JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Evaluation of inferior alveolar nerve regeneration by bifocal distraction osteogenesis with retrograde transportation of horseradish peroxidase in dogs.
PUBLISHED: 01-01-2014
Bifocal distraction osteogenesis has been shown to be a reliable method for reconstructing segmental mandibular defects. However, there are few reports regarding the occurrence of inferior alveolar nerve regeneration during the process of distraction. Previously, we reported inferior alveolar nerve regeneration after distraction, and evaluated the regenerated nerve using histological and electrophysiological methods. In the present study, we investigated axons regenerated by bifocal distraction osteogenesis using retrograde transportation of horseradish peroxidase in the mandibles of dogs to determine their type and function.
Authors: Yan-yiu Yu, Chelsea Bahney, Diane Hu, Ralph S. Marcucio, Theodore Miclau, III.
Published: 04-11-2012
Assessing modes of skeletal repair is essential for developing therapies to be used clinically to treat fractures. Mechanical stability plays a large role in healing of bone injuries. In the worst-case scenario mechanical instability can lead to delayed or non-union in humans. However, motion can also stimulate the healing process. In fractures that have motion cartilage forms to stabilize the fracture bone ends, and this cartilage is gradually replaced by bone through recapitulation of the developmental process of endochondral ossification. In contrast, if a bone fracture is rigidly stabilized bone forms directly via intramembranous ossification. Clinically, both endochondral and intramembranous ossification occur simultaneously. To effectively replicate this process investigators insert a pin into the medullary canal of the fractured bone as described by Bonnarens4. This experimental method provides excellent lateral stability while allowing rotational instability to persist. However, our understanding of the mechanisms that regulate these two distinct processes can also be enhanced by experimentally isolating each of these processes. We have developed a stabilization protocol that provides rotational and lateral stabilization. In this model, intramembranous ossification is the only mode of healing that is observed, and healing parameters can be compared among different strains of genetically modified mice 5-7, after application of bioactive molecules 8,9, after altering physiological parameters of healing 10, after modifying the amount or time of stabilization 11, after distraction osteogenesis 12, after creation of a non-union 13, or after creation of a critical sized defect. Here, we illustrate how to apply the modified Ilizarov fixators for studying tibial fracture healing and distraction osteogenesis in mice.
21 Related JoVE Articles!
Play Button
Retrograde Labeling of Retinal Ganglion Cells in Adult Zebrafish with Fluorescent Dyes
Authors: Su-Qi Zou, Chen Tian, Su-Tie Du, Bing Hu.
Institutions: University of Science and Technology of China.
As retrograde labeling retinal ganglion cells (RGCs) can isolate RGCs somata from dying sites, it has become the gold standard for counting RGCs in RGCs survival and regeneration experiments. Many studies have been performed in mammalian animals to research RGCs survival after optic nerve injury. However, retrograde labeling of RGCs in adult zebrafish has not yet been reported, though some alternative methods can count cell numbers in retinal ganglion cell layers (RGCL). Considering the small size of the adult zebrafish skull and the high risk of death after drilling on the skull, we open the skull with the help of acid-etching and seal the hole with a light curing bond, which could significantly improve the survival rate. After absorbing the dyes for 5 days, almost all the RGCs are labeled. As this method does not need to transect the optic nerve, it is irreplaceable in the research of RGCs survival after optic nerve crush in adult zebrafish. Here, we introduce this method step by step and provide representative results.
Neuroscience, Issue 87, Adult Zebrafish, Retinal Ganglion Cell, Retrograde Labeling, DiI
Play Button
Videomorphometric Analysis of Hypoxic Pulmonary Vasoconstriction of Intra-pulmonary Arteries Using Murine Precision Cut Lung Slices
Authors: Renate Paddenberg, Petra Mermer, Anna Goldenberg, Wolfgang Kummer.
Institutions: Justus-Liebig-University.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3. We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.
