the use of a high-throughput sampler system allows for large patient cohorts to be easily assayed in a short space of time. Additionally, this cell-based assay can be easily adapted to detect antibodies to many different antigenic targets, both from the central nervous system and periphery. Discovering additional novel antibody biomarkers will enable prompt and accurate diagnosis and improve treatment of immune-mediated disorders.
Medicine, Issue 81, Flow cytometry, cell-based assay, autoantibody, high-throughput sampler, autoimmune CNS disease
Play Button
A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
Authors: Michele M. Pelter, Teri M. Kozik, Denise L. Loranger, Mary G. Carey.
Institutions: University of Nevada, Reno, St. Joseph's Medical Center, University of Rochester Medical Center .
Each year, an estimated 785,000 Americans will have a new coronary attack, or acute coronary syndrome (ACS). The pathophysiology of ACS involves rupture of an atherosclerotic plaque; hence, treatment is aimed at plaque stabilization in order to prevent cellular death. However, there is considerable debate among clinicians, about which treatment pathway is best: early invasive using percutaneous coronary intervention (PCI/stent) when indicated or a conservative approach (i.e., medication only with PCI/stent if recurrent symptoms occur). There are three types of ACS: ST elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI), and unstable angina (UA). Among the three types, NSTEMI/UA is nearly four times as common as STEMI. Treatment decisions for NSTEMI/UA are based largely on symptoms and resting or exercise electrocardiograms (ECG). However, because of the dynamic and unpredictable nature of the atherosclerotic plaque, these methods often under detect myocardial ischemia because symptoms are unreliable, and/or continuous ECG monitoring was not utilized. Continuous 12-lead ECG monitoring, which is both inexpensive and non-invasive, can identify transient episodes of myocardial ischemia, a precursor to MI, even when asymptomatic. However, continuous 12-lead ECG monitoring is not usual hospital practice; rather, only two leads are typically monitored. Information obtained with 12-lead ECG monitoring might provide useful information for deciding the best ACS treatment. Purpose. Therefore, using 12-lead ECG monitoring, the COMPARE Study (electroCardiographic evaluatiOn of ischeMia comParing invAsive to phaRmacological trEatment) was designed to assess the frequency and clinical consequences of transient myocardial ischemia, in patients with NSTEMI/UA treated with either early invasive PCI/stent or those managed conservatively (medications or PCI/stent following recurrent symptoms). The purpose of this manuscript is to describe the methodology used in the COMPARE Study. Method. Permission to proceed with this study was obtained from the Institutional Review Board of the hospital and the university. Research nurses identify hospitalized patients from the emergency department and telemetry unit with suspected ACS. Once consented, a 12-lead ECG Holter monitor is applied, and remains in place during the patient's entire hospital stay. Patients are also maintained on the routine bedside ECG monitoring system per hospital protocol. Off-line ECG analysis is done using sophisticated software and careful human oversight.
Medicine, Issue 70, Anatomy, Physiology, Cardiology, Myocardial Ischemia, Cardiovascular Diseases, Health Occupations, Health Care, transient myocardial ischemia, Acute Coronary Syndrome, electrocardiogram, ST-segment monitoring, Holter monitoring, research methodology
Play Button
Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples
Authors: Chen Lu, Joshua L. Wonsidler, Jianwei Li, Yanming Du, Timothy Block, Brian Haab, Songming Chen.
Institutions: Institute for Hepatitis and Virus Research, Thomas Jefferson University , Drexel University College of Medicine, Van Andel Research Institute, Serome Biosciences Inc..
