JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Development of genetically flexible mouse models of sarcoma using RCAS-TVA mediated gene delivery.
PUBLISHED: 01-01-2014
Sarcomas are a heterogeneous group of mesenchymal malignancies and unfortunately there are limited functional genomics platforms to assess the molecular pathways contributing to sarcomagenesis. Thus, novel model systems are needed to validate which genes should be targeted for therapeutic intervention. We hypothesized that delivery of oncogenes into mouse skeletal muscle using a retroviral (RCAS-TVA) system would result in sarcomagenesis. We also sought to determine if the cell type transformed (mesenchymal progenitors vs. terminally differentiated tissues) would influence sarcoma biology. Cells transduced with RCAS vectors directing the expression of oncoproteins KrasG12D, c-Myc and/or Igf2 were injected into the hindlimbs of mice that expressed the retroviral TVA receptor in neural/mesenchymal progenitors, skeletal/cardiac muscle or ubiquitously (N-tva, AKE and BKE strains respectively). Disrupting the G1 checkpoint CDKN2 (p16/p19-/-) resulted in sarcoma in 30% of p16/p19-/- xN-tva mice with a median latency of 23 weeks (range 8-40 weeks). A similar incidence occurred in p16/p19-/- xBKE mice (32%), however, a shorter median latency (10.4 weeks) was observed. p16/p19-/- xAKE mice also developed sarcomas (24% incidence; median 9 weeks) yet 31% of mice also developed lung sarcomas. Gene-anchored PCR demonstrated retroviral DNA integration in 86% of N-tva, 93% of BKE and 88% of AKE tumors. KrasG12D was the most frequent oncogene isolated. Oncogene delivery by the RCAS-TVA system can generate sarcomas in mice with a defective cell cycle checkpoint. Sarcoma biology differed between the different RCAS models we created, likely due to the cell population being transformed. This genetically flexible system will be a valuable tool for sarcoma research.
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Published: 08-12-2014
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
21 Related JoVE Articles!
Play Button
Viral Tracing of Genetically Defined Neural Circuitry
Authors: Kevin Beier, Constance Cepko.
Institutions: Harvard Medical School, Harvard Medical School.
Classical methods for studying neuronal circuits are fairly low throughput. Transsynaptic viruses, particularly the pseudorabies (PRV) and rabies virus (RABV), and more recently vesicular stomatitis virus (VSV), for studying circuitry, is becoming increasingly popular. These higher throughput methods use viruses that transmit between neurons in either the anterograde or retrograde direction. Recently, a modified RABV for monosynaptic retrograde tracing was developed. (Figure 1A). In this method, the glycoprotein (G) gene is deleted from the viral genome, and resupplied only in targeted neurons. Infection specificity is achieved by substituting a chimeric G, composed of the extracellular domain of the ASLV-A glycoprotein and the cytoplasmic domain of the RABV-G (A/RG), for the normal RABV-G1. This chimeric G specifically infects cells expressing the TVA receptor1. The gene encoding TVA can been delivered by various methods2-8. Following RABV-G infection of a TVA-expressing neuron, the RABV can transmit to other, synaptically connected neurons in a retrograde direction by nature of its own G which was co-delivered with the TVA receptor. This technique labels a relatively large number of inputs (5-10%)2 onto a defined cell type, providing a sampling of all of the inputs onto a defined starter cell type. We recently modified this technique to use VSV as a transsynaptic tracer9. VSV has several advantages, including the rapidity of gene expression. Here we detail a new viral tracing system using VSV useful for probing microcircuitry with increased resolution. While the original published strategies by Wickersham et al.4 and Beier et al.9 permit labeling of any neurons that project onto initially-infected TVA-expressing-cells, here VSV was engineered to transmit only to TVA-expressing cells (Figure 1B). The virus is first pseudotyped with RABV-G to permit infection of neurons downstream of TVA-expressing neurons. After infecting this first population of cells, the virus released can only infect TVA-expressing cells. Because the transsynaptic viral spread is limited to TVA-expressing cells, presence of absence of connectivity from defined cell types can be explored with high resolution. An experimental flow chart of these experiments is shown in Figure 2. Here we show a model circuit, that of direction-selectivity in the mouse retina. We examine the connectivity of starburst amacrine cells (SACs) to retinal ganglion cells (RGCs).