Medicine, Issue 83, Hypoxic pulmonary vasoconstriction, murine lungs, precision cut lung slices, intra-pulmonary, pre- and intra-acinar arteries, videomorphometry
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
Play Button
Isolation of Blood-vessel-derived Multipotent Precursors from Human Skeletal Muscle
Authors: William C.W. Chen, Arman Saparov, Mirko Corselli, Mihaela Crisan, Bo Zheng, Bruno Péault, Johnny Huard.
Institutions: University of Pittsburgh, University of Pittsburgh, Nazarbayev University, University of California at Los Angeles, Erasmus MC Stem Cell Institute, Oregon Health & Science University, Queen's Medical Research Institute and University of Edinburgh, University of California at Los Angeles, University of Pittsburgh.
Since the discovery of mesenchymal stem/stromal cells (MSCs), the native identity and localization of MSCs have been obscured by their retrospective isolation in culture. Recently, using fluorescence-activated cell sorting (FACS), we and other researchers prospectively identified and purified three subpopulations of multipotent precursor cells associated with the vasculature of human skeletal muscle. These three cell populations: myogenic endothelial cells (MECs), pericytes (PCs), and adventitial cells (ACs), are localized respectively to the three structural layers of blood vessels: intima, media, and adventitia. All of these human blood-vessel-derived stem cell (hBVSC) populations not only express classic MSC markers but also possess mesodermal developmental potentials similar to typical MSCs. Previously, MECs, PCs, and ACs have been isolated through distinct protocols and subsequently characterized in separate studies. The current isolation protocol, through modifications to the isolation process and adjustments in the selective cell surface markers, allows us to simultaneously purify all three hBVSC subpopulations by FACS from a single human muscle biopsy. This new method will not only streamline the isolation of multiple BVSC subpopulations but also facilitate future clinical applications of hBVSCs for distinct therapeutic purposes.
Cellular Biology, Issue 90, Blood Vessel; Pericyte; Adventitial Cell; Myogenic Endothelial Cell; Multipotent Precursor
Play Button
An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival
Authors: Zhongshu Tang, Shuihua Zhang, Chunsik Lee, Anil Kumar, Pachiappan Arjunan, Yang Li, Fan Zhang, Xuri Li.
Institutions: NIH, The Second Hospital of Harbin Medical University.
Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result.
Neuroscience, Issue 50, optic nerve crush injury, retinal ganglion cell, glaucoma, optic neuropathy, retrograde labeling
Play Button
Homarus Americanus Stomatogastric Nervous System Dissection
Authors: Anne-Elise Tobin, Hilary S. Bierman.
Institutions: Brandeis.
With the goal of understanding how nervous systems produce activity and respond to the environment, neuroscientists turn to model systems that exhibit the activity of interest and are accessible and amenable to experimental methods. The stomatogastric nervous system (STNS) of the American lobster (Homarus americanus; also know was the Atlantic or Maine lobster) has been established as a model system for studying rhythm generating networks and neuromodulation of networks. The STNS consists of 3 anterior ganglia (2 commissural ganglia and an oesophageal ganglion), containing modulatory neurons that project centrally to the stomatogastric ganglion (STG). The STG contains approximately 30 neurons that comprise two central pattern generating networks, the pyloric and gastric networks that underlie feeding behaviors in crustaceans1,2. While it is possible to study this system in vivo3, the STNS continues to produce its rhythmic activity when isolated in vitro. Physical isolation of the STNS in a dish allows for easy access to the somata in the ganglia for intracellular electrophysiological recordings and to the nerves of the STNS for extracellular recordings. Isolating the STNS is a two-part process. The first part, dissecting the stomach from the animal, is described in an accompanying video article4. In this video article, fine dissection techniques are used to isolate the STNS from the stomach. This procedure results in a nervous system preparation that is available for electrophysiological recordings.
Neuroscience, Issue 27, lobster, stomach, neural network, dissection, central pattern generator
Play Button
Anterior Cervical Discectomy and Fusion in the Ovine Model
Authors: Tony Goldschlager, Jeffrey V. Rosenfeld, Ian R. Young, Graham Jenkin.
