JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
MiR-142-3p attenuates the migration of CD4? T cells through regulating actin cytoskeleton via RAC1 and ROCK2 in arteriosclerosis obliterans.
PUBLISHED: 01-01-2014
The migration of CD4+ T cells plays an important role in arteriosclerosis obliterans (ASO). However, the molecular mechanisms involved in CD4+ T cell migration are still unclear. The current study is aimed to determine the expression change of miR-142-3p in CD4+ T cells from patients with ASO and investigate its role in CD4+ T cell migration as well the potential mechanisms involved. We identified by qRT-PCR and in situ hybridization that the expression of miR-142-3p in CD4+ T cells was significantly down-regulated in patients with ASO. Chemokine (C-X-C motif) ligand 12 (CXCL12), a common inflammatory chemokine under the ASO condition, was able to down-regulate the expression of miR-142-3p in cultured CD4+ T cells. Up-regulation of miR-142-3p by lentivirus-mediated gene transfer had a strong inhibitory effect on CD4+ T cell migration both in cultured human cells in vitro and in mouse aortas and spleens in vivo. RAC1 and ROCK2 were identified to be the direct target genes in human CD4+ T cells, which are further confirmed by dual luciferase assay. MiR-142-3p had strong regulatory effects on actin cytoskeleton as shown by the actin staining in CD4+ T cells. The results suggest that the expression of miR-142-3p is down-regulated in CD4+ T cells from patients with ASO. The down-regulation of miR-142-3p could increase the migration of CD4+ T cells to the vascular walls by regulation of actin cytoskeleton via its target genes, RAC1 and ROCK2.
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Published: 08-13-2013
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
26 Related JoVE Articles!
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Revealing the Cytoskeletal Organization of Invasive Cancer Cells in 3D
Authors: Sara Geraldo, Anthony Simon, Danijela M. Vignjevic.
Institutions: Institut Curie.
Cell migration has traditionally been studied in 2D substrates. However, it has become increasingly evident that there is a need to study cell migration in more appropriate 3D environments, which better resemble the dimensionality of the physiological processes in question. Migratory cells can substantially differ in their morphology and mode of migration depending on whether they are moving on 2D or 3D substrates. Due to technical difficulties and incompatibilities with most standard protocols, structural and functional analysis of cells embedded within 3D matrices still remains uncommon. This article describes methods for preparation and imaging of 3D cancer cell cultures, either as single cells or spheroids. As an appropriate ECM substrate for cancer cell migration, we use nonpepsinized rat tail collagen I polymerized at room-temperature and fluorescently labeled to facilitate visualization using standard confocal microscopes. This work also includes a protocol for 3D immunofluorescent labeling of endogenous cell cytoskeleton. Using these protocols we hope to contribute to a better description of the molecular composition, localization, and functions of cellular structures in 3D.
Medicine, Issue 80, TAMRA, collagen, 3D matrix, spheroids, F-actin, microtubules
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
Play Button
In Vitro Assay to Evaluate the Impact of Immunoregulatory Pathways on HIV-specific CD4 T Cell Effector Function
Authors: Filippos Porichis, Meghan G. Hart, Jennifer Zupkosky, Lucie Barblu, Daniel E. Kaufmann.
Institutions: The Ragon Institute of MGH, MIT and Harvard, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM).
T cell exhaustion is a major factor in failed pathogen clearance during chronic viral infections. Immunoregulatory pathways, such as PD-1 and IL-10, are upregulated upon this ongoing antigen exposure and contribute to loss of proliferation, reduced cytolytic function, and impaired cytokine production by CD4 and CD8 T cells. In the murine model of LCMV infection, administration of blocking antibodies against these two pathways augmented T cell responses. However, there is currently no in vitro assay to measure the impact of such blockade on cytokine secretion in cells from human samples. Our protocol and experimental approach enable us to accurately and efficiently quantify the restoration of cytokine production by HIV-specific CD4 T cells from HIV infected subjects. Here, we depict an in vitro experimental design that enables measurements of cytokine secretion by HIV-specific CD4 T cells and their impact on other cell subsets. CD8 T cells were depleted from whole blood and remaining PBMCs were isolated via Ficoll separation method. CD8-depleted PBMCs were then incubated with blocking antibodies against PD-L1 and/or IL-10Rα and, after stimulation with an HIV-1 Gag peptide pool, cells were incubated at 37 °C, 5% CO2. After 48 hr, supernatant was collected for cytokine analysis by beads arrays and cell pellets were collected for either phenotypic analysis using flow cytometry or transcriptional analysis using qRT-PCR. For more detailed analysis, different cell populations were obtained by selective subset depletion from PBMCs or by sorting using flow cytometry before being assessed in the same assays. These methods provide a highly sensitive and specific approach to determine the modulation of cytokine production by antigen-specific T-helper cells and to determine functional interactions between different populations of immune cells.
