JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Analysis on the relevance of asthma susceptibility with the alteration of integrin ? 4 expression.
PUBLISHED: 01-01-2014
Accumulated research has suggested the importance of the adhesion molecules modulation as therapeutic approach for bronchial asthma. Adhesion molecules expression alteration contributes to the pathogenesis of asthma. In order to probe the roles of expression imbalance of adhesion molecules in asthma pathogenesis, expression profiling of adhesion molecules was performed using cDNA microarray assay. The results showed that the expression pattern of adhesion molecules was altered in peripheral blood leucocytes of asthma patients. In this study, we focused on one of the abnormally expressed molecule, integrin ?4, which was down-regulated in all asthma patients, to analyze the relevance of asthma susceptibility with the alteration of integrin ?4 expressions. Real time PCR was used to verify the down-regulation of integrin ?4 in additional 38 asthma patients. Next, the 5'flanking region of integrin ?4 DNA were amplified, sequenced and site-directed mutagenesis technology in correspondent variation sites were carried out. Among 4 variation sites found in 5' flanking region of integrin ?4, 3 were related to asthma susceptibility: -nt1029 G/A, -nt 1051 G/A, and -nt 1164 G/C. A reduction of human integrin ?4 promoter activity was observed at mutants of these sites. This study demonstrates that various adhesion molecules in asthma patients are abnormally expressed. Mutations in 5' flanking region result in reduced integrin ?4 expression, which is related to increased risk of asthma.
Authors: David R. Duhamel, Jeff B. Hales.
Published: 11-04-2010
Bronchial thermoplasty is a non-drug procedure for severe persistent asthma that delivers thermal energy to the airway wall in a precisely controlled manner to reduce excessive airway smooth muscle. Reducing airway smooth muscle decreases the ability of the airways to constrict, thereby reducing the frequency of asthma attacks. Bronchial thermoplasty is delivered by the Alair System and is performed in three outpatient procedure visits, each scheduled approximately three weeks apart. The first procedure treats the airways of the right lower lobe, the second treats the airways of the left lower lobe and the third and final procedure treats the airways in both upper lobes. After all three procedures are performed the bronchial thermoplasty treatment is complete. Bronchial thermoplasty is performed during bronchoscopy with the patient under moderate sedation. All accessible airways distal to the mainstem bronchi between 3 and 10 mm in diameter, with the exception of the right middle lobe, are treated under bronchoscopic visualization. Contiguous and non-overlapping activations of the device are used, moving from distal to proximal along the length of the airway, and systematically from airway to airway as described previously. Although conceptually straightforward, the actual execution of bronchial thermoplasty is quite intricate and procedural duration for the treatment of a single lobe is often substantially longer than encountered during routine bronchoscopy. As such, bronchial thermoplasty should be considered a complex interventional bronchoscopy and is intended for the experienced bronchoscopist. Optimal patient management is critical in any such complex and longer duration bronchoscopic procedure. This article discusses the importance of careful patient selection, patient preparation, patient management, procedure duration, postoperative care and follow-up to ensure that bronchial thermoplasty is performed safely. Bronchial thermoplasty is expected to complement asthma maintenance medications by providing long-lasting asthma control and improving asthma-related quality of life of patients with severe asthma. In addition, bronchial thermoplasty has been demonstrated to reduce severe exacerbations (asthma attacks) emergency rooms visits for respiratory symptoms, and time lost from work, school and other daily activities due to asthma.
22 Related JoVE Articles!
Play Button
Analysis of Pulmonary Dendritic Cell Maturation and Migration during Allergic Airway Inflammation
Authors: Rahul Kushwah, Jim Hu.
Institutions: McMaster University, Hamilton, University of Toronto.
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen1,2. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response3. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment4. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens5. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma6,7. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Immunology, Issue 65, Medicine, Physiology, Dendritic Cells, allergic airway inflammation, ovalbumin, lymph nodes, lungs, dendritic cell maturation, dendritic cell migration, mediastinal lymph nodes
Play Button
Static Adhesion Assay for the Study of Integrin Activation in T Lymphocytes
Authors: Marianne Strazza, Inbar Azoulay-Alfaguter, Ariel Pedoeem, Adam Mor.
Institutions: New York University School of Medicine, New York University School of Medicine.
