JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
CXCR4 is dispensable for T cell egress from chronically inflamed skin via the afferent lymph.
PUBLISHED: 01-01-2014
T cell recirculation through extralymphoid tissues is essential to immune surveillance, host defense and inflammation. In this process, T cells enter the tissue from the blood and subsequently leave via the afferent lymph. In the absence of inflammation, T cells require CCR7 expression to egress from the skin or lung, which is consistent with the constitutive expression of the CCR7 ligand CCL21 on lymphatic endothelium. However, during chronic inflammation alternative chemoattractants come into play, allowing Ccr7-deficient (Ccr7-/-) T cells to egress efficiently from affected