JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
The association of myosin IB with actin waves in dictyostelium requires both the plasma membrane-binding site and actin-binding region in the myosin tail.
PLoS ONE
PUBLISHED: 01-01-2014
F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave.
Authors: Jennifer T. Patel, Hannah R. Belsham, Alexandra J. Rathbone, Claire T. Friel.
Published: 10-17-2014
ABSTRACT
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization and microtubule stabilization. To understand the mechanism of action of a kinesin it is important to understand how the chemical cycle of ATP turnover is coupled to the mechanical cycle of microtubule interaction. To dissect the ATP turnover cycle, one approach is to utilize fluorescently labeled nucleotides to visualize individual steps in the cycle. Determining the kinetics of each nucleotide transition in the ATP turnover cycle allows the rate-limiting step or steps for the complete cycle to be identified. For a kinesin, it is important to know the rate-limiting step, in the absence of microtubules, as this step is generally accelerated several thousand fold when the kinesin interacts with microtubules. The cycle in the absence of microtubules is then compared to that in the presence of microtubules to fully understand a kinesin’s ATP turnover cycle. The kinetics of individual nucleotide transitions are generally too fast to observe by manually mixing reactants, particularly in the presence of microtubules. A rapid mixing device, such as a stopped-flow fluorimeter, which allows kinetics to be observed on timescales of as little as a few milliseconds, can be used to monitor such transitions. Here, we describe protocols in which rapid mixing of reagents by stopped-flow is used in conjunction with fluorescently labeled nucleotides to dissect the ATP turnover cycle of a kinesin.
21 Related JoVE Articles!
Play Button
Test Samples for Optimizing STORM Super-Resolution Microscopy
Authors: Daniel J. Metcalf, Rebecca Edwards, Neelam Kumarswami, Alex E. Knight.
Institutions: National Physical Laboratory.
STORM is a recently developed super-resolution microscopy technique with up to 10 times better resolution than standard fluorescence microscopy techniques. However, as the image is acquired in a very different way than normal, by building up an image molecule-by-molecule, there are some significant challenges for users in trying to optimize their image acquisition. In order to aid this process and gain more insight into how STORM works we present the preparation of 3 test samples and the methodology of acquiring and processing STORM super-resolution images with typical resolutions of between 30-50 nm. By combining the test samples with the use of the freely available rainSTORM processing software it is possible to obtain a great deal of information about image quality and resolution. Using these metrics it is then possible to optimize the imaging procedure from the optics, to sample preparation, dye choice, buffer conditions, and image acquisition settings. We also show examples of some common problems that result in poor image quality, such as lateral drift, where the sample moves during image acquisition and density related problems resulting in the 'mislocalization' phenomenon.
Molecular Biology, Issue 79, Genetics, Bioengineering, Biomedical Engineering, Biophysics, Basic Protocols, HeLa Cells, Actin Cytoskeleton, Coated Vesicles, Receptor, Epidermal Growth Factor, Actins, Fluorescence, Endocytosis, Microscopy, STORM, super-resolution microscopy, nanoscopy, cell biology, fluorescence microscopy, test samples, resolution, actin filaments, fiducial markers, epidermal growth factor, cell, imaging
50579
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
The Cell-based L-Glutathione Protection Assays to Study Endocytosis and Recycling of Plasma Membrane Proteins
Authors: Kristine M. Cihil, Agnieszka Swiatecka-Urban.
Institutions: Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine.
Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.
Basic Protocol, Issue 82, Endocytosis, recycling, plasma membrane, cell surface, EZLink, Sulfo-NHS-SS-Biotin, L-Glutathione, GSH, thiol group, disulfide bond, epithelial cells, cell polarization
50867
Play Button
Identification of a Murine Erythroblast Subpopulation Enriched in Enucleating Events by Multi-spectral Imaging Flow Cytometry
Authors: Diamantis G. Konstantinidis, Suvarnamala Pushkaran, Katie Giger, Stefanos Manganaris, Yi Zheng, Theodosia A. Kalfa.
Institutions: University of Cincinnati College of Medicine, IBM.