Institutions: Monash University, Monash University.
Anterior cervical discectomy and fusion (ACDF) is the most common surgical operation for cervical radiculopathy and/or myelopathy in patients who have failed conservative treatment1,5. Since the operation was first described by Cloward2 and Smith and Robinson6 in 1958, a variety refinements in technique, graft material and implants have been made3. In particular, there is a need for safe osteoinductive agents that could benefit selected patients. The ovine model has been shown to have anatomical, biomechanical, bone density and radiological properties that are similar to the human counterpart, the most similar level being C3/44. It is therefore an ideal model in which preclinical studies can be performed. In particular this methodology may be useful to researchers interested in evaluating different devices and biologics, including stem cells, for potential application in human spinal surgery.
Medicine, Issue 32, Anterior cervical discectomy, interbody fusion, spine fusion, stem cells, biologics, spine instrumentation, interbody cage
Play Button
Intracellular Recording, Sensory Field Mapping, and Culturing Identified Neurons in the Leech, Hirudo medicinalis
Authors: Josh Titlow, Zana R. Majeed, John G Nicholls, Robin L. Cooper.
Institutions: University of Kentucky, University of Salahaddin, Iraq, SISSA, Italy.
The freshwater leech, Hirudo medicinalis, is a versatile model organism that has been used to address scientific questions in the fields of neurophysiology, neuroethology, and developmental biology. The goal of this report is to consolidate experimental techniques from the leech system into a single article that will be of use to physiologists with expertise in other nervous system preparations, or to biology students with little or no electrophysiology experience. We demonstrate how to dissect the leech for recording intracellularly from identified neural circuits in the ganglion. Next we show how individual cells of known function can be removed from the ganglion to be cultured in a Petri dish, and how to record from those neurons in culture. Then we demonstrate how to prepare a patch of innervated skin to be used for mapping sensory or motor fields. These leech preparations are still widely used to address basic electrical properties of neural networks, behavior, synaptogenesis, and development. They are also an appropriate training module for neuroscience or physiology teaching laboratories.
Neuroscience, Issue 81, leech, Neurobiology, culture, neurons, electrophysiology, synapse, neurophysiology, neuroethology, developmental biology, ganglion, central nervous system (CNS)
Play Button
Methods for Experimental Manipulations after Optic Nerve Transection in the Mammalian CNS
Authors: Philippe M. D'Onofrio, Mark M. Magharious, Paulo D. Koeberle.
Institutions: University of Toronto.
Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in the adult CNS 1-4. This model is particularly attractive because the vitreous chamber of the eye acts as a capsule for drug delivery to the retina, permitting experimental manipulations via intraocular injections. The diffusion of chemicals through the vitreous fluid ensures that they act upon the entire RGC population. Viral vectors, plasmids or short interfering RNAs (siRNAs) can also be delivered to the vitreous chamber in order to infect or transfect retinal cells 5-12. The high tropism of Adeno-Associated Virus (AAV) vectors is beneficial to target RGCs, with an infection rate approaching 90% of cells near the injection site 6, 7, 13-15. Moreover, RGCs can be selectively transfected by applying siRNAs, plasmids, or viral vectors to the cut end of the optic nerve 16-19 or injecting vectors into their target the superior colliculus 10. This allows researchers to study apoptotic mechanisms in the injured neuronal population without confounding effects on other bystander neurons or surrounding glia. RGC apoptosis has a characteristic time-course whereby cell death is delayed 3-4 days postaxotomy, after which the cells rapidly degenerate. This provides a window for experimental manipulations directed against pathways involved in apoptosis. Manipulations that directly target RGCs from the transected optic nerve stump are performed at the time of axotomy, immediately after cutting the nerve. In contrast, when substances are delivered via an intraocular route, they can be injected prior to surgery or within the first 3 days after surgery, preceding the initiation of apoptosis in axotomized RGCs. In the present article, we demonstrate several methods for experimental manipulations after optic nerve transection.