Immunology, Issue 80, Virus Diseases, Immune System Diseases, HIV, CD4 T cell, CD8 T cell, antigen-presenting cell, Cytokines, immunoregulatory networks, PD-1: IL-10, exhaustion, monocytes
Play Button
Cell-based Flow Cytometry Assay to Measure Cytotoxic Activity
Authors: Alessandra Noto, Pearline Ngauv, Lydie Trautmann.
Institutions: Vaccine and Gene Therapy Institute of Florida.
Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU30/106 cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.
Immunology, Issue 82, Cytotoxicity, Effector CD8+ T cells, Tetramers, Target CD4+ T cells, CFSE, Flow cytometry
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
A Novel Stretching Platform for Applications in Cell and Tissue Mechanobiology
Authors: Dominique Tremblay, Charles M. Cuerrier, Lukasz Andrzejewski, Edward R. O'Brien, Andrew E. Pelling.
Institutions: University of Ottawa, University of Ottawa, University of Calgary, University of Ottawa, University of Ottawa.
Tools that allow the application of mechanical forces to cells and tissues or that can quantify the mechanical properties of biological tissues have contributed dramatically to the understanding of basic mechanobiology. These techniques have been extensively used to demonstrate how the onset and progression of various diseases are heavily influenced by mechanical cues. This article presents a multi-functional biaxial stretching (BAXS) platform that can either mechanically stimulate single cells or quantify the mechanical stiffness of tissues. The BAXS platform consists of four voice coil motors that can be controlled independently. Single cells can be cultured on a flexible substrate that can be attached to the motors allowing one to expose the cells to complex, dynamic, and spatially varying strain fields. Conversely, by incorporating a force load cell, one can also quantify the mechanical properties of primary tissues as they are exposed to deformation cycles. In both cases, a proper set of clamps must be designed and mounted to the BAXS platform motors in order to firmly hold the flexible substrate or the tissue of interest. The BAXS platform can be mounted on an inverted microscope to perform simultaneous transmitted light and/or fluorescence imaging to examine the structural or biochemical response of the sample during stretching experiments. This article provides experimental details of the design and usage of the BAXS platform and presents results for single cell and whole tissue studies. The BAXS platform was used to measure the deformation of nuclei in single mouse myoblast cells in response to substrate strain and to measure the stiffness of isolated mouse aortas. The BAXS platform is a versatile tool that can be combined with various optical microscopies in order to provide novel mechanobiological insights at the sub-cellular, cellular and whole tissue levels.
Bioengineering, Issue 88, cell stretching, tissue mechanics, nuclear mechanics, uniaxial, biaxial, anisotropic, mechanobiology
Play Button
Aip1p Dynamics Are Altered by the R256H Mutation in Actin
Authors: Alyson R. Pierick, Melissa McKane, Kuo-Kuang Wen, Heather L. Bartlett.
Institutions: University of Iowa, University of Iowa.
Mutations in actin cause a range of human diseases due to specific molecular changes that often alter cytoskeletal function. In this study, imaging of fluorescently tagged proteins using total internal fluorescence (TIRF) microscopy is used to visualize and quantify changes in cytoskeletal dynamics. TIRF microscopy and the use of fluorescent tags also allows for quantification of the changes in cytoskeletal dynamics caused by mutations in actin. Using this technique, quantification of cytoskeletal function in live cells valuably complements in vitro studies of protein function. As an example, missense mutations affecting the actin residue R256 have been identified in three human actin isoforms suggesting this amino acid plays an important role in regulatory interactions. The effects of the actin mutation R256H on cytoskeletal movements were studied using the yeast model. The protein, Aip1, which is known to assist cofilin in actin depolymerization, was tagged with green fluorescent protein (GFP) at the N-terminus and tracked in vivo using TIRF microscopy. The rate of Aip1p movement in both wild type and mutant strains was quantified. In cells expressing R256H mutant actin, Aip1p motion is restricted and the rate of movement is nearly half the speed measured in wild type cells (0.88 ± 0.30 μm/sec in R256H cells compared to 1.60 ± 0.42 μm/sec in wild type cells, p < 0.005).
Developmental Biology, Issue 89, green fluorescent protein, actin, Aip1p, total internal fluorescence microscopy, yeast, cloning
Play Button
Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions
Authors: Maria J. Mazon Moya, Emma Colucci-Guyon, Serge Mostowy.
Institutions: Imperial College London, Institut Pasteur, Unité Macrophages et Développement de l'Immunité.
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.
Infection, Issue 91, ATG8/LC3, autophagy, cytoskeleton, HeLa cells, p62, septin, Shigella, zebrafish
Play Button
In Situ Detection of Autoreactive CD4 T Cells in Brain and Heart Using Major Histocompatibility Complex Class II Dextramers
Authors: Chandirasegaran Massilamany, Arunakumar Gangaplara, Ting Jia, Christian Elowsky, Qingsheng Li, You Zhou, Jay Reddy.
Institutions: University of Nebraska, Lincoln, University of Nebraska, Lincoln, University of Nebraska, Lincoln.