Neuroscience, Issue 68, Genetics, Molecular Biology, Virology, Virus, VSV, transsynaptic tracing, TVA, retrograde, neuron, synapse
Play Button
Dissection of the Transversus Abdominis Muscle for Whole-mount Neuromuscular Junction Analysis
Authors: Lyndsay Murray, Thomas H Gillingwater, Rashmi Kothary.
Institutions: Ottawa Hospital Research Institute, University of Edinburgh.
Analysis of neuromuscular junction morphology can give important insight into the physiological status of a given motor neuron. Analysis of thin flat muscles can offer significant advantage over traditionally used thicker muscles, such as those from the hind limb (e.g. gastrocnemius). Thin muscles allow for comprehensive overview of the entire innervation pattern for a given muscle, which in turn permits identification of selectively vulnerable pools of motor neurons. These muscles also allow analysis of parameters such as motor unit size, axonal branching, and terminal/nodal sprouting. A common obstacle in using such muscles is gaining the technical expertise to dissect them. In this video, we detail the protocol for dissecting the transversus abdominis (TVA) muscle from young mice and performing immunofluorescence to visualize axons and neuromuscular junctions (NMJs). We demonstrate that this technique gives a complete overview of the innervation pattern of the TVA muscle and can be used to investigate NMJ pathology in a mouse model of the childhood motor neuron disease, spinal muscular atrophy.
Neuroscience, Issue 83, Transversus Abdominis, neuromuscular junction, NMJ, dissection, mouse, immunofluorescence
Play Button
Electrochemotherapy of Tumours
Authors: Gregor Sersa, Damijan Miklavcic.
Institutions: Institute of Oncology Ljubljana, University of Ljubljana.
Electrochemotherapy is a combined use of certain chemotherapeutic drugs and electric pulses applied to the treated tumour nodule. Local application of electric pulses to the tumour increases drug delivery into cells, specifically at the site of electric pulse application. Drug uptake by delivery of electric pulses is increased for only those chemotherapeutic drugs whose transport through the plasma membrane is impeded. Among many drugs that have been tested so far, bleomycin and cisplatin found their way from preclinical testing to clinical use. Clinical data collected within a number of clinical studies indicate that approximately 80% of the treated cutaneous and subcutaneous tumour nodules of different malignancies are in an objective response, from these, approximately 70% in complete response after a single application of electrochemotherapy. Usually only one treatment is needed, however, electrochemotherapy can be repeated several times every few weeks with equal effectiveness each time. The treatment results in an effective eradication of the treated nodules, with a good cosmetic effect without tissue scarring.
Medicine, Issue 22, electrochemotherapy, electroporation, cisplatin, bleomycin, malignant tumours, cutaneous lesions
Play Button
A Cre-Lox P Recombination Approach for the Detection of Cell Fusion In Vivo
Authors: Anthony J. Sprangers, Brian T. Freeman, Nicholas A. Kouris, Brenda M. Ogle.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison.
The ability of two or more cells of the same type to fuse has been utilized in metazoans throughout evolution to form many complex organs, including skeletal muscle, bone and placenta. Contemporary studies demonstrate fusion of cells of the same type confers enhanced function. For example, when the trophoblast cells of the placenta fuse to form the syncytiotrophoblast, the syncytiotrophoblast is better able to transport nutrients and hormones across the maternal-fetal barrier than unfused trophoblasts1-4. More recent studies demonstrate fusion of cells of different types can direct cell fate. The "reversion" or modification of cell fate by fusion was once thought to be limited to cell culture systems. But the advent of stem cell transplantation led to the discovery by us and others that stem cells can fuse with somatic cells in vivo and that fusion facilitates stem cell differentiation5-7. Thus, cell fusion is a regulated process capable of promoting cell survival and differentiation and thus could be of central importance for development, repair of tissues and even the pathogenesis of disease. Limiting the study of cell fusion, is lack of appropriate technology to 1) accurately identify fusion products and to 2) track fusion products over time. Here we present a novel approach to address both limitations via induction of bioluminescence upon fusion (Figure 1); bioluminescence can be detected with high sensitivity in vivo8-15. We utilize a construct encoding the firefly luciferase (Photinus pyralis) gene placed adjacent to a stop codon flanked by LoxP sequences. When cells expressing this gene fuse with cells expressing the Cre recombinase protein, the LoxP sites are cleaved and the stop signal is excised allowing transcription of luciferase. Because the signal is inducible, the incidence of false-positive signals is very low. Unlike existing methods which utilize the Cre/LoxP system16, 17, we have incorporated a "living" detection signal and thereby afford for the first time the opportunity to track the kinetics of cell fusion in vivo. To demonstrate the approach, mice ubiquitously expressing Cre recombinase served as recipients of stem cells transfected with a construct to express luciferase downstream of a floxed stop codon. Stem cells were transplanted via intramyocardial injection and after transplantation intravital image analysis was conducted to track the presence of fusion products in the heart and surrounding tissues over time. This approach could be adapted to analyze cell fusion in any tissue type at any stage of development, disease or adult tissue repair.