Neuroscience, Issue 51, Central Nervous System, Retinal Ganglion Cell, Axotomy, Optic Nerve Transection, Intraocular Injection, Nerve Stump Transfection, Viral Vector, Short Interfering RNA
Play Button
Combining Peripheral Nerve Grafting and Matrix Modulation to Repair the Injured Rat Spinal Cord
Authors: John D. Houle, Arthi Amin, Marie-Pascale Cote, Michel Lemay, Kassi Miller, Harra Sandrow, Lauren Santi, Jed Shumsky, Veronica Tom.
Institutions: Drexel University College of Medicine.
Traumatic injury to the spinal cord (SCI) causes death of neurons, disruption of motor and sensory nerve fiber (axon) pathways and disruption of communication with the brain. One of the goals of our research is to promote axon regeneration to restore connectivity across the lesion site. To accomplish this we developed a peripheral nerve (PN) grafting technique where segments of sciatic nerve are either placed directly between the damaged ends of the spinal cord or are used to form a bridge across the lesion. There are several advantages to this approach compared to transplantation of other neural tissues; regenerating axons can be directed towards a specific target area, the number and source of regenerating axons is easily determined by tracing techniques, the graft can be used for electrophysiological experiments to measure functional recovery associated with axons in the graft, and it is possible to use an autologous nerve to reduce the possibility of graft rejection. In our lab we have performed both autologous (donor and recipient are the same animal) and heterologous (donor and recipient are different animals) grafts with comparable results. This approach has been used successfully in both acute and chronic injury situations. Regenerated axons that reach the distal end of the PN graft often fail to extend back into the spinal cord, so we use microinjections of chondroitinase to degrade inhibitory molecules associated with the scar tissue surrounding the area of SCI. At the same time we have found that providing exogenous growth and trophic molecules encourages longer distance axonal regrowth into the spinal cord. Several months after transplantation we perform a variety of anatomical, behavioral and electrophysiological tests to evaluate the recovery of function in our spinal cord injured animals. This experimental approach has been used successfully in several spinal cord injury models, at different levels of injury and in different species (mouse, rat and cat). Importantly, the peripheral nerve grafting approach is effective in promoting regeneration by acute and chronically injured neurons.
Neurobiology, Issue 33, transplantation, SCI, regeneration, tract tracing, electrophysiology
Play Button
Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae
Authors: Bibhudatta Mishra, Mostafa Ghannad-Rezaie, Jiaxing Li, Xin Wang, Yan Hao, Bing Ye, Nikos Chronis, Catherine A. Collins.
Institutions: University of Michigan, University of Michigan, University of Michigan, University of Michigan, University of Michigan.
Live imaging is an important technique for studying cell biological processes, however this can be challenging in live animals. The translucent cuticle of the Drosophila larva makes it an attractive model organism for live imaging studies. However, an important challenge for live imaging techniques is to noninvasively immobilize and position an animal on the microscope. This protocol presents a simple and easy to use method for immobilizing and imaging Drosophila larvae on a polydimethylsiloxane (PDMS) microfluidic device, which we call the 'larva chip'. The larva chip is comprised of a snug-fitting PDMS microchamber that is attached to a thin glass coverslip, which, upon application of a vacuum via a syringe, immobilizes the animal and brings ventral structures such as the nerve cord, segmental nerves, and body wall muscles, within close proximity to the coverslip. This allows for high-resolution imaging, and importantly, avoids the use of anesthetics and chemicals, which facilitates the study of a broad range of physiological processes. Since larvae recover easily from the immobilization, they can be readily subjected to multiple imaging sessions. This allows for longitudinal studies over time courses ranging from hours to days. This protocol describes step-by-step how to prepare the chip and how to utilize the chip for live imaging of neuronal events in 3rd instar larvae. These events include the rapid transport of organelles in axons, calcium responses to injury, and time-lapse studies of the trafficking of photo-convertible proteins over long distances and time scales. Another application of the chip is to study regenerative and degenerative responses to axonal injury, so the second part of this protocol describes a new and simple procedure for injuring axons within peripheral nerves by a segmental nerve crush.