This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers+ cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IAs/PLP 139-151 dextramers (specific)/anti-CD4 and IAs/Theiler’s murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IAk/Myhc 334-352 dextramers/anti-CD4 and IAk/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer+ cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the ‘Z’ serial images.
Immunology, Issue 90, dextramers; MHC class II; in situ; EAE; brain; EAM; heart; confocal microscopy.
Play Button
Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Institutions: University of Manitoba, University of Manitoba.
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Medicine, Issue 89, mucosal, immunology, FGT, lavage, cervical, CMC
Play Button
In Vitro Analysis of Myd88-mediated Cellular Immune Response to West Nile Virus Mutant Strain Infection
Authors: Guorui Xie, Melissa C. Whiteman, Jason A. Wicker, Alan D.T. Barrett, Tian Wang.
Institutions: The University of Texas Medical Branch, The University of Texas Medical Branch, The University of Texas Medical Branch.
An attenuated West Nile virus (WNV), a nonstructural (NS) 4B-P38G mutant, induced higher innate cytokine and T cell responses than the wild-type WNV in mice. Recently, myeloid differentiation factor 88 (MyD88) signaling was shown to be important for initial T cell priming and memory T cell development during WNV NS4B-P38G mutant infection. In this study, two flow cytometry-based methods – an in vitro T cell priming assay and an intracellular cytokine staining (ICS) – were utilized to assess dendritic cells (DCs) and T cell functions. In the T cell priming assay, cell proliferation was analyzed by flow cytometry following co-culture of DCs from both groups of mice with carboxyfluorescein succinimidyl ester (CFSE) - labeled CD4+ T cells of OTII transgenic mice. This approach provided an accurate determination of the percentage of proliferating CD4+ T cells with significantly improved overall sensitivity than the traditional assays with radioactive reagents. A microcentrifuge tube system was used in both cell culture and cytokine staining procedures of the ICS protocol. Compared to the traditional tissue culture plate-based system, this modified procedure was easier to perform at biosafety level (BL) 3 facilities. Moreover, WNV- infected cells were treated with paraformaldehyde in both assays, which enabled further analysis outside BL3 facilities. Overall, these in vitro immunological assays can be used to efficiently assess cell-mediated immune responses during WNV infection.
Immunology, Issue 93, West Nile Virus, Dendritic cells, T cells, cytokine, proliferation, in vitro
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
Optimized Staining and Proliferation Modeling Methods for Cell Division Monitoring using Cell Tracking Dyes
Authors: Joseph D. Tario Jr., Kristen Humphrey, Andrew D. Bantly, Katharine A. Muirhead, Jonni S. Moore, Paul K. Wallace.
Institutions: Roswell Park Cancer Institute, University of Pennsylvania , SciGro, Inc., University of Pennsylvania .
Fluorescent cell tracking dyes, in combination with flow and image cytometry, are powerful tools with which to study the interactions and fates of different cell types in vitro and in vivo.1-5 Although there are literally thousands of publications using such dyes, some of the most commonly encountered cell tracking applications include monitoring of: stem and progenitor cell quiescence, proliferation and/or differentiation6-8 antigen-driven membrane transfer9 and/or precursor cell proliferation3,4,10-18 and immune regulatory and effector cell function1,18-21. Commercially available cell tracking dyes vary widely in their chemistries and fluorescence properties but the great majority fall into one of two classes based on their mechanism of cell labeling. "Membrane dyes", typified by PKH26, are highly lipophilic dyes that partition stably but non-covalently into cell membranes1,2,11. "Protein dyes", typified by CFSE, are amino-reactive dyes that form stable covalent bonds with cell proteins4,16,18. Each class has its own advantages and limitations. The key to their successful use, particularly in multicolor studies where multiple dyes are used to track different cell types, is therefore to understand the critical issues enabling optimal use of each class2-4,16,18,24. The protocols included here highlight three common causes of poor or variable results when using cell-tracking dyes. These are: Failure to achieve bright, uniform, reproducible labeling. This is a necessary starting point for any cell tracking study but requires attention to different variables when using membrane dyes than when using protein dyes or equilibrium binding reagents such as antibodies. Suboptimal fluorochrome combinations and/or failure to include critical compensation controls. Tracking dye fluorescence is typically 102 - 103 times brighter than antibody fluorescence. It is therefore essential to verify that the presence of tracking dye does not compromise the ability to detect other probes being used. Failure to obtain a good fit with peak modeling software. Such software allows quantitative comparison of proliferative responses across different populations or stimuli based on precursor frequency or other metrics. Obtaining a good fit, however, requires exclusion of dead/dying cells that can distort dye dilution profiles and matching of the assumptions underlying the model with characteristics of the observed dye dilution profile. Examples given here illustrate how these variables can affect results when using membrane and/or protein dyes to monitor cell proliferation.
Cellular Biology, Issue 70, Molecular Biology, Cell tracking, PKH26, CFSE, membrane dyes, dye dilution, proliferation modeling, lymphocytes
Play Button
Adenovirus-mediated Genetic Removal of Signaling Molecules in Cultured Primary Mouse Embryonic Fibroblasts
Authors: Steve P. Hawley, Melanie K. B. Wills, Nina Jones.