Bioengineering, Issue 59, Cell fusion, stem cell, fusogen, cre recombinase, biophotonic imaging, cellular transplantation
Play Button
Dissecting Host-virus Interaction in Lytic Replication of a Model Herpesvirus
Authors: Xiaonan Dong, Pinghui Feng.
Institutions: UT Southwestern Medical Center, UT Southwestern Medical Center.
In response to viral infection, a host develops various defensive responses, such as activating innate immune signaling pathways that lead to antiviral cytokine production1,2. In order to colonize the host, viruses are obligate to evade host antiviral responses and manipulate signaling pathways. Unraveling the host-virus interaction will shed light on the development of novel therapeutic strategies against viral infection. Murine γHV68 is closely related to human oncogenic Kaposi's sarcoma-associated herpesvirus and Epsten-Barr virus3,4. γHV68 infection in laboratory mice provides a tractable small animal model to examine the entire course of host responses and viral infection in vivo, which are not available for human herpesviruses. In this protocol, we present a panel of methods for phenotypic characterization and molecular dissection of host signaling components in γHV68 lytic replication both in vivo and ex vivo. The availability of genetically modified mouse strains permits the interrogation of the roles of host signaling pathways during γHV68 acute infection in vivo. Additionally, mouse embryonic fibroblasts (MEFs) isolated from these deficient mouse strains can be used to further dissect roles of these molecules during γHV68 lytic replication ex vivo. Using virological and molecular biology assays, we can pinpoint the molecular mechanism of host-virus interactions and identify host and viral genes essential for viral lytic replication. Finally, a bacterial artificial chromosome (BAC) system facilitates the introduction of mutations into the viral factor(s) that specifically interrupt the host-virus interaction. Recombinant γHV68 carrying these mutations can be used to recapitulate the phenotypes of γHV68 lytic replication in MEFs deficient in key host signaling components. This protocol offers an excellent strategy to interrogate host-pathogen interaction at multiple levels of intervention in vivo and ex vivo. Recently, we have discovered that γHV68 usurps an innate immune signaling pathway to promote viral lytic replication5. Specifically, γHV68 de novo infection activates the immune kinase IKKβ and activated IKKβ phosphorylates the master viral transcription factor, replication and transactivator (RTA), to promote viral transcriptional activation. In doing so, γHV68 efficiently couples its transcriptional activation to host innate immune activation, thereby facilitating viral transcription and lytic replication. This study provides an excellent example that can be applied to other viruses to interrogate host-virus interaction.
Immunology, Issue 56, herpesvirus, gamma herpesvirus 68, γHV68, signaling pathways, host-virus interaction, viral lytic replication
Play Button
Amplifying and Quantifying HIV-1 RNA in HIV Infected Individuals with Viral Loads Below the Limit of Detection by Standard Clinical Assays
Authors: Helene Mens, Mary Kearney, Ann Wiegand, Jonathan Spindler, Frank Maldarelli, John W. Mellors, John M. Coffin.
Institutions: NCI-Frederick, University of Pittsburgh, Tuffts University.
Amplifying viral genes and quantifying HIV-1 RNA in HIV-1 infected individuals with viral loads below the limit of detection by standard assays (below 50-75 copies/ml) is necessary to gain insight to viral dynamics and virus host interactions in patients who naturally control the infection and those who are on combination antiretroviral therapy (cART). Here we describe how to amplify viral genomes by single genome sequencing (the SGS protocol) 13, 19 and how to accurately quantify HIV-1 RNA in patients with low viral loads (the single-copy assay (SCA) protocol) 12, 20. The single-copy assay is a real-time PCR assay with sensitivity depending on the volume of plasma being assayed. If a single virus genome is detected in 7 ml of plasma, then the RNA copy number is reported to be 0.3 copies/ml. The assay has an internal control testing for the efficiency of RNA extraction, and controls for possible amplification from DNA or contamination. Patient samples are measured in triplicate. The single-genome sequencing assay (SGS), now widely used and considered to be non-labor intensive 3, 7, 12, 14, 15,is a limiting dilution assay, in which endpoint diluted cDNA product is spread over a 96-well plate. According to a Poisson distribution, when less than 1/3 of the wells give product, there is an 80% chance of the PCR product being resultant of amplification from a single cDNA molecule. SGS has the advantage over cloning of not being subjected to resampling and not being biased by PCR-introduced recombination 19. However, the amplification success of SCA and SGS depend on primer design. Both assays were developed for HIV-1 subtype B, but can be adapted for other subtypes and other regions of the genome by changing primers, probes, and standards.