Erythropoiesis in mammals concludes with the dramatic process of enucleation that results in reticulocyte formation. The mechanism of enucleation has not yet been fully elucidated. A common problem encountered when studying the localization of key proteins and structures within enucleating erythroblasts by microscopy is the difficulty to observe a sufficient number of cells undergoing enucleation. We have developed a novel analysis protocol using multiparameter high-speed cell imaging in flow (Multi-Spectral Imaging Flow Cytometry), a method that combines immunofluorescent microscopy with flow cytometry, in order to identify efficiently a significant number of enucleating events, that allows to obtain measurements and perform statistical analysis. We first describe here two in vitro erythropoiesis culture methods used in order to synchronize murine erythroblasts and increase the probability of capturing enucleation at the time of evaluation. Then, we describe in detail the staining of erythroblasts after fixation and permeabilization in order to study the localization of intracellular proteins or lipid rafts during enucleation by multi-spectral imaging flow cytometry. Along with size and DNA/Ter119 staining which are used to identify the orthochromatic erythroblasts, we utilize the parameters “aspect ratio” of a cell in the bright-field channel that aids in the recognition of elongated cells and “delta centroid XY Ter119/Draq5” that allows the identification of cellular events in which the center of Ter119 staining (nascent reticulocyte) is far apart from the center of Draq5 staining (nucleus undergoing extrusion), thus indicating a cell about to enucleate. The subset of the orthochromatic erythroblast population with high delta centroid and low aspect ratio is highly enriched in enucleating cells.
Basic Protocol, Issue 88, Erythropoiesis, Erythroblast enucleation, Reticulocyte, Multi-Spectral Imaging Flow Cytometry, FACS, Multiparameter high-speed cell imaging in flow, Aspect ratio, Delta centroid XY
50990
Play Button
Visualizing Neuroblast Cytokinesis During C. elegans Embryogenesis
Authors: Denise Wernike, Chloe van Oostende, Alisa Piekny.
Institutions: Concordia University.
This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.
Neuroscience, Issue 85, C. elegans, morphogenesis, cytokinesis, neuroblasts, anillin, microscopy, cell division
51188
Play Button
Nanopodia - Thin, Fragile Membrane Projections with Roles in Cell Movement and Intercellular Interactions
Authors: Chi-Iou Lin, Chun-Yee Lau, Dan Li, Shou-Ching Jaminet.
Institutions: Harvard Medical School.
Adherent cells in culture maintain a polarized state to support movement and intercellular interactions. Nanopodia are thin, elongated, largely F-actin-negative membrane projections in endothelial and cancer cells that can be visualized through TM4SF1 (Transmembrane-4-L-six-family-1) immunofluorescence staining. TM4SF1 clusters in 100-300 μm diameter TMED (TM4SF1 enriched microdomains) containing 3 to as many as 14 individual TM4SF1 molecules. TMED are arranged intermittently along nanopodia at a regular spacing of 1 to 3 TMED per μm and firmly anchor nanopodia to matrix. This enables nanopodia to extend more than 100 μm from the leading front or trailing rear of polarized endothelial or tumor cells, and causes membrane residues to be left behind on matrix when the cell moves away. TMED and nanopodia have been overlooked because of their extreme fragility and sensitivity to temperature. Routine washing and fixation disrupt the structure. Nanopodia are preserved by direct fixation in paraformaldehyde (PFA) at 37 °C, followed by brief exposure to 0.01% Triton X-100 before staining. Nanopodia open new vistas in cell biology: they promise to reshape our understanding of how cells sense their environment, detect and identify other cells at a distance, initiate intercellular interactions at close contact, and of the signaling mechanisms involved in movement, proliferation, and cell-cell communications. The methods that are developed for studying TM4SF1-derived nanopodia may be useful for studies of nanopodia that form in other cell types through the agency of classic tetraspanins, notably the ubiquitously expressed CD9, CD81, and CD151.
Cellular Biology, Issue 86, nanopodia, TM4SF1, endothelial cell, tumor cell, F-actin, immunofluorescence staining, tetraspanin
51320
Play Button
Aip1p Dynamics Are Altered by the R256H Mutation in Actin
Authors: Alyson R. Pierick, Melissa McKane, Kuo-Kuang Wen, Heather L. Bartlett.
Institutions: University of Iowa, University of Iowa.