Bioengineering, Issue 84, Drosophila melanogaster, Live Imaging, Microfluidics, axonal injury, axonal degeneration, calcium imaging, photoconversion, laser microsurgery
Play Button
Adjustable Stiffness, External Fixator for the Rat Femur Osteotomy and Segmental Bone Defect Models
Authors: Vaida Glatt, Romano Matthys.
Institutions: Queensland University of Technology, RISystem AG.
The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.
Medicine, Issue 92, external fixator, bone healing, small animal model, large bone defect and osteotomy model, rat model, mechanical environment, mechanobiology.
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
Play Button
Proprioception and Tension Receptors in Crab Limbs: Student Laboratory Exercises
Authors: Zana R. Majeed, Josh Titlow, H. Bernard Hartman, Robin Cooper.
Institutions: University of Kentucky, University of Kentucky, University of Oregon.
The primary purpose of these procedures is to demonstrate for teaching and research purposes how to record the activity of living primary sensory neurons responsible for proprioception as they are detecting joint position and movement, and muscle tension. Electrical activity from crustacean proprioceptors and tension receptors is recorded by basic neurophysiological instrumentation, and a transducer is used to simultaneously measure force that is generated by stimulating a motor nerve. In addition, we demonstrate how to stain the neurons for a quick assessment of their anatomical arrangement or for permanent fixation. Staining reveals anatomical organization that is representative of chordotonal organs in most crustaceans. Comparing the tension nerve responses to the proprioceptive responses is an effective teaching tool in determining how these sensory neurons are defined functionally and how the anatomy is correlated to the function. Three staining techniques are presented allowing researchers and instructors to choose a method that is ideal for their laboratory.
Neuroscience, Issue 80, Crustacean, joint, Muscle, sensory, teaching, educational, neuroscience
Play Button
A Contusive Model of Unilateral Cervical Spinal Cord Injury Using the Infinite Horizon Impactor
Authors: Jae H.T. Lee, Femke Streijger, Seth Tigchelaar, Michael Maloon, Jie Liu, Wolfram Tetzlaff, Brian K. Kwon.
Institutions: University of British Columbia , University of British Columbia .
While the majority of human spinal cord injuries occur in the cervical spinal cord, the vast majority of laboratory research employs animal models of spinal cord injury (SCI) in which the thoracic spinal cord is injured. Additionally, because most human cord injuries occur as the result of blunt, non-penetrating trauma (e.g. motor vehicle accident, sporting injury) where the spinal cord is violently struck by displaced bone or soft tissues, the majority of SCI researchers are of the opinion that the most clinically relevant injury models are those in which the spinal cord is rapidly contused.1 Therefore, an important step in the preclinical evaluation of novel treatments on their way to human translation is an assessment of their efficacy in a model of contusion SCI within the cervical spinal cord. Here, we describe the technical aspects and resultant anatomical and behavioral outcomes of an unilateral contusive model of cervical SCI that employs the Infinite Horizon spinal cord injury impactor. Sprague Dawley rats underwent a left-sided unilateral laminectomy at C5. To optimize the reproducibility of the biomechanical, functional, and histological outcomes of the injury model, we contused the spinal cords using an impact force of 150 kdyn, an impact trajectory of 22.5° (animals rotated at 22.5°), and an impact location off of midline of 1.4 mm. Functional recovery was assessed using the cylinder rearing test, horizontal ladder test, grooming test and modified Montoya's staircase test for up to 6 weeks, after which the spinal cords were evaluated histologically for white and grey matter sparing. The injury model presented here imparts consistent and reproducible biomechanical forces to the spinal cord, an important feature of any experimental SCI model. This results in discrete histological damage to the lateral half of the spinal cord which is largely contained to the ipsilateral side of injury. The injury is well tolerated by the animals, but does result in functional deficits of the forelimb that are significant and sustained in the weeks following injury. The cervical unilateral injury model presented here may be a resource to researchers who wish to evaluate potentially promising therapies prior to human translation.