Immunology, Issue 55, single genome sequencing, SGS, real-time PCR, single-copy assay, SCA, HIV-1, ultra-sensitive, RNA extraction
Play Button
The In ovo CAM-assay as a Xenograft Model for Sarcoma
Authors: Gwen M.L. Sys, Lore Lapeire, Nikita Stevens, Herman Favoreel, Ramses Forsyth, Marc Bracke, Olivier De Wever.
Institutions: Ghent University Hospital, Ghent University, Ghent University, Pathlicon.
Sarcoma is a very rare disease that is heterogeneous in nature, all hampering the development of new therapies. Sarcoma patients are ideal candidates for personalized medicine after stratification, explaining the current interest in developing a reproducible and low-cost xenotransplant model for this disease. The chick chorioallantoic membrane is a natural immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition, it is easily accessed, manipulated and imaged using optical and fluorescence stereomicroscopy. Histology further allows detailed analysis of heterotypic cellular interactions. This protocol describes in detail the in ovo grafting of the chorioallantoic membrane with fresh sarcoma-derived tumor tissues, their single cell suspensions, and permanent and transient fluorescently labeled established sarcoma cell lines (Saos-2 and SW1353). The chick survival rates are up to 75%. The model is used to study graft- (viability, Ki67 proliferation index, necrosis, infiltration) and host (fibroblast infiltration, vascular ingrowth) behavior. For localized grafting of single cell suspensions, ECM gel provides significant advantages over inert containment materials. The Ki67 proliferation index is related to the distance of the cells from the surface of the CAM and the duration of application on the CAM, the latter determining a time frame for the addition of therapeutic products.
Cancer Biology, Issue 77, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Bioengineering, Developmental Biology, Anatomy, Physiology, Oncology, Surgery, Adipose Tissue, Connective Tissue, Neoplasm, Muscle Tissue, Sarcoma, Animal Experimentation, Cell Culture Techniques, Neoplasms, Experimental, Neoplasm Transplantation, Biological Assay, Sarcomas, CAM-assay, CAM, assay, xenograft, proliferation, invasion, cancer, tumor, in ovo, animal model
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Creating Anatomically Accurate and Reproducible Intracranial Xenografts of Human Brain Tumors
Authors: Angela M. Pierce, Amy K. Keating.
Institutions: University of Colorado School of Medicine.
Orthotopic tumor models are currently the best way to study the characteristics of a tumor type, with and without intervention, in the context of a live animal – particularly in sites with unique physiological and architectural qualities such as the brain. In vitro and ectopic models cannot account for features such as vasculature, blood brain barrier, metabolism, drug delivery and toxicity, and a host of other relevant factors. Orthotopic models have their limitations too, but with proper technique tumor cells of interest can be accurately engrafted into tissue that most closely mimics conditions in the human brain. By employing methods that deliver precisely measured volumes to accurately defined locations at a consistent rate and pressure, mouse models of human brain tumors with predictable growth rates can be reproducibly created and are suitable for reliable analysis of various interventions. The protocol described here focuses on the technical details of designing and preparing for an intracranial injection, performing the surgery, and ensuring successful and reproducible tumor growth and provides starting points for a variety of conditions that can be customized for a range of different brain tumor models.
Medicine, Issue 91, intracranial, glioblastoma, mouse, orthotopic, brain tumor, stereotaxic, micropump, brain injection
Play Button
Light/dark Transition Test for Mice
Authors: Keizo Takao, Tsuyoshi Miyakawa.
Institutions: Graduate School of Medicine, Kyoto University.