Mutations in actin cause a range of human diseases due to specific molecular changes that often alter cytoskeletal function. In this study, imaging of fluorescently tagged proteins using total internal fluorescence (TIRF) microscopy is used to visualize and quantify changes in cytoskeletal dynamics. TIRF microscopy and the use of fluorescent tags also allows for quantification of the changes in cytoskeletal dynamics caused by mutations in actin. Using this technique, quantification of cytoskeletal function in live cells valuably complements in vitro studies of protein function. As an example, missense mutations affecting the actin residue R256 have been identified in three human actin isoforms suggesting this amino acid plays an important role in regulatory interactions. The effects of the actin mutation R256H on cytoskeletal movements were studied using the yeast model. The protein, Aip1, which is known to assist cofilin in actin depolymerization, was tagged with green fluorescent protein (GFP) at the N-terminus and tracked in vivo using TIRF microscopy. The rate of Aip1p movement in both wild type and mutant strains was quantified. In cells expressing R256H mutant actin, Aip1p motion is restricted and the rate of movement is nearly half the speed measured in wild type cells (0.88 ± 0.30 μm/sec in R256H cells compared to 1.60 ± 0.42 μm/sec in wild type cells, p < 0.005).
Developmental Biology, Issue 89, green fluorescent protein, actin, Aip1p, total internal fluorescence microscopy, yeast, cloning
51551
Play Button
Fluorescence Imaging with One-nanometer Accuracy (FIONA)
Authors: Yong Wang, En Cai, Janet Sheung, Sang Hak Lee, Kai Wen Teng, Paul R. Selvin.
Institutions: University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
Fluorescence imaging with one-nanometer accuracy (FIONA) is a simple but useful technique for localizing single fluorophores with nanometer precision in the x-y plane. Here a summary of the FIONA technique is reported and examples of research that have been performed using FIONA are briefly described. First, how to set up the required equipment for FIONA experiments, i.e., a total internal reflection fluorescence microscopy (TIRFM), with details on aligning the optics, is described. Then how to carry out a simple FIONA experiment on localizing immobilized Cy3-DNA single molecules using appropriate protocols, followed by the use of FIONA to measure the 36 nm step size of a single truncated myosin Va motor labeled with a quantum dot, is illustrated. Lastly, recent effort to extend the application of FIONA to thick samples is reported. It is shown that, using a water immersion objective and quantum dots soaked deep in sol-gels and rabbit eye corneas (>200 µm), localization precision of 2-3 nm can be achieved.
Molecular Biology, Issue 91, FIONA, fluorescence imaging, nanometer precision, myosin walking, thick tissue
51774
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells
Authors: Catheleyne D'hondt, Bernard Himpens, Geert Bultynck.
Institutions: KU Leuven.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.
Cellular Biology, Issue 77, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Immunology, Ophthalmology, Gap Junctions, Connexins, Connexin 43, Calcium Signaling, Ca2+, Cell Communication, Paracrine Communication, Intercellular communication, calcium wave propagation, gap junctions, hemichannels, endothelial cells, cell signaling, cell, isolation, cell culture
50443
Play Button
Measurement of Antibody Effects on Cellular Function of Isolated Cardiomyocytes
Authors: Lars G. Eckerle, Stephan B. Felix, Lars R. Herda.
Institutions: University Medicine Greifswald.
Dilated cardiomyopathy (DCM) is one of the main causes for heart failure in younger adults1. Although genetic disposition and exposition to toxic substances are known causes for this disease in about one third of the patients, the origin of DCM remains largely unclear. In a substantial number of these patients, autoantibodies against cardiac epitopes have been detected and are suspected to play a pivotal role in the onset and progression of the disease2,3. The importance of cardiac autoantibodies is underlined by a hemodynamic improvement observed in DCM patients after elimination of autoantibodies by immunoadsorption3-5. A variety of specific antigens have already been identified2,3 and antibodies against these targets may be detected by immunoassays. However, these assays cannot discriminate between stimulating (and therefore functionally effective) and blocking autoantibodies. There is increasing evidence that this distinction is crucial6,7. It can also be assumed that the targets for a number of cardiotropic antibodies are still unidentified and therefore cannot be detected by immunoassays. Therefore, we established a method for the detection of functionally active cardiotropic antibodies, independent of their respective antigen. The background for the method is the high homology usually observed for functional regions of cardiac proteins in between mammals8,9. This suggests that cardiac antibodies directed against human antigens will cross-react with non-human target cells, which allows testing of IgG from DCM patients on adult rat cardiomyocytes. Our method consists of 3 steps: first, IgG is isolated from patient plasma using sepharose coupled anti-IgG antibodies obtained from immunoadsorption columns (PlasmaSelect, Teterow, Germany). Second, adult cardiomyocytes are isolated by collagenase perfusion in a Langendorff perfusion apparatus using a protocol modified from previous works10,11. The obtained cardiomyocytes are attached to laminin-coated chambered coverglasses and stained with Fura-2, a calcium-selective fluorescent dye which can be easily brought into the cell to observe intracellular calcium (Ca2+) contents12. In the last step, the effect of patient IgG on the cell shortening and Ca2+ transients of field stimulated cardiomyocytes is monitored online using a commercial myocyte calcium and contractility monitoring system (IonOptix, Milton, MA, USA) connected to a standard inverse fluorescent microscope.