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies the physical, chemical, and biological properties of a protein, and plays a fundamental role in various biological processes1-6. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases 7-12. In fact, most current cancer biomarkers, such as the L3 fraction of α-1 fetoprotein (AFP) for hepatocellular carcinoma 13-15, and CA199 for pancreatic cancer 16, 17 are all aberrant glycan moieties on glycoproteins. However, methods to study protein glycosylation have been complicated, and not suitable for routine laboratory and clinical settings. Chen et al. has recently invented a chemically blocked antibody microarray with a glycan-binding protein (GBP) detection method for high-throughput and multiplexed profile glycosylation of native glycoproteins in a complex sample 18. In this affinity based microarray method, multiple immobilized glycoprotein-specific antibodies capture and isolate glycoproteins from the complex mixture directly on the microarray slide, and the glycans on each individual captured protein are measured by GBPs. Because all normal antibodies contain N-glycans which could be recognized by most GBPs, the critical step of this method is to chemically block the glycans on the antibodies from binding to GBP. In the procedure, the cis-diol groups of the glycans on the antibodies were first oxidized to aldehyde groups by using NaIO4 in sodium acetate buffer avoiding light. The aldehyde groups were then conjugated to the hydrazide group of a cross-linker, 4-(4-N-MaleimidoPhenyl)butyric acid Hydrazide HCl (MPBH), followed by the conjugation of a dipeptide, Cys-Gly, to the maleimide group of the MPBH. Thus, the cis-diol groups on glycans of antibodies were converted into bulky none hydroxyl groups, which hindered the lectins and other GBPs bindings to the capture antibodies. This blocking procedure makes the GBPs and lectins bind only to the glycans of captured proteins. After this chemically blocking, serum samples were incubated with the antibody microarray, followed by the glycans detection by using different biotinylated lectins and GBPs, and visualized with Cy3-streptavidin. The parallel use of an antibody panel and multiple lectin probing provides discrete glycosylation profiles of multiple proteins in a given sample 18-20. This method has been used successfully in multiple different labs 1, 7, 13, 19-31. However, stability of MPBH and Cys-Gly, complicated and extended procedure in this method affect the reproducibility, effectiveness and efficiency of the method. In this new protocol, we replaced both MPBH and Cys-Gly with one much more stable reagent glutamic acid hydrazide (Glu-hydrazide), which significantly improved the reproducibility of the method, simplified and shorten the whole procedure so that the it can be completed within one working day. In this new protocol, we describe the detailed procedure of the protocol which can be readily adopted by normal labs for routine protein glycosylation study and techniques which are necessary to obtain reproducible and repeatable results.
Molecular Biology, Issue 63, Glycoproteins, glycan-binding protein, specific protein glycosylation, multiplexed high-throughput glycan blocked antibody microarray
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Preparation of a Blood Culture Pellet for Rapid Bacterial Identification and Antibiotic Susceptibility Testing
Authors: Antony Croxatto, Guy Prod'hom, Christian Durussel, Gilbert Greub.
Institutions: University Hospital Center and University of Lausanne.
Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.
Immunology, Issue 92, blood culture, bacteriology, identification, antibiotic susceptibility testing, MALDI-TOF MS.
Play Button
Implantation of Total Artificial Heart in Congenital Heart Disease
Authors: Iki Adachi, David S. L. Morales.
Institutions: Texas Children's Hospital, Baylor College of Medicine, The University of Cincinnati College of Medicine.
In patients with end-stage heart failure (HF), a total artificial heart (TAH) may be implanted as a bridge to cardiac transplant. However, in congenital heart disease (CHD), the malformed heart presents a challenge to TAH implantation. In the case presented here, a 17 year-old patient with congenital transposition of the great arteries (CCTGA) experienced progressively worsening HF due to his congenital condition. He was hospitalized multiple times and received an implantable cardioverter defibrillator (ICD). However, his condition soon deteriorated to end-stage HF with multisystem organ failure. Due to the patient's grave clinical condition and the presence of complex cardiac lesions, the decision was made to proceed with a TAH. The abnormal arrangement of the patient's ventricles and great arteries required modifications to the TAH during implantation. With the TAH in place, the patient was able to return home and regain strength and physical well-being while awaiting a donor heart. He was successfully bridged to heart transplantation 5 months after receiving the device. This report highlights the TAH is feasible even in patients with structurally abnormal hearts, with technical modification.
Medicine, Issue 89, total artificial heart, transposition of the great arteries, congenital heart disease, aortic insufficiency, ventricular outflow tract obstruction, conduit obstruction, heart failure
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
Play Button
Improving IV Insulin Administration in a Community Hospital
Authors: Michael C. Magee.
Institutions: Wyoming Medical Center.