Medicine, Issue 65, Neuroscience, Physiology, Infinite Horizon Spinal Cord Injury Device, SCI, cervical, unilateral, contusion, forelimb function
Play Button
Reproducible Mouse Sciatic Nerve Crush and Subsequent Assessment of Regeneration by Whole Mount Muscle Analysis
Authors: Andrew R. Bauder, Toby A. Ferguson.
Institutions: Temple University .
Regeneration in the peripheral nervous system (PNS) is widely studied both for its relevance to human disease and to understand the robust regenerative response mounted by PNS neurons thereby possibly illuminating the failures of CNS regeneration1. Sciatic nerve crush (axonotmesis) is one of the most common models of peripheral nerve injury in rodents2. Crushing interrupts all axons but Schwann cell basal laminae are preserved so that regeneration is optimal3,4. This allows the investigator to study precisely the ability of a growing axon to interact with both the Schwann cell and basal laminae4. Rats have generally been the preferred animal models for experimental nerve crush. They are widely available and their lesioned sciatic nerve provides a reasonable approximation of human nerve lesions5,4. Though smaller in size than rat nerve, the mouse nerve has many similar qualities. Most importantly though, mouse models are increasingly valuable because of the wide availability of transgenic lines now allows for a detailed dissection of the individual molecules critical for nerve regeneration6, 7. Prior investigators have used multiple methods to produce a nerve crush or injury including simple angled forceps, chilled forceps, hemostatic forceps, vascular clamps, and investigator-designed clamps8,9,10,11,12. Investigators have also used various methods of marking the injury site including suture, carbon particles and fluorescent beads13,14,1. We describe our method to obtain a reproducibly complete sciatic nerve crush with accurate and persistent marking of the crush-site using a fine hemostatic forceps and subsequent carbon crush-site marking. As part of our description of the sciatic nerve crush procedure we have also included a relatively simple method of muscle whole mount we use to subsequently quantify regeneration.
Neuroscience, Issue 60, Sciatic nerve crush, regeneration, neuromuscular junction, muscle whole mount, mouse
Play Button
Use of Human Perivascular Stem Cells for Bone Regeneration
Authors: Aaron W. James, Janette N. Zara, Mirko Corselli, Michael Chiang, Wei Yuan, Virginia Nguyen, Asal Askarinam, Raghav Goyal, Ronald K. Siu, Victoria Scott, Min Lee, Kang Ting, Bruno Péault, Chia Soo.
Institutions: School of Dentistry, UCLA, UCLA, UCLA, University of Edinburgh .
Human perivascular stem cells (PSCs) can be isolated in sufficient numbers from multiple tissues for purposes of skeletal tissue engineering1-3. PSCs are a FACS-sorted population of 'pericytes' (CD146+CD34-CD45-) and 'adventitial cells' (CD146-CD34+CD45-), each of which we have previously reported to have properties of mesenchymal stem cells. PSCs, like MSCs, are able to undergo osteogenic differentiation, as well as secrete pro-osteogenic cytokines1,2. In the present protocol, we demonstrate the osteogenicity of PSCs in several animal models including a muscle pouch implantation in SCID (severe combined immunodeficient) mice, a SCID mouse calvarial defect and a femoral segmental defect (FSD) in athymic rats. The thigh muscle pouch model is used to assess ectopic bone formation. Calvarial defects are centered on the parietal bone and are standardly 4 mm in diameter (critically sized)8. FSDs are bicortical and are stabilized with a polyethylene bar and K-wires4. The FSD described is also a critical size defect, which does not significantly heal on its own4. In contrast, if stem cells or growth factors are added to the defect site, significant bone regeneration can be appreciated. The overall goal of PSC xenografting is to demonstrate the osteogenic capability of this cell type in both ectopic and orthotopic bone regeneration models.