Immunology, Issue 73, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Physiology, Anatomy, Cardiology, cardiomyocytes, cell shortening, intracellular Ca2+, Fura-2, antibodies, dilated cardiomyopathy, DCM, IgG, cardiac proteins, Langendorff perfusion, electrode, immunoassay, assay, cell culture, animal model
4237
Play Button
Live Cell Imaging of F-actin Dynamics via Fluorescent Speckle Microscopy (FSM)
Authors: James Lim, Gaudenz Danuser.
Institutions: Scripps Institute.
In this protocol we describe the use of Fluorescent Speckle Microscopy (FSM) to capture high-resolution images of actin dynamics in PtK1 cells. A unique advantage of FSM is its ability to capture the movement and turnover kinetics (assembly/disassembly) of the F-actin network within living cells. This technique is particularly useful in deriving quantitative measurements of F-actin dynamics when paired with computer vision software (qFSM). We describe the selection, microinjection and visualization of fluorescent actin probes in living cells. Importantly, similar procedures are applicable to visualizing other macomolecular assemblies. FSM has been demonstrated for microtubules, intermediate filaments, and adhesion complexes.
Cellular Biology, Issue 30, FSM, qFSM, speckle, actin, cytoskeleton, fluorescence, microscopy, microinjection
1325
Play Button
Labeling F-actin Barbed Ends with Rhodamine-actin in Permeabilized Neuronal Growth Cones
Authors: Bonnie M. Marsick, Paul C. Letourneau.
Institutions: University of Minnesota.
The motile tips of growing axons are called growth cones. Growth cones lead navigating axons through developing tissues by interacting with locally expressed molecular guidance cues that bind growth cone receptors and regulate the dynamics and organization of the growth cone cytoskeleton3-6. The main target of these navigational signals is the actin filament meshwork that fills the growth cone periphery and that drives growth cone motility through continual actin polymerization and dynamic remodeling7. Positive or attractive guidance cues induce growth cone turning by stimulating actin filament (F-actin) polymerization in the region of the growth cone periphery that is nearer the source of the attractant cue. This actin polymerization drives local growth cone protrusion, adhesion of the leading margin and axonal elongation toward the attractant. Actin filament polymerization depends on the availability of sufficient actin monomer and on polymerization nuclei or actin filament barbed ends for the addition of monomer. Actin monomer is abundantly available in chick retinal and dorsal root ganglion (DRG) growth cones. Consequently, polymerization increases rapidly when free F-actin barbed ends become available for monomer addition. This occurs in chick DRG and retinal growth cones via the local activation of the F-actin severing protein actin depolymerizing factor (ADF/cofilin) in the growth cone region closer to an attractant8-10. This heightened ADF/cofilin activity severs actin filaments to create new F-actin barbed ends for polymerization. The following method demonstrates this mechanism. Total content of F-actin is visualized by staining with fluorescent phalloidin. F-actin barbed ends are visualized by the incorporation of rhodamine-actin within growth cones that are permeabilized with the procedure described in the following, which is adapted from previous studies of other motile cells11, 12. When rhodamine-actin is added at a concentration above the critical concentration for actin monomer addition to barbed ends, rhodamine-actin assembles onto free barbed ends. If the attractive cue is presented in a gradient, such as being released from a micropipette positioned to one side of a growth cone, the incorporation of rhodamine-actin onto F-actin barbed ends will be greater in the growth cone side toward the micropipette10. Growth cones are small and delicate cell structures. The procedures of permeabilization, rhodamine-actin incorporation, fixation and fluorescence visualization are all carefully done and can be conducted on the stage of an inverted microscope. These methods can be applied to studying local actin polymerization in migrating neurons, other primary tissue cells or cell lines.