Although all of the mouse genome sequences have been determined, we do not yet know the functions of most of these genes. Gene-targeting techniques, however, can be used to delete or manipulate a specific gene in mice. The influence of a given gene on a specific behavior can then be determined by conducting behavioral analyses of the mutant mice. As a test for behavioral phenotyping of mutant mice, the light/dark transition test is one of the most widely used tests to measure anxiety-like behavior in mice. The test is based on the natural aversion of mice to brightly illuminated areas and on their spontaneous exploratory behavior in novel environments. The test is sensitive to anxiolytic drug treatment. The apparatus consists of a dark chamber and a brightly illuminated chamber. Mice are allowed to move freely between the two chambers. The number of entries into the bright chamber and the duration of time spent there are indices of bright-space anxiety in mice. To obtain phenotyping results of a strain of mutant mice that can be readily reproduced and compared with those of other mutants, the behavioral test methods should be as identical as possible between laboratories. The procedural differences that exist between laboratories, however, make it difficult to replicate or compare the results among laboratories. Here, we present our protocol for the light/dark transition test as a movie so that the details of the protocol can be demonstrated. In our laboratory, we have assessed more than 60 strains of mutant mice using the protocol shown in the movie. Those data will be disclosed as a part of a public database that we are now constructing. Visualization of the protocol will facilitate understanding of the details of the entire experimental procedure, allowing for standardization of the protocols used across laboratories and comparisons of the behavioral phenotypes of various strains of mutant mice assessed using this test.
Neuroscience, Issue 1, knockout mice, transgenic mice, behavioral test, phenotyping
Play Button
Intraductal Injection for Localized Drug Delivery to the Mouse Mammary Gland
Authors: Silva Krause, Amy Brock, Donald E. Ingber.
Institutions: Boston Children's Hospital and Harvard Medical School, Harvard University, Harvard School of Engineering and Applied Sciences.
Herein we describe a protocol to deliver various reagents to the mouse mammary gland via intraductal injections. Localized drug delivery and knock-down of genes within the mammary epithelium has been difficult to achieve due to the lack of appropriate targeting molecules that are independent of developmental stages such as pregnancy and lactation. Herein, we describe a technique for localized delivery of reagents to the mammary gland at any stage in adulthood via intraductal injection into the nipples of mice. The injections can be performed on live mice, under anesthesia, and allow for a non-invasive and localized drug delivery to the mammary gland. Furthermore, the injections can be repeated over several months without damaging the nipple. Vital dyes such as Evans Blue are very helpful to learn the technique. Upon intraductal injection of the blue dye, the entire ductal tree becomes visible to the eye. Furthermore, fluorescently labeled reagents also allow for visualization and distribution within the mammary gland. This technique is adaptable for a variety of compounds including siRNA, chemotherapeutic agents, and small molecules.
Developmental Biology, Issue 80, Mammary Glands, Animal, Drug Administration Routes, intraductal injection, local drug delivery, siRNA
Play Button
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Authors: Samira Samtleben, Juliane Jaepel, Caroline Fecher, Thomas Andreska, Markus Rehberg, Robert Blum.
Institutions: University of Wuerzburg, Max Planck Institute of Neurobiology, Martinsried, Ludwig-Maximilians University of Munich.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Cellular Biology, Issue 75, Neurobiology, Neuroscience, Molecular Biology, Biochemistry, Biomedical Engineering, Bioengineering, Virology, Medicine, Anatomy, Physiology, Surgery, Endoplasmic Reticulum, ER, Calcium Signaling, calcium store, calcium imaging, calcium indicator, metabotropic signaling, Ca2+, neurons, cells, mouse, animal model, cell culture, targeted esterase induced dye loading, imaging
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Efficient Agroinfiltration of Plants for High-level Transient Expression of Recombinant Proteins
Authors: Kahlin Leuzinger, Matthew Dent, Jonathan Hurtado, Jake Stahnke, Huafang Lai, Xiaohong Zhou, Qiang Chen.
Institutions: Arizona State University .