Institutions: University of Guelph.
The ability to genetically remove specific components of various cell signalling cascades has been an integral tool in modern signal transduction analysis. One particular method to achieve this conditional deletion is via the use of the Cre-loxP system. This method involves flanking the gene of interest with loxP sites, which are specific recognition sequences for the Cre recombinase protein. Exposure of the so-called floxed (flanked by loxP site) DNA to this enzyme results in a Cre-mediated recombination event at the loxP sites, and subsequent excision of the intervening gene3. Several different methods exist to administer Cre recombinase to the site of interest. In this video, we demonstrate the use of an adenovirus containing the Cre recombinase gene to infect primary mouse embryonic fibroblasts (MEFs) obtained from embryos containing a floxed Rac1 allele1. Our rationale for selecting Rac1 MEFs for our experiments is that clear morphological changes can be seen upon deletion of Rac1, due to alterations in the actin cytoskeleton2,5. 72 hours following viral transduction and Cre expression, cells were stained using the actin dye phalloidin and imaged using confocal laser scanning microscopy. It was observed that MEFs which had been exposed to the adeno-Cre virus appeared contracted and elongated in morphology compared to uninfected cells, consistent with previous reports2,5. The adenovirus method of Cre recombinase delivery is advantageous as the adeno-Cre virus is easily available, and gene deletion via Cre in nearly 100% of the cells can be achieved with optimized adenoviral infection.
Cellular Biology, Issue 43, Cre-loxP, andenovirus, MEF, actin cytoskeleton, cell culture
Play Button
Study of the Actin Cytoskeleton in Live Endothelial Cells Expressing GFP-Actin
Authors: Travis M. Doggett, Jerome W. Breslin.
Institutions: Louisiana State University Health Sciences Center.
The microvascular endothelium plays an important role as a selectively permeable barrier to fluids and solutes. The adhesive junctions between endothelial cells regulate permeability of the endothelium, and many studies have indicated the important contribution of the actin cytoskeleton to determining junctional integrity1-5. A cortical actin belt is thought to be important for the maintenance of stable junctions1, 2, 4, 5. In contrast, actin stress fibers are thought to generate centripetal tension within endothelial cells that weakens junctions2-5. Much of this theory has been based on studies in which endothelial cells are treated with inflammatory mediators known to increase endothelial permeability, and then fixing the cells and labeling F-actin for microscopic observation. However, these studies provide a very limited understanding of the role of the actin cytoskeleton because images of fixed cells provide only snapshots in time with no information about the dynamics of actin structures5. Live-cell imaging allows incorporation of the dynamic nature of the actin cytoskeleton into the studies of the mechanisms determining endothelial barrier integrity. A major advantage of this method is that the impact of various inflammatory stimuli on actin structures in endothelial cells can be assessed in the same set of living cells before and after treatment, removing potential bias that may occur when observing fixed specimens. Human umbilical vein endothelial cells (HUVEC) are transfected with a GFP-β-actin plasmid and grown to confluence on glass coverslips. Time-lapse images of GFP-actin in confluent HUVEC are captured before and after the addition of inflammatory mediators that elicit time-dependent changes in endothelial barrier integrity. These studies enable visual observation of the fluid sequence of changes in the actin cytoskeleton that contribute to endothelial barrier disruption and restoration. Our results consistently show local, actin-rich lamellipodia formation and turnover in endothelial cells. The formation and movement of actin stress fibers can also be observed. An analysis of the frequency of formation and turnover of the local lamellipodia, before and after treatment with inflammatory stimuli can be documented by kymograph analyses. These studies provide important information on the dynamic nature of the actin cytoskeleton in endothelial cells that can used to discover previously unidentified molecular mechanisms important for the maintenance of endothelial barrier integrity.
Cell Biology, Issue 57, Endothelial cells, actin, cytoskeleton, live-cell imaging, GFP, lamellipodia, stress fibers, kymograph analysis
Play Button
Genome-wide Screen for miRNA Targets Using the MISSION Target ID Library
Authors: Matthew J. Coussens, Kevin Forbes, Carol Kreader, Jack Sago, Carrie Cupp, John Swarthout.
Institutions: Sigma-Aldrich.
The Target ID Library is designed to assist in discovery and identification of microRNA (miRNA) targets. The Target ID Library is a plasmid-based, genome-wide cDNA library cloned into the 3'UTR downstream from the dual-selection fusion protein, thymidine kinase-zeocin (TKzeo). The first round of selection is for stable transformants, followed with introduction of a miRNA of interest, and finally, selecting for cDNAs containing the miRNA's target. Selected cDNAs are identified by sequencing (see Figure 1-3 for Target ID Library Workflow and details). To ensure broad coverage of the human transcriptome, Target ID Library cDNAs were generated via oligo-dT priming using a pool of total RNA prepared from multiple human tissues and cell lines. Resulting cDNA range from 0.5 to 4 kb, with an average size of 1.2 kb, and were cloned into the p3΄TKzeo dual-selection plasmid (see Figure 4 for plasmid map). The gene targets represented in the library can be found on the Sigma-Aldrich webpage. Results from Illumina sequencing (Table 3), show that the library includes 16,922 of the 21,518 unique genes in UCSC RefGene (79%), or 14,000 genes with 10 or more reads (66%).