Neuroscience, Issue 49, Actin, growth cones, barbed ends, polymerization, guidance cues
2409
Play Button
Demonstrating the Uses of the Novel Gravitational Force Spectrometer to Stretch and Measure Fibrous Proteins
Authors: James W. Dunn, Douglas D. Root.
Institutions: University of North Texas.
The study of macromolecular structure has become critical to the elucidation of molecular mechanisms and function. There are several limited, but important bioinstruments capable of testing the force dependence of structural features in proteins. Scale has been a limiting parameter on how accurately researchers can peer into the nanomechanical world of molecules, such as nucleic acids, enzymes, and motor proteins that perform life-sustaining work. Atomic force microscopy (AFM) is well tuned to determine native structures of fibrous proteins with a distance resolution on par with electron microscopy. However, in AFM force studies, the forces are typically much higher than a single molecule might experience 1, 2. Optical traps (OT) are very good at determining the relative distance between the trapped beads and they can impart very small forces 3. However, they do not yield accurate absolute lengths of the molecules under study. Molecular simulations provide supportive information to such experiments, but are limited in the ability to handle the same large molecular sizes, long time frames, and convince some researchers in the absence of other supporting evidence2, 4. The gravitational force spectrometer (GFS) fills a critical niche in the arsenal of an investigator by providing a unique combination of abilities. This instrument is capable of generating forces typically with 98% or better accuracy from the femtonewton range to the nanonewton range. The distance measurements currently are capable of resolving the absolute molecular length down to five nanometers, and relative bead pair separation distances with a precision similar to an optical trap. Also, the GFS can determine stretching or uncoiling where the force is near equilibrium, or provide a graded force to juxtapose against any measured structural changes. It is even possible to determine how many amino acid residues are involved in uncoiling events under physiological force loads 2. Unlike in other methods where there is extensive force calibration that must precede any assay, the GFS requires no such force calibration 5. By complementing the strengths of other methods, the GFS will bridge gaps in understanding the nanomechanics of vital proteins and other macromolecules.
Biophysics, Issue 49, Force Spectroscopy, Single Molecule Assays, Myosin, Antibodies, Digital Image Processing, Microscopy, Education, Microspheres, Coiled Coil, Protein
2624
Play Button
Live Imaging of Cell Extrusion from the Epidermis of Developing Zebrafish
Authors: George T. Eisenhoffer, Jody Rosenblatt.
Institutions: University of Utah.
Homeostatic maintenance of epithelial tissues requires the continual removal of damaged cells without disrupting barrier function. Our studies have found that dying cells send signals to their live neighbors to form and contract a ring of actin and myosin that ejects it out from the epithelial sheet while closing any gaps that might have resulted from its exit, a process termed cell extrusion1. The optical clarity of developing zebrafish provides an excellent system to visualize extrusion in living epithelia. Here we describe a method to induce and image extrusion in the larval zebrafish epidermis. To visualize extrusion, we inject a red fluorescent protein labeled probe for F-actin into one-cell stage transgenic zebrafish embryos expressing green fluorescent protein in the epidermis and induce apoptosis by addition of G418 to larvae. We then use time-lapse imaging on a spinning disc confocal microscope to observe actin dynamics and epithelial cell behaviors during the process of apoptotic cell extrusion. This approach allows us to investigate the extrusion process in live epithelia and will provide an avenue to study disease states caused by the failure to eliminate apoptotic cells.
Developmental Biology, Issue 52, Actin, Extrusion, Epithelia, Homeostasis, Zebrafish, Time-Lapse Imaging
2689
Play Button
An In Vitro System to Study Tumor Dormancy and the Switch to Metastatic Growth
Authors: Dalit Barkan, Jeffrey E. Green.
Institutions: University of Haifa, National Cancer Institute.