Diabetes mellitus is a major independent risk factor for increased morbidity and mortality in the hospitalized patient, and elevated blood glucose concentrations, even in non-diabetic patients, predicts poor outcomes.1-4 The 2008 consensus statement by the American Association of Clinical Endocrinologists (AACE) and the American Diabetes Association (ADA) states that "hyperglycemia in hospitalized patients, irrespective of its cause, is unequivocally associated with adverse outcomes."5 It is important to recognize that hyperglycemia occurs in patients with known or undiagnosed diabetes as well as during acute illness in those with previously normal glucose tolerance. The Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study involved over six thousand adult intensive care unit (ICU) patients who were randomized to intensive glucose control or conventional glucose control.6 Surprisingly, this trial found that intensive glucose control increased the risk of mortality by 14% (odds ratio, 1.14; p=0.02). In addition, there was an increased prevalence of severe hypoglycemia in the intensive control group compared with the conventional control group (6.8% vs. 0.5%, respectively; p<0.001). From this pivotal trial and two others,7,8 Wyoming Medical Center (WMC) realized the importance of controlling hyperglycemia in the hospitalized patient while avoiding the negative impact of resultant hypoglycemia. Despite multiple revisions of an IV insulin paper protocol, analysis of data from usage of the paper protocol at WMC shows that in terms of achieving normoglycemia while minimizing hypoglycemia, results were suboptimal. Therefore, through a systematical implementation plan, monitoring of patient blood glucose levels was switched from using a paper IV insulin protocol to a computerized glucose management system. By comparing blood glucose levels using the paper protocol to that of the computerized system, it was determined, that overall, the computerized glucose management system resulted in more rapid and tighter glucose control than the traditional paper protocol. Specifically, a substantial increase in the time spent within the target blood glucose concentration range, as well as a decrease in the prevalence of severe hypoglycemia (BG < 40 mg/dL), clinical hypoglycemia (BG < 70 mg/dL), and hyperglycemia (BG > 180 mg/dL), was witnessed in the first five months after implementation of the computerized glucose management system. The computerized system achieved target concentrations in greater than 75% of all readings while minimizing the risk of hypoglycemia. The prevalence of hypoglycemia (BG < 70 mg/dL) with the use of the computer glucose management system was well under 1%.
Medicine, Issue 64, Physiology, Computerized glucose management, Endotool, hypoglycemia, hyperglycemia, diabetes, IV insulin, paper protocol, glucose control
Play Button
Manual Muscle Testing: A Method of Measuring Extremity Muscle Strength Applied to Critically Ill Patients
Authors: Nancy Ciesla, Victor Dinglas, Eddy Fan, Michelle Kho, Jill Kuramoto, Dale Needham.
Institutions: Johns Hopkins University, Johns Hopkins Hospital , Johns Hopkins University, University of Maryland Medical System.
Survivors of acute respiratory distress syndrome (ARDS) and other causes of critical illness often have generalized weakness, reduced exercise tolerance, and persistent nerve and muscle impairments after hospital discharge.1-6 Using an explicit protocol with a structured approach to training and quality assurance of research staff, manual muscle testing (MMT) is a highly reliable method for assessing strength, using a standardized clinical examination, for patients following ARDS, and can be completed with mechanically ventilated patients who can tolerate sitting upright in bed and are able to follow two-step commands. 7, 8 This video demonstrates a protocol for MMT, which has been taught to ≥43 research staff who have performed >800 assessments on >280 ARDS survivors. Modifications for the bedridden patient are included. Each muscle is tested with specific techniques for positioning, stabilization, resistance, and palpation for each score of the 6-point ordinal Medical Research Council scale.7,9-11 Three upper and three lower extremity muscles are graded in this protocol: shoulder abduction, elbow flexion, wrist extension, hip flexion, knee extension, and ankle dorsiflexion. These muscles were chosen based on the standard approach for evaluating patients for ICU-acquired weakness used in prior publications. 1,2.
Medicine, Issue 50, Muscle Strength, Critical illness, Intensive Care Units, Reproducibility of Results, Clinical Protocols.
Play Button
Expired CO2 Measurement in Intubated or Spontaneously Breathing Patients from the Emergency Department
Authors: Franck Verschuren, Maidei Gugu Kabayadondo, Frédéric Thys.
Institutions: Universit Catholique de Louvain Cliniques Universitaires Saint-Luc.
Carbon dioxide (CO2) along with oxygen (O2) share the role of being the most important gases in the human body. The measuring of expired CO2 at the mouth has solicited growing clinical interest among physicians in the emergency department for various indications: (1) surveillance et monitoring of the intubated patient; (2) verification of the correct positioning of an endotracheal tube; (3) monitoring of a patient in cardiac arrest; (4) achieving normocapnia in intubated head trauma patients; (5) monitoring ventilation during procedural sedation. The video allows physicians to familiarize themselves with the use of capnography and the text offers a review of the theory and principals involved. In particular, the importance of CO2 for the organism, the relevance of measuring expired CO2, the differences between arterial and expired CO2, the material used in capnography with their artifacts and traps, will be reviewed. Since the main reluctance in the use of expired CO2 measurement is due to lack of correct knowledge concerning the physiopathology of CO2 by the physician, we hope that this explanation and the video sequences accompanying will help resolve this limitation.
Medicine, Issue 47, capnography, CO2, emergency medicine, end-tidal CO2
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.