Genetics, Issue 62, Target ID, miRNA, ncRNA, RNAi, genomics
Play Button
Generation of Induced Regulatory T Cells from Primary Human Naïve and Memory T Cells
Authors: Gavin I. Ellis, Mary Catherine Reneer, Alejandra Catalina Vélez-Ortega, Andrea McCool, Francesc Martí.
Institutions: University of Kentucky .
The development and maintenance of immunosuppressive CD4+ regulatory T cells (Tregs) contribute to the peripheral tolerance needed to remain in immunologic homeostasis with the vast amount of self and commensal antigens in and on the human body. Perturbations in the balance between Tregs and inflammatory conventional T cells can result in immunopathology or cancer. Although therapeutic injection of Tregs has been shown to be efficacious in murine models of colitis1 , type I diabetes2 , rheumatoid arthritis and graft versus host disease,4 several fundamental differences in human versus mouse Treg biology5 has thus far precluded clinical use. The lack of sufficient number, purity, stability and homing specificity of therapeutic Tregs necessitated a dynamic platform of human Treg development on which to optimize conditions for their ex vivo expansion6. Here we describe a method for the differentiation of induced Tregs (iTregs) from a single human peripheral blood donor which can be broken down into four stages: isolation of peripheral blood mononuclear cells, magnetic selection of CD4+ T cells, in vitro cell culture and fluorescence activated cell sorting (FACS) of T cell subsets. Since the Treg signature transcription factor forkhead box P3 (FoxP3) is an activation-induced transcription factor in humans7 and no other unique marker exists, a combinatorial panel of markers must be used to identify T cells with suppressor activity. After six days in culture, cells in our system can be demarcated into naïve T cells, memory T cells or iTregs based on their relative expression of CD25 and CD45RA. As memory and naïve T cells have different reported polarization requirements and plasticities8 , pre-sorting of the initial T cell population into CD45RA+ and CD45RO+ subsets can be used to examine these discrepancies. Consistent with others, our CD25HiCD45RA- iTregs express high levels of FoxP39 , GITR and CTLA-411 and low levels of CD12712 . Following FACS of each population, resultant cells can be used in a suppressor assay which evaluates the relative ability to retard the proliferation of carboxyfluorescein succinimidyl ester (CFSE)-labeled autologous T cells.
Immunology, Issue 62, regulatory T cell, iTreg, immunosuppression, human, suppressor activity
Play Button
Micropipette Aspiration of Substrate-attached Cells to Estimate Cell Stiffness
Authors: Myung-Jin Oh, Frank Kuhr, Fitzroy Byfield, Irena Levitan.
Institutions: University of Illinois, University of Pennsylvania .
Growing number of studies show that biomechanical properties of individual cells play major roles in multiple cellular functions, including cell proliferation, differentiation, migration and cell-cell interactions. The two key parameters of cellular biomechanics are cellular deformability or stiffness and the ability of the cells to contract and generate force. Here we describe a quick and simple method to estimate cell stiffness by measuring the degree of membrane deformation in response to negative pressure applied by a glass micropipette to the cell surface, a technique that is called Micropipette Aspiration or Microaspiration. Microaspiration is performed by pulling a glass capillary to create a micropipette with a very small tip (2-50 μm diameter depending on the size of a cell or a tissue sample), which is then connected to a pneumatic pressure transducer and brought to a close vicinity of a cell under a microscope. When the tip of the pipette touches a cell, a step of negative pressure is applied to the pipette by the pneumatic pressure transducer generating well-defined pressure on the cell membrane. In response to pressure, the membrane is aspirated into the pipette and progressive membrane deformation or "membrane projection" into the pipette is measured as a function of time. The basic principle of this experimental approach is that the degree of membrane deformation in response to a defined mechanical force is a function of membrane stiffness. The stiffer the membrane is, the slower the rate of membrane deformation and the shorter the steady-state aspiration length.The technique can be performed on isolated cells, both in suspension and substrate-attached, large organelles, and liposomes. Analysis is performed by comparing maximal membrane deformations achieved under a given pressure for different cell populations or experimental conditions. A "stiffness coefficient" is estimated by plotting the aspirated length of membrane deformation as a function of the applied pressure. Furthermore, the data can be further analyzed to estimate the Young's modulus of the cells (E), the most common parameter to characterize stiffness of materials. It is important to note that plasma membranes of eukaryotic cells can be viewed as a bi-component system where membrane lipid bilayer is underlied by the sub-membrane cytoskeleton and that it is the cytoskeleton that constitutes the mechanical scaffold of the membrane and dominates the deformability of the cellular envelope. This approach, therefore, allows probing the biomechanical properties of the sub-membrane cytoskeleton.