Recurrence of breast cancer often follows a long latent period in which there are no signs of cancer, and metastases may not become clinically apparent until many years after removal of the primary tumor and adjuvant therapy. A likely explanation of this phenomenon is that tumor cells have seeded metastatic sites, are resistant to conventional therapies, and remain dormant for long periods of time 1-4. The existence of dormant cancer cells at secondary sites has been described previously as quiescent solitary cells that neither proliferate nor undergo apoptosis 5-7. Moreover, these solitary cells has been shown to disseminate from the primary tumor at an early stage of disease progression 8-10 and reside growth-arrested in the patients' bone marrow, blood and lymph nodes 1,4,11. Therefore, understanding mechanisms that regulate dormancy or the switch to a proliferative state is critical for discovering novel targets and interventions to prevent disease recurrence. However, unraveling the mechanisms regulating the switch from tumor dormancy to metastatic growth has been hampered by the lack of available model systems. in vivo and ex vivo model systems to study metastatic progression of tumor cells have been described previously 1,12-14. However these model systems have not provided in real time and in a high throughput manner mechanistic insights into what triggers the emergence of solitary dormant tumor cells to proliferate as metastatic disease. We have recently developed a 3D in vitro system to model the in vivo growth characteristics of cells that exhibit either dormant (D2.OR, MCF7, K7M2-AS.46) or proliferative (D2A1, MDA-MB-231, K7M2) metastatic behavior in vivo . We demonstrated that tumor cells that exhibit dormancy in vivo at a metastatic site remain quiescent when cultured in a 3-dimension (3D) basement membrane extract (BME), whereas cells highly metastatic in vivo readily proliferate in 3D culture after variable, but relatively short periods of quiescence. Importantly by utilizing the 3D in vitro model system we demonstrated for the first time that the ECM composition plays an important role in regulating whether dormant tumor cells will switch to a proliferative state and have confirmed this in in vivo studies15-17. Hence, the model system described in this report provides an in vitro method to model tumor dormancy and study the transition to proliferative growth induced by the microenvironment.
Medicine, Issue 54, Tumor dormancy, cancer recurrence, metastasis, reconstituted basement membrane extract (BME), 3D culture, breast cancer
2914
Play Button
Study of the Actin Cytoskeleton in Live Endothelial Cells Expressing GFP-Actin
Authors: Travis M. Doggett, Jerome W. Breslin.
Institutions: Louisiana State University Health Sciences Center.
The microvascular endothelium plays an important role as a selectively permeable barrier to fluids and solutes. The adhesive junctions between endothelial cells regulate permeability of the endothelium, and many studies have indicated the important contribution of the actin cytoskeleton to determining junctional integrity1-5. A cortical actin belt is thought to be important for the maintenance of stable junctions1, 2, 4, 5. In contrast, actin stress fibers are thought to generate centripetal tension within endothelial cells that weakens junctions2-5. Much of this theory has been based on studies in which endothelial cells are treated with inflammatory mediators known to increase endothelial permeability, and then fixing the cells and labeling F-actin for microscopic observation. However, these studies provide a very limited understanding of the role of the actin cytoskeleton because images of fixed cells provide only snapshots in time with no information about the dynamics of actin structures5. Live-cell imaging allows incorporation of the dynamic nature of the actin cytoskeleton into the studies of the mechanisms determining endothelial barrier integrity. A major advantage of this method is that the impact of various inflammatory stimuli on actin structures in endothelial cells can be assessed in the same set of living cells before and after treatment, removing potential bias that may occur when observing fixed specimens. Human umbilical vein endothelial cells (HUVEC) are transfected with a GFP-β-actin plasmid and grown to confluence on glass coverslips. Time-lapse images of GFP-actin in confluent HUVEC are captured before and after the addition of inflammatory mediators that elicit time-dependent changes in endothelial barrier integrity. These studies enable visual observation of the fluid sequence of changes in the actin cytoskeleton that contribute to endothelial barrier disruption and restoration. Our results consistently show local, actin-rich lamellipodia formation and turnover in endothelial cells. The formation and movement of actin stress fibers can also be observed. An analysis of the frequency of formation and turnover of the local lamellipodia, before and after treatment with inflammatory stimuli can be documented by kymograph analyses. These studies provide important information on the dynamic nature of the actin cytoskeleton in endothelial cells that can used to discover previously unidentified molecular mechanisms important for the maintenance of endothelial barrier integrity.
Cell Biology, Issue 57, Endothelial cells, actin, cytoskeleton, live-cell imaging, GFP, lamellipodia, stress fibers, kymograph analysis
3187
Play Button
Live Imaging of Cell Motility and Actin Cytoskeleton of Individual Neurons and Neural Crest Cells in Zebrafish Embryos
Authors: Erica Andersen, Namrata Asuri, Matthew Clay, Mary Halloran.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison.