T lymphocyte adhesion is required for multiple T cell functions, including migration to sites of inflammation and formation of immunological synapses with antigen presenting cells. T cells accomplish regulated adhesion by controlling the adhesive properties of integrins, a class of cell adhesion molecules consisting of heterodimeric pairs of transmembrane proteins that interact with target molecules on partner cells or extracellular matrix. The most prominent T cell integrin is lymphocyte function associated antigen (LFA)-1, composed of subunits αL and β2, whose target is the intracellular adhesion molecule (ICAM)-1. The ability of a T cell to control adhesion derives from the ability to regulate the affinity states of individual integrins. Inside-out signaling describes the process whereby signals inside a cell cause the external domains of integrins to assume an activated state. Much of our knowledge of these complex phenomena is based on mechanistic studies performed in simplified in vitro model systems. The T lymphocyte adhesion assay described here is an excellent tool that allows T cells to adhere to target molecules, under static conditions, and then utilizes a fluorescent plate reader to quantify adhesiveness. This assay has been useful in defining adhesion-stimulatory or inhibitory substances that act on lymphocytes, as well as characterizing the signaling events involved. Although described here for LFA-1 - ICAM-1 mediated adhesion; this assay can be readily adapted to allow for the study of other adhesive interactions (e.g. VLA-4 - fibronectin).
Immunology, Issue 88, Immune System Phenomena, T cell, adhesion, Rap1, integrins, T lymphocytes, ICAM-1
Play Button
A Flow Adhesion Assay to Study Leucocyte Recruitment to Human Hepatic Sinusoidal Endothelium Under Conditions of Shear Stress
Authors: Shishir Shetty, Christopher J. Weston, David H. Adams, Patricia F. Lalor.
Institutions: University of Birmingham.
Leucocyte infiltration into human liver tissue is a common process in all adult inflammatory liver diseases. Chronic infiltration can drive the development of fibrosis and progression to cirrhosis. Understanding the molecular mechanisms that mediate leucocyte recruitment to the liver could identify important therapeutic targets for liver disease. The key interaction during leucocyte recruitment is that of inflammatory cells with endothelium under conditions of shear stress. Recruitment to the liver occurs within the low shear channels of the hepatic sinusoids which are lined by hepatic sinusoidal endothelial cells (HSEC). The conditions within the hepatic sinusoids can be recapitulated by perfusing leucocytes through channels lined by human HSEC monolayers at specific flow rates. In these conditions leucocytes undergo a brief tethering step followed by activation and firm adhesion, followed by a crawling step and subsequent transmigration across the endothelial layer. Using phase contrast microscopy, each step of this 'adhesion cascade' can be visualized and recorded followed by offline analysis. Endothelial cells or leucocytes can be pretreated with inhibitors to determine the role of specific molecules during this process.
Immunology, Issue 85, Leucocyte trafficking, liver, hepatic sinusoidal endothelial cells, peripheral blood lymphocytes, flow adhesion assay
Play Button
Adhesion Frequency Assay for In Situ Kinetics Analysis of Cross-Junctional Molecular Interactions at the Cell-Cell Interface
Authors: Veronika I. Zarnitsyna, Cheng Zhu.
Institutions: Georgia Institute of Technology .
The micropipette adhesion assay was developed in 1998 to measure two-dimensional (2D) receptor-ligand binding kinetics1. The assay uses a human red blood cell (RBC) as adhesion sensor and presenting cell for one of the interacting molecules. It employs micromanipulation to bring the RBC into contact with another cell that expresses the other interacting molecule with precisely controlled area and time to enable bond formation. The adhesion event is detected as RBC elongation upon pulling the two cells apart. By controlling the density of the ligands immobilized on the RBC surface, the probability of adhesion is kept in mid-range between 0 and 1. The adhesion probability is estimated from the frequency of adhesion events in a sequence of repeated contact cycles between the two cells for a given contact time. Varying the contact time generates a binding curve. Fitting a probabilistic model for receptor-ligand reaction kinetics1 to the binding curve returns the 2D affinity and off-rate. The assay has been validated using interactions of Fcγ receptors with IgG Fc1-6, selectins with glycoconjugate ligands6-9, integrins with ligands10-13, homotypical cadherin binding14, T cell receptor and coreceptor with peptide-major histocompatibility complexes15-19. The method has been used to quantify regulations of 2D kinetics by biophysical factors, such as the membrane microtopology5, membrane anchor2, molecular orientation and length6, carrier stiffness9, curvature20, and impingement force20, as well as biochemical factors, such as modulators of the cytoskeleton and membrane microenvironment where the interacting molecules reside and the surface organization of these molecules15,17,19. The method has also been used to study the concurrent binding of dual receptor-ligand species3,4, and trimolecular interactions19 using a modified model21. The major advantage of the method is that it allows study of receptors in their native membrane environment. The results could be very different from those obtained using purified receptors17. It also allows study of the receptor-ligand interactions in a sub-second timescale with temporal resolution well beyond the typical biochemical methods. To illustrate the micropipette adhesion frequency method, we show kinetics measurement of intercellular adhesion molecule 1 (ICAM-1) functionalized on RBCs binding to integrin αLβ2 on neutrophils with dimeric E-selectin in the solution to activate αLβ2.
Bioengineering, Issue 57, Two-dimensional binding, affinity and kinetics, micropipette manipulation, receptor-ligand interaction
Play Button
Noninvasive Intratracheal Intubation to Study the Pathology and Physiology of Mouse Lung
Authors: Yan Cai, Shioko Kimura.
Institutions: National Institutes of Health.
The use of a model that mimics the condition of lung diseases in humans is critical for studying the pathophysiology and/or etiology of a particular disease and for developing therapeutic intervention. With the increasing availability of knockout and transgenic derivatives, together with a vast amount of genetic information, mice provide one of the best models to study the molecular mechanisms underlying the pathology and physiology of lung diseases. Inhalation, intranasal instillation, intratracheal instillation, and intratracheal intubation are the most widely used techniques by a number of investigators to administer materials of interest to mouse lungs. There are pros and cons for each technique depending on the goals of a study. Here a noninvasive intratracheal intubation method that can directly deliver exogenous materials to mouse lungs is presented. This technique was applied to administer bleomycin to mouse lungs as a model to study pulmonary fibrosis.
Medicine, Issue 81, mouse, rodents, intratracheal intubation, delivery of exogenous substances, lung, study of airway pathology and physiology, pulmonary fibrosis
Play Button
Use of Artificial Sputum Medium to Test Antibiotic Efficacy Against Pseudomonas aeruginosa in Conditions More Relevant to the Cystic Fibrosis Lung
Authors: Sebastian Kirchner, Joanne L Fothergill, Elli A. Wright, Chloe E. James, Eilidh Mowat, Craig Winstanley.
Institutions: University of Liverpool , University of Liverpool .
There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic1. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic2. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests3. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence4,5,6. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a >128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods3. Several in vitro models have been used previously to study P. aeruginosa biofilms7, 8. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung9 . In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa2 and affect antibiotic susceptibility10. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.
Immunology, Issue 64, Microbiology, Pseudomonas aeruginosa, antimicrobial susceptibility, artificial sputum media, lung infection, cystic fibrosis, diagnostics, plankton
Play Button
An In vitro Model to Study Immune Responses of Human Peripheral Blood Mononuclear Cells to Human Respiratory Syncytial Virus Infection
Authors: Marloes Vissers, Marrit N. Habets, Inge M. L. Ahout, Jop Jans, Marien I. de Jonge, Dimitri A. Diavatopoulos, Gerben Ferwerda.
Institutions: Radboud university medical center.
Human respiratory syncytial virus (HRSV) infections present a broad spectrum of disease severity, ranging from mild infections to life-threatening bronchiolitis. An important part of the pathogenesis of severe disease is an enhanced immune response leading to immunopathology. Here, we describe a protocol used to investigate the immune response of human immune cells to an HRSV infection. First, we describe methods used for culturing, purification and quantification of HRSV. Subsequently, we describe a human in vitro model in which peripheral blood mononuclear cells (PBMCs) are stimulated with live HRSV. This model system can be used to study multiple parameters that may contribute to disease severity, including the innate and adaptive immune response. These responses can be measured at the transcriptional and translational level. Moreover, viral infection of cells can easily be measured using flow cytometry. Taken together, stimulation of PBMC with live HRSV provides a fast and reproducible model system to examine mechanisms involved in HRSV-induced disease.
Immunology, Issue 82, Blood Cells, Respiratory Syncytial Virus, Human, Respiratory Tract Infections, Paramyxoviridae Infections, Models, Immunological, Immunity, HRSV culture, purification, quantification, PBMC isolation, stimulation, inflammatory pathways
Play Button
Three Dimensional Cultures: A Tool To Study Normal Acinar Architecture vs. Malignant Transformation Of Breast Cells
Authors: Anupama Pal, Celina G. Kleer.
Institutions: University of Michigan Comprehensive Cancer Center, University of Michigan Comprehensive Cancer Center.
Invasive breast carcinomas are a group of malignant epithelial tumors characterized by the invasion of adjacent tissues and propensity to metastasize. The interplay of signals between cancer cells and their microenvironment exerts a powerful influence on breast cancer growth and biological behavior1. However, most of these signals from the extracellular matrix are lost or their relevance is understudied when cells are grown in two dimensional culture (2D) as a monolayer. In recent years, three dimensional (3D) culture on a reconstituted basement membrane has emerged as a method of choice to recapitulate the tissue architecture of benign and malignant breast cells. Cells grown in 3D retain the important cues from the extracellular matrix and provide a physiologically relevant ex vivo system2,3. Of note, there is growing evidence suggesting that cells behave differently when grown in 3D as compared to 2D4. 3D culture can be effectively used as a means to differentiate the malignant phenotype from the benign breast phenotype and for underpinning the cellular and molecular signaling involved3. One of the distinguishing characteristics of benign epithelial cells is that they are polarized so that the apical cytoplasm is towards the lumen and the basal cytoplasm rests on the basement membrane. This apico-basal polarity is lost in invasive breast carcinomas, which are characterized by cellular disorganization and formation of anastomosing and branching tubules that haphazardly infiltrates the surrounding stroma. These histopathological differences between benign gland and invasive carcinoma can be reproduced in 3D6,7. Using the appropriate read-outs like the quantitation of single round acinar structures, or differential expression of validated molecular markers for cell proliferation, polarity and apoptosis in combination with other molecular and cell biology techniques, 3D culture can provide an important tool to better understand the cellular changes during malignant transformation and for delineating the responsible signaling.
Medicine, Issue 86, pathological conditions, signs and symptoms, neoplasms, three dimensional cultures, Matrigel, breast cells, malignant phenotype, signaling
Play Button
Systematic Analysis of In Vitro Cell Rolling Using a Multi-well Plate Microfluidic System
Authors: Oren Levy, Priya Anandakumaran, Jessica Ngai, Rohit Karnik, Jeffrey M. Karp.
Institutions: Brigham and Women's Hospital, Brigham and Women's Hospital, Harvard University, Harvard University, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology.
A major challenge for cell-based therapy is the inability to systemically target a large quantity of viable cells with high efficiency to tissues of interest following intravenous or intraarterial infusion. Consequently, increasing cell homing is currently studied as a strategy to improve cell therapy. Cell rolling on the vascular endothelium is an important step in the process of cell homing and can be probed in-vitro using a parallel plate flow chamber (PPFC). However, this is an extremely tedious, low throughput assay, with poorly controlled flow conditions. Instead, we used a multi-well plate microfluidic system that enables study of cellular rolling properties in a higher throughput under precisely controlled, physiologically relevant shear flow1,2. In this paper, we show how the rolling properties of HL-60 (human promyelocytic leukemia) cells on P- and E-selectin-coated surfaces as well as on cell monolayer-coated surfaces can be readily examined. To better simulate inflammatory conditions, the microfluidic channel surface was coated with endothelial cells (ECs), which were then activated with tumor necrosis factor-α (TNF-α), significantly increasing interactions with HL-60 cells under dynamic conditions. The enhanced throughput and integrated multi-parameter software analysis platform, that permits rapid analysis of parameters such as rolling velocities and rolling path, are important advantages for assessing cell rolling properties in-vitro. Allowing rapid and accurate analysis of engineering approaches designed to impact cell rolling and homing, this platform may help advance exogenous cell-based therapy.
Bioengineering, Issue 80, Microfluidics, Endothelial Cells, Leukocyte Rolling, HL-60 cells, TNF-α, P-selectin, E-selectin
Play Button
Induction of Adhesion-dependent Signals Using Low-intensity Ultrasound
Authors: James Roper, Andrew Harrison, Mark D. Bass.
Institutions: University of Bristol, Smith and Nephew.
In multicellular organisms, cell behavior is dictated by interactions with the extracellular matrix. Consequences of matrix-engagement range from regulation of cell migration and proliferation, to secretion and even differentiation. The signals underlying each of these complex processes arise from the molecular interactions of extracellular matrix receptors on the surface of the cell. Integrins are the prototypic receptors and provide a mechanical link between extracellular matrix and the cytoskeleton, as well as initiating some of the adhesion-dependent signaling cascades. However, it is becoming increasingly apparent that additional transmembrane receptors function alongside the integrins to regulate both the integrin itself and signals downstream. The most elegant of these examples is the transmembrane proteoglycan, syndecan-4, which cooperates with α5β1-integrin during adhesion to fibronectin. In vivo models demonstrate the importance of syndecan-4 signaling, as syndecan-4-knockout mice exhibit healing retardation due to inefficient fibroblast migration1,2. In wild-type animals, migration of fibroblasts toward a wound is triggered by the appearance of fibronectin that leaks from damaged capillaries and is deposited by macrophages in injured tissue. Therefore there is great interest in discovering strategies that enhance fibronectin-dependent signaling and could accelerate repair processes. The integrin-mediated and syndecan-4-mediated components of fibronectin-dependent signaling can be separated by stimulating cells with recombinant fibronectin fragments. Although integrin engagement is essential for cell adhesion, certain fibronectin-dependent signals are regulated by syndecan-4. Syndecan-4 activates the Rac1 protrusive signal3, causes integrin redistribution1, triggers recruitment of cytoskeletal molecules, such as vinculin, to focal adhesions4, and thereby induces directional migration3. We have looked for alternative strategies for activating such signals and found that low-intensity pulsed ultrasound (LIPUS) can mimic the effects of syndecan-4 engagement5. In this protocol we describe the method by which 30 mW/cm2, 1.5 MHz ultrasound, pulsed at 1 kHz (Fig. 1) can be applied to fibroblasts in culture (Fig. 2) to induce Rac1 activation and focal adhesion formation. Ultrasound stimulation is applied for a maximum of 20 minutes, as this combination of parameters has been found to be most efficacious for acceleration of clinical fracture repair6. The method uses recombinant fibronectin fragments to engage α5β1-integrin, without engagement of syndecan-4, and requires inhibition of protein synthesis by cycloheximide to block deposition of additional matrix by the fibroblasts., The positive effect of ultrasound on repair mechanisms is well documented7,8, and by understanding the molecular effect of ultrasound in culture we should be able to refine the therapeutic technique to improve clinical outcomes.
Biomedical Engineering, Issue 63, Ultrasound, LIPUS, Focal Adhesion, Syndecan-4, Wound Healing, Extracellular Matrix, Rac1, bioengineering
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
Play Button
Quantitative In vitro Assay to Measure Neutrophil Adhesion to Activated Primary Human Microvascular Endothelial Cells under Static Conditions
Authors: Kevin Wilhelmsen, Katherine Farrar, Judith Hellman.
Institutions: University of California, San Francisco, University of California, San Francisco.
The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.
Immunology, Issue 78, Cellular Biology, Infection, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Endothelium, Vascular, Neutrophils, Inflammation, Inflammation Mediators, Neutrophil, Leukocyte Adhesion, Endothelial cells, assay
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Efficient Production and Purification of Recombinant Murine Kindlin-3 from Insect Cells for Biophysical Studies
Authors: Luke A. Yates, Robert J. C. Gilbert.
Institutions: University of Oxford.
Kindlins are essential coactivators, with talin, of the cell surface receptors integrins and also participate in integrin outside-in signalling, and the control of gene transcription in the cell nucleus. The kindlins are ~75 kDa multidomain proteins and bind to an NPxY motif and upstream T/S cluster of the integrin β-subunit cytoplasmic tail. The hematopoietically-important kindlin isoform, kindlin-3, is critical for platelet aggregation during thrombus formation, leukocyte rolling in response to infection and inflammation and osteoclast podocyte formation in bone resorption. Kindlin-3's role in these processes has resulted in extensive cellular and physiological studies. However, there is a need for an efficient method of acquiring high quality milligram quantities of the protein for further studies. We have developed a protocol, here described, for the efficient expression and purification of recombinant murine kindlin-3 by use of a baculovirus-driven expression system in Sf9 cells yielding sufficient amounts of high purity full-length protein to allow its biophysical characterization. The same approach could be taken in the study of the other mammalian kindlin isoforms.
Virology, Issue 85, Heterologous protein expression, insect cells, Spodoptera frugiperda, baculovirus, protein purification, kindlin, cell adhesion
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
Play Button
Murine Model of Allergen Induced Asthma
Authors: Aravind T. Reddy, Sowmya P. Lakshmi, Raju C. Reddy.
Institutions: Emory University and Atlanta VA Medical Center.
Asthma is a major cause of morbidity and mortality, affecting some 300 million people throughout the world.1 More than 8% of the US population has asthma, with the prevalence increasing.2 As with other diseases, animal models of allergic airway disease greatly facilitate understanding of the underlying pathophysiology, help identify potential therapeutic targets, and allow preclinical testing of possible new therapies. Models of allergic airway disease have been developed in several animal species, but murine models are particularly attractive due to the low cost, ready availability, and well-characterized immune systems of these animals.3 Availability of a variety of transgenic strains further increases the attractiveness of these models.4 Here we describe two murine models of allergic airway disease, both employing ovalbumin as the antigen. Following initial sensitization by intraperitoneal injection, one model delivers the antigen challenge by nebulization, the other by intratracheal delivery. These two models offer complementary advantages, with each mimicking the major features of human asthma.5 The major features of acute asthma include an exaggerated airway response to stimuli such as methacholine (airway hyperresponsiveness; AHR) and eosinophil-rich airway inflammation. These are also prominent effects of allergen challenge in our murine models,5,6 and we describe techniques for measuring them and thus evaluating the effects of experimental manipulation. Specifically, we describe both invasive7 and non-invasive8 techniques for measuring airway hyperresponsiveness as well as methods for assessing infiltration of inflammatory cells into the airways and the lung. Airway inflammatory cells are collected by bronchoalveolar lavage while lung histopathology is used to assess markers of inflammation throughout the organ. These techniques provide powerful tools for studying asthma in ways that would not be possible in humans.
Immunology, Issue 63, Allergy, airway hyperresponsiveness, pulmonary function, eosinophil, ovalbumin, methacholine, airway resistance, plethysmography, flexiVent, bronchoalveolar lavage, physiology
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Human T Lymphocyte Isolation, Culture and Analysis of Migration In Vitro
Authors: Craig T. Lefort, Minsoo Kim.
Institutions: University of Rochester.
The migration of T lymphocytes involves the adhesive interaction of cell surface integrins with ligands expressed on other cells or with extracellular matrix proteins. The precise spatiotemporal activation of integrins from a low affinity state to a high affinity state at the cell leading edge is important for T lymphocyte migration 1. Likewise, retraction of the cell trailing edge, or uropod, is a necessary step in maintaining persistent integrin-dependent T lymphocyte motility 2. Many therapeutic approaches to autoimmune or inflammatory diseases target integrins as a means to inhibit the excessive recruitment and migration of leukocytes 3. To study the molecular events that regulate human T lymphocyte migration, we have utilized an in vitro system to analyze cell migration on a two-dimensional substrate that mimics the environment that a T lymphocyte encounters during recruitment from the vasculature. T lymphocytes are first isolated from human donors and are then stimulated and cultured for seven to ten days. During the assay, T lymphocytes are allowed to adhere and migrate on a substrate coated with intercellular adhesion molecule-1 (ICAM-1), a ligand for integrin LFA-1, and stromal cell-derived factor-1 (SDF-1). Our data show that T lymphocytes exhibit a migratory velocity of ~15 μm/min. T lymphocyte migration can be inhibited by integrin blockade 1 or by inhibitors of the cellular actomyosin machinery that regulates cell migration 2.
Immunology, Issue 40, T lymphocyte, Migration, Integrin, LFA-1, ICAM-1, Chemokine
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.