Bioengineering, Issue 67, Biophysics, Biomedical Engineering, Medicine, Cellular Biology, Cell stiffness, biomechanics, microaspiration, cell membrane, cytoskeleton
Play Button
The α-test: Rapid Cell-free CD4 Enumeration Using Whole Saliva
Authors: Cynthia L. Bristow, Mariya A. Babayeva, Rozbeh Modarresi, Carole P. McArthur, Santosh Kumar, Charles Awasom, Leo Ayuk, Annette Njinda, Paul Achu, Ronald Winston.
Institutions: Weill Cornell Medical College , University of Missouri-Kansas City-School of Dentistry, University of Missouri Kansas City- School of Pharmacy, Bamenda, NWP, Cameroon, Mezam Polyclinic HIV/AIDS Treatment Center, Cameroon, Institute for Human Genetics and Biochemistry.
There is an urgent need for affordable CD4 enumeration to monitor HIV disease. CD4 enumeration is out of reach in resource-limited regions due to the time and temperature restrictions, technical sophistication, and cost of reagents, in particular monoclonal antibodies to measure CD4 on blood cells, the only currently acceptable method. A commonly used cost-saving and time-saving laboratory strategy is to calculate, rather than measure certain blood values. For example, LDL levels are calculated using the measured levels of total cholesterol, HDL, and triglycerides1. Thus, identification of cell-free correlates that directly regulate the number of CD4+ T cells could provide an accurate method for calculating CD4 counts due to the physiological relevance of the correlates. The number of stem cells that enter blood and are destined to become circulating CD4+ T cells is determined by the chemokine CXCL12 and its receptor CXCR4 due to their influence on locomotion2. The process of stem cell locomotion into blood is additionally regulated by cell surface human leukocyte elastase (HLECS) and the HLECS-reactive active α1proteinase inhibitor (α1PI, α1antitrypsin, SerpinA1)3. In HIV-1 disease, α1PI is inactivated due to disease processes 4. In the early asymptomatic categories of HIV-1 disease, active α1PI was found to be below normal in 100% of untreated HIV-1 patients (median=12 μM, and to achieve normal levels during the symptomatic categories4, 5. This pattern has been attributed to immune inactivation, not to insufficient synthesis, proteolytic inactivation, or oxygenation. We observed that in HIV-1 subjects with >220 CD4 cells/μl, CD4 counts were correlated with serum levels of active α1PI (r2=0.93, p<0.0001, n=26) and inactive α1PI (r2=0.91, p<0.0001, n=26) 5. Administration of α1PI to HIV-1 infected and uninfected subjects resulted in dramatic increases in CD4 counts suggesting α1PI participates in regulating the number of CD4+ T cells in blood 3. With stimulation, whole saliva contains sufficient serous exudate (plasma containing proteinaceous material that passes through blood vessel walls into saliva) to allow measurement of active α1PI and the correlation of this measurement is evidence that it is an accurate method for calculating CD4 counts. Briefly, sialogogues such as chewing gum or citric acid stimulate the exudation of serum into whole mouth saliva. After stimulating serum exudation, the activity of serum α1PI in saliva is measured by its capacity to inhibit elastase activity. Porcine pancreatic elastase (PPE) is a readily available inexpensive source of elastase. PPE binds to α1PI forming a one-to-one complex that prevents PPE from cleaving its specific substrates, one of which is the colorimetric peptide, succinyl-L-Ala-L-Ala-L-Ala-p-nitroanilide (SA3NA). Incubating saliva with a saturating concentration of PPE for 10 min at room temperature allows the binding of PPE to all the active α1PI in saliva. The resulting inhibition of PPE by active α1PI can be measured by adding the PPE substrate SA3NA. (Figure 1). Although CD4 counts are measured in terms of blood volume (CD4 cells/μl), the concentration of α1PI in saliva is related to the concentration of serum in saliva, not to volume of saliva since volume can vary considerably during the day and person to person6. However, virtually all the protein in saliva is due to serum content, and the protein content of saliva is measurable7. Thus, active α1PI in saliva is calculated as a ratio to saliva protein content and is termed the α1PI Index. Results presented herein demonstrate that the α1PI Index provides an accurate and precise physiologic method for calculating CD4 counts.
Medicine, Issue 63, CD4 count, saliva, antitrypsin, hematopoiesis, T cells, HIV/AIDS, clinical
Play Button
Induction of Adhesion-dependent Signals Using Low-intensity Ultrasound
Authors: James Roper, Andrew Harrison, Mark D. Bass.
Institutions: University of Bristol, Smith and Nephew.