Bioengineering, Issue 63, Biomedical Engineering, Stem Cell Biology, Pericyte, Stem Cell, Bone Defect, Tissue Engineering, Osteogenesis, femoral defect, calvarial defect
Play Button
In vivo Visualization of Synaptic Vesicles Within Drosophila Larval Segmental Axons
Authors: Michelle L. Kuznicki, Shermali Gunawardena.
Institutions: SUNY-University at Buffalo.
Elucidating the mechanisms of axonal transport has shown to be very important in determining how defects in long distance transport affect different neurological diseases. Defects in this essential process can have detrimental effects on neuronal functioning and development. We have developed a dissection protocol that is designed to expose the Drosophila larval segmental nerves to view axonal transport in real time. We have adapted this protocol for live imaging from the one published by Hurd and Saxton (1996) used for immunolocalizatin of larval segmental nerves. Careful dissection and proper buffer conditions are critical for maximizing the lifespan of the dissected larvae. When properly done, dissected larvae have shown robust vesicle transport for 2-3 hours under physiological conditions. We use the UAS-GAL4 method 1 to express GFP-tagged APP or synaptotagmin vesicles within a single axon or many axons in larval segmental nerves by using different neuronal GAL4 drivers. Other fluorescently tagged markers, for example mitochrondria (MitoTracker) or lysosomes (LysoTracker), can be also applied to the larvae before viewing. GFP-vesicle movement and particle movement can be viewed simultaneously using separate wavelengths.
Neuroscience, Issue 44, Live imaging, Axonal transport, GFP-tagged vesicles
Play Button
Axoplasm Isolation from Rat Sciatic Nerve
Authors: Ida Rishal, Meir Rozenbaum, Mike Fainzilber.
Institutions: Weizmann Institute of Science.
Isolation of pure axonal cytoplasm (axoplasm) from peripheral nerve is crucial for biochemical studies of many biological processes. In this article, we demonstrate and describe a protocol for axoplasm isolation from adult rat sciatic nerve based on the following steps: (1) dissection of nerve fascicles and separation of connective tissue; (2) incubation of short segments of nerve fascicles in hypotonic medium to release myelin and lyse non-axonal structures; and (3) extraction of the remaining axon-enriched material. Proteomic and biochemical characterization of this preparation has confirmed a high degree of enrichment for axonal components.
Neuroscience, Issue 43, Axoplasm, nerve, isolation, method, rat
Play Button
Brain Imaging Investigation of the Impairing Effect of Emotion on Cognition
Authors: Gloria Wong, Sanda Dolcos, Ekaterina Denkova, Rajendra Morey, Lihong Wang, Gregory McCarthy, Florin Dolcos.
Institutions: University of Alberta, University of Alberta, University of Illinois, Duke University , Duke University , VA Medical Center, Yale University, University of Illinois, University of Illinois.
Emotions can impact cognition by exerting both enhancing (e.g., better memory for emotional events) and impairing (e.g., increased emotional distractibility) effects (reviewed in 1). Complementing our recent protocol 2 describing a method that allows investigation of the neural correlates of the memory-enhancing effect of emotion (see also 1, 3-5), here we present a protocol that allows investigation of the neural correlates of the detrimental impact of emotion on cognition. The main feature of this method is that it allows identification of reciprocal modulations between activity in a ventral neural system, involved in 'hot' emotion processing (HotEmo system), and a dorsal system, involved in higher-level 'cold' cognitive/executive processing (ColdEx system), which are linked to cognitive performance and to individual variations in behavior (reviewed in 1). Since its initial introduction 6, this design has proven particularly versatile and influential in the elucidation of various aspects concerning the neural correlates of the detrimental impact of emotional distraction on cognition, with a focus on working memory (WM), and of coping with such distraction 7,11, in both healthy 8-11 and clinical participants 12-14.
Neuroscience, Issue 60, Emotion-Cognition Interaction, Cognitive/Emotional Interference, Task-Irrelevant Distraction, Neuroimaging, fMRI, MRI
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.