Mammalian cell culture is the major platform for commercial production of human vaccines and therapeutic proteins. However, it cannot meet the increasing worldwide demand for pharmaceuticals due to its limited scalability and high cost. Plants have shown to be one of the most promising alternative pharmaceutical production platforms that are robust, scalable, low-cost and safe. The recent development of virus-based vectors has allowed rapid and high-level transient expression of recombinant proteins in plants. To further optimize the utility of the transient expression system, we demonstrate a simple, efficient and scalable methodology to introduce target-gene containing Agrobacterium into plant tissue in this study. Our results indicate that agroinfiltration with both syringe and vacuum methods have resulted in the efficient introduction of Agrobacterium into leaves and robust production of two fluorescent proteins; GFP and DsRed. Furthermore, we demonstrate the unique advantages offered by both methods. Syringe infiltration is simple and does not need expensive equipment. It also allows the flexibility to either infiltrate the entire leave with one target gene, or to introduce genes of multiple targets on one leaf. Thus, it can be used for laboratory scale expression of recombinant proteins as well as for comparing different proteins or vectors for yield or expression kinetics. The simplicity of syringe infiltration also suggests its utility in high school and college education for the subject of biotechnology. In contrast, vacuum infiltration is more robust and can be scaled-up for commercial manufacture of pharmaceutical proteins. It also offers the advantage of being able to agroinfiltrate plant species that are not amenable for syringe infiltration such as lettuce and Arabidopsis. Overall, the combination of syringe and vacuum agroinfiltration provides researchers and educators a simple, efficient, and robust methodology for transient protein expression. It will greatly facilitate the development of pharmaceutical proteins and promote science education.
Plant Biology, Issue 77, Genetics, Molecular Biology, Cellular Biology, Virology, Microbiology, Bioengineering, Plant Viruses, Antibodies, Monoclonal, Green Fluorescent Proteins, Plant Proteins, Recombinant Proteins, Vaccines, Synthetic, Virus-Like Particle, Gene Transfer Techniques, Gene Expression, Agroinfiltration, plant infiltration, plant-made pharmaceuticals, syringe agroinfiltration, vacuum agroinfiltration, monoclonal antibody, Agrobacterium tumefaciens, Nicotiana benthamiana, GFP, DsRed, geminiviral vectors, imaging, plant model
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Production of Replication-Defective Retrovirus by Transient Transfection of 293T cells
Authors: L Cristina Gavrilescu, Richard A Van Etten.
Institutions: Tufts University.
Our lab studies human myeloproliferative diseases induced by such oncogenes as Bcr-Abl or growth factor receptor-derived oncogenes (ZNF198-FGFR1, Bcr-PDGFRα, etc.). We are able to model and study a human-like disease in our mouse model, by transplanting bone marrow cells previously infected with a retrovirus expressing the oncogene of interest. Replication-defective retrovirus encoding a human oncogene and a marker (GFP, RFP, antibiotic resistance gene, etc.) is produced by a transient transfection protocol using 293T cells, a human renal epithelial cell line transformed by the adenovirus E1A gene product. 293 cells have the unusual property of being highly transfectable by calcium phosphate (CaPO4), with up to 50-80% transfection efficiency readily attainable. Here, we co-transfect 293 cells with a retroviral vector expressing the oncogene of interest and a plasmid that expresses the gag-pol-env packaging functions, such as the single-genome packaging constructs kat or pCL, in this case the EcoPak plasmid. The initial transfection is further improved by use of chloroquine. Stocks of ecotropic virus, collected as culture supernatant 48 hrs. post-transfection, can be stored at -80°C and used for infection of cell-lines in view of transformation and in vitro studies, or primary cells such as mouse bone marrow cells, that can then be used for transplant in our mouse model.
Cellular Biology, issue 10, retrovirus, transfection, 293T cells
Play Button
In Utero Intraventricular Injection and Electroporation of E15 Mouse Embryos
Authors: William Walantus, David Castaneda, Laura Elias, Arnold Kriegstein.
Institutions: University of California, San Francisco - UCSF.
In-utero in-vivo injection and electroporation of the embryonic mouse neocortex provides a powerful tool for the manipulation of individual progenitors lining the walls of the lateral ventricle. This technique is now widely used to study the processes involved in corticogenesis by over-expressing or knocking down genes and observing the effects on cellular proliferation, migration, and differentiation. In comparison to traditional knockout strategies, in-utero electroporation provides a rapid means to manipulate a population of cells during a specific temporal window. In this video protocol we outline the experimental methodology for preparing mice for surgery, exposing the uterine horns through laporatomy, injecting DNA into the lateral ventricles of the developing embryo, electroporating DNA into the progenitors lining the lateral wall, and caring for animals post-surgery. Our laboratory uses this protocol for surgeries on E13-E16 mice, however, it is most commonly performed at E15, as shown in this video.
Neuroscience, Issue 6, Protocol, electroporation, Injection, Stem Cells, brain, transfection
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.