In multicellular organisms, cell behavior is dictated by interactions with the extracellular matrix. Consequences of matrix-engagement range from regulation of cell migration and proliferation, to secretion and even differentiation. The signals underlying each of these complex processes arise from the molecular interactions of extracellular matrix receptors on the surface of the cell. Integrins are the prototypic receptors and provide a mechanical link between extracellular matrix and the cytoskeleton, as well as initiating some of the adhesion-dependent signaling cascades. However, it is becoming increasingly apparent that additional transmembrane receptors function alongside the integrins to regulate both the integrin itself and signals downstream. The most elegant of these examples is the transmembrane proteoglycan, syndecan-4, which cooperates with α5β1-integrin during adhesion to fibronectin. In vivo models demonstrate the importance of syndecan-4 signaling, as syndecan-4-knockout mice exhibit healing retardation due to inefficient fibroblast migration1,2. In wild-type animals, migration of fibroblasts toward a wound is triggered by the appearance of fibronectin that leaks from damaged capillaries and is deposited by macrophages in injured tissue. Therefore there is great interest in discovering strategies that enhance fibronectin-dependent signaling and could accelerate repair processes. The integrin-mediated and syndecan-4-mediated components of fibronectin-dependent signaling can be separated by stimulating cells with recombinant fibronectin fragments. Although integrin engagement is essential for cell adhesion, certain fibronectin-dependent signals are regulated by syndecan-4. Syndecan-4 activates the Rac1 protrusive signal3, causes integrin redistribution1, triggers recruitment of cytoskeletal molecules, such as vinculin, to focal adhesions4, and thereby induces directional migration3. We have looked for alternative strategies for activating such signals and found that low-intensity pulsed ultrasound (LIPUS) can mimic the effects of syndecan-4 engagement5. In this protocol we describe the method by which 30 mW/cm2, 1.5 MHz ultrasound, pulsed at 1 kHz (Fig. 1) can be applied to fibroblasts in culture (Fig. 2) to induce Rac1 activation and focal adhesion formation. Ultrasound stimulation is applied for a maximum of 20 minutes, as this combination of parameters has been found to be most efficacious for acceleration of clinical fracture repair6. The method uses recombinant fibronectin fragments to engage α5β1-integrin, without engagement of syndecan-4, and requires inhibition of protein synthesis by cycloheximide to block deposition of additional matrix by the fibroblasts., The positive effect of ultrasound on repair mechanisms is well documented7,8, and by understanding the molecular effect of ultrasound in culture we should be able to refine the therapeutic technique to improve clinical outcomes.
Biomedical Engineering, Issue 63, Ultrasound, LIPUS, Focal Adhesion, Syndecan-4, Wound Healing, Extracellular Matrix, Rac1, bioengineering
Play Button
Examination of Thymic Positive and Negative Selection by Flow Cytometry
Authors: Qian Hu, Stephanie A. Nicol, Alexander Y.W. Suen, Troy A. Baldwin.
Institutions: University of Alberta.
A healthy immune system requires that T cells respond to foreign antigens while remaining tolerant to self-antigens. Random rearrangement of the T cell receptor (TCR) α and β loci generates a T cell repertoire with vast diversity in antigen specificity, both to self and foreign. Selection of the repertoire during development in the thymus is critical for generating safe and useful T cells. Defects in thymic selection contribute to the development of autoimmune and immunodeficiency disorders1-4. T cell progenitors enter the thymus as double negative (DN) thymocytes that do not express CD4 or CD8 co-receptors. Expression of the αβTCR and both co-receptors occurs at the double positive (DP) stage. Interaction of the αβTCR with self-peptide-MHC (pMHC) presented by thymic cells determines the fate of the DP thymocyte. High affinity interactions lead to negative selection and elimination of self-reactive thymocytes. Low affinity interactions result in positive selection and development of CD4 or CD8 single positive (SP) T cells capable of recognizing foreign antigens presented by self-MHC5. Positive selection can be studied in mice with a polyclonal (wildtype) TCR repertoire by observing the generation of mature T cells. However, they are not ideal for the study of negative selection, which involves deletion of small antigen-specific populations. Many model systems have been used to study negative selection but vary in their ability to recapitulate physiological events6. For example, in vitro stimulation of thymocytes lacks the thymic environment that is intimately involved in selection, while administration of exogenous antigen can lead to non-specific deletion of thymocytes7-9. Currently, the best tools for studying in vivo negative selection are mice that express a transgenic TCR specific for endogenous self-antigen. However, many classical TCR transgenic models are characterized by premature expression of the transgenic TCRα chain at the DN stage, resulting in premature negative selection. Our lab has developed the HYcd4 model, in which the transgenic HY TCRα is conditionally expressed at the DP stage, allowing negative selection to occur during the DP to SP transition as occurs in wildtype mice10. Here, we describe a flow cytometry-based protocol to examine thymic positive and negative selection in the HYcd4 mouse model. While negative selection in HYcd4 mice is highly physiological, these methods can also be applied to other TCR transgenic models. We will also present general strategies for analyzing positive selection in a polyclonal repertoire applicable to any genetically manipulated mice.
Immunology, Issue 68, Medicine, Cellular Biology, Anatomy, Physiology, Thymus, T cell, negative selection, positive selection, autoimmunity, flow cytometry
Play Button
Extraction of Tissue Antigens for Functional Assays
Authors: Andra Necula, Rochna Chand, Batool Albatat, Stuart I. Mannering.