The zebrafish is an ideal model for imaging cell behaviors during development in vivo. Zebrafish embryos are externally fertilized and thus easily accessible at all stages of development. Moreover, their optical clarity allows high resolution imaging of cell and molecular dynamics in the natural environment of the intact embryo. We are using a live imaging approach to analyze cell behaviors during neural crest cell migration and the outgrowth and guidance of neuronal axons. Live imaging is particularly useful for understanding mechanisms that regulate cell motility processes. To visualize details of cell motility, such as protrusive activity and molecular dynamics, it is advantageous to label individual cells. In zebrafish, plasmid DNA injection yields a transient mosaic expression pattern and offers distinct benefits over other cell labeling methods. For example, transgenic lines often label entire cell populations and thus may obscure visualization of the fine protrusions (or changes in molecular distribution) in a single cell. In addition, injection of DNA at the one-cell stage is less invasive and more precise than dye injections at later stages. Here we describe a method for labeling individual developing neurons or neural crest cells and imaging their behavior in vivo. We inject plasmid DNA into 1-cell stage embryos, which results in mosaic transgene expression. The vectors contain cell-specific promoters that drive expression of a gene of interest in a subset of sensory neurons or neural crest cells. We provide examples of cells labeled with membrane targeted GFP or with a biosensor probe that allows visualization of F-actin in living cells1. Erica Andersen, Namrata Asuri, and Matthew Clay contributed equally to this work.
Developmental Biology, Issue 36, zebrafish, axon guidance, neural crest, cell behavior, actin, microinjection, embryos
1726
Play Button
Fluorescent Labeling of Drosophila Heart Structures
Authors: Nakissa N. Alayari, Georg Vogler, Ouarda Taghli-Lamallem, Karen Ocorr, Rolf Bodmer, Anthony Cammarato.
Institutions: San Diego State University, The Sanford Burnham Institute for Medical Research.
The Drosophila melanogaster dorsal vessel, or heart, is a tubular structure comprised of a single layer of contractile cardiomyocytes, pericardial cells that align along each side of the heart wall, supportive alary muscles and, in adults, a layer of ventral longitudinal muscle cells. The contractile fibers house conserved constituents of the muscle cytoarchitecture including densely packed bundles of myofibrils and cytoskeletal/submembranous protein complexes, which interact with homologous components of the extracellular matrix. Here we describe a protocol for the fixation and the fluorescent labeling of particular myocardial elements from the hearts of dissected larvae and semi-intact adult Drosophila. Specifically, we demonstrate the labeling of sarcomeric F-actin and of α-actinin in larval hearts. Additionally, we perform labeling of F-actin and α-actinin in myosin-GFP expressing adult flies and of α-actinin and pericardin, a type IV extracellular matrix collagen, in wild type adult hearts. Particular attention is given to a mounting strategy for semi-intact adult hearts that minimizes handling and optimizes the opportunity for maintaining the integrity of the cardiac tubes and the associated tissues. These preparations are suitable for imaging via fluorescent and confocal microscopy. Overall, this procedure allows for careful and detailed analysis of the structural characteristics of the heart from a powerful genetically tractable model system.
Cellular Biology, Issue 32, Cardiac, cardiomyopathy, dorsal vessel, fluorescence, staining, GFP, larva, immunohistochemistry, microscopy, imaging
1423
Play Button
Actin Co-Sedimentation Assay; for the Analysis of Protein Binding to F-Actin
Authors: Jyoti Srivastava, Diane Barber.
Institutions: University of California, San Francisco - UCSF.
The actin cytoskeleton within the cell is a network of actin filaments that allows the movement of cells and cellular processes, and that generates tension and helps maintains cellular shape. Although the actin cytoskeleton is a rigid structure, it is a dynamic structure that is constantly remodeling. A number of proteins can bind to the actin cytoskeleton. The binding of a particular protein to F-actin is often desired to support cell biological observations or to further understand dynamic processes due to remodeling of the actin cytoskeleton. The actin co-sedimentation assay is an in vitro assay routinely used to analyze the binding of specific proteins or protein domains with F-actin. The basic principles of the assay involve an incubation of the protein of interest (full length or domain of) with F-actin, ultracentrifugation step to pellet F-actin and analysis of the protein co-sedimenting with F-actin. Actin co-sedimentation assays can be designed accordingly to measure actin binding affinities and in competition assays.
Biochemistry, Issue 13, F-actin, protein, in vitro binding, ultracentrifugation
690
Play Button
Monitoring Actin Disassembly with Time-lapse Microscopy
Authors: Hao Yuan Kueh.
Institutions: Harvard Medical School.
Cellular Biology, Issue 1, cytoskeleton, actin, timelapse, filament, chamber
66
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.