Institutions: St. Vincent's Institute of Medical Research, University of Melbourne.
Many of the antigen targets of adaptive immune response, recognized by B and T cells, have not been defined 1. This is particularly true in autoimmune diseases and cancer2. Our aim is to investigate the antigens recognized by human T cells in the autoimmune disease type 1 diabetes 1,3,4,5. To analyze human T-cell responses against tissue where the antigens recognized by T cells are not identified we developed a method to extract protein antigens from human tissue in a format that is compatible with functional assays 6. Previously, T-cell responses to unpurified tissue extracts could not be measured because the extraction methods yield a lysate that contained detergents that were toxic to human peripheral blood mononuclear cells. Here we describe a protocol for extracting proteins from human tissues in a format that is not toxic to human T cells. The tissue is homogenized in a mixture of butan-1-ol, acetonitrile and water (BAW). The protein concentration in the tissue extract is measured and a known mass of protein is aliquoted into tubes. After extraction, the organic solvents are removed by lyophilization. Lyophilized tissue extracts can be stored until required. For use in assays of immune function, a suspension of immune cells, in appropriate culture media, can be added directly to the lyophilized extract. Cytokine production and proliferation by PBMC, in response to extracts prepared using this method, were readily measured. Hence, our method allows the rapid preparation of human tissue lysates that can be used as a source of antigens in the analysis of T-cell responses. We suggest that this method will facilitate the analysis of adaptive immune responses to tissues in transplantation, cancer and autoimmunity.
Immunology, Issue 67, Medicine, Physiology, Biomedical Engineering, Tissue Engineering, tissue lysate, functional assay, extraction, autoimmune disease, T cells, spleen
Play Button
Human T Lymphocyte Isolation, Culture and Analysis of Migration In Vitro
Authors: Craig T. Lefort, Minsoo Kim.
Institutions: University of Rochester.
The migration of T lymphocytes involves the adhesive interaction of cell surface integrins with ligands expressed on other cells or with extracellular matrix proteins. The precise spatiotemporal activation of integrins from a low affinity state to a high affinity state at the cell leading edge is important for T lymphocyte migration 1. Likewise, retraction of the cell trailing edge, or uropod, is a necessary step in maintaining persistent integrin-dependent T lymphocyte motility 2. Many therapeutic approaches to autoimmune or inflammatory diseases target integrins as a means to inhibit the excessive recruitment and migration of leukocytes 3. To study the molecular events that regulate human T lymphocyte migration, we have utilized an in vitro system to analyze cell migration on a two-dimensional substrate that mimics the environment that a T lymphocyte encounters during recruitment from the vasculature. T lymphocytes are first isolated from human donors and are then stimulated and cultured for seven to ten days. During the assay, T lymphocytes are allowed to adhere and migrate on a substrate coated with intercellular adhesion molecule-1 (ICAM-1), a ligand for integrin LFA-1, and stromal cell-derived factor-1 (SDF-1). Our data show that T lymphocytes exhibit a migratory velocity of ~15 μm/min. T lymphocyte migration can be inhibited by integrin blockade 1 or by inhibitors of the cellular actomyosin machinery that regulates cell migration 2.
Immunology, Issue 40, T lymphocyte, Migration, Integrin, LFA-1, ICAM-1, Chemokine
Play Button
Isolation of CD4+ T cells from Mouse Lymph Nodes Using Miltenyi MACS Purification
Authors: Melanie P. Matheu, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
Isolation of cells from the primary source is a necessary step in many more complex protocols. Miltenyi offers kits to isolate cells from several organisms including humans, non-human primates, rat and, as we describe here, mice. Magnetic bead-based cell separation allows for either positive selection (or cell depletion) as well as negative selection. Here, we demonstrate negative selection of untouched or na ve CD4+ helper T cells. Using this standard protocol we typically purify cells that are ≥ 96% pure CD4+/CD3+. This protocol is used in conjunction with the protocol Dissection and 2-Photon Imaging of Peripheral Lymph Nodes in Mice published in issue 7 of JoVE, for purification of T cells and other cell types to adoptively transfer for imaging purposes. Although we did not demonstrate FACS analysis in this protocol video, it is highly recommended to check the overall purity of isolated cells using the appropriate antibodies via FACS. In addition, we demonstrate the non-sterile method of T cell isolation. If sterile cells are needed for your particular end-user application, be sure to do all of the demonstrated procedures in the tissue culture hood under standard sterile conditions. Thank you for watching and good luck with your own experiments!
Immunology, Issue 9, Cell isolation, Cell separation, T cells, Purification, Mouse, Lymphocyte, Purification, Miltenyi, MACS kit,
Play Button
CD4+ T-Lymphocyte Capture Using a Disposable Microfluidic Chip for HIV
Authors: Sang Jun Moon, Richard Lin, Utkan Demirci.
Institutions: Brigham and Women's Hospital, Massachusetts Institute of Technology.
Cellular Biology, Issue 8, microfluidic, blood, diagnostics, bioengineering, HIV, Translational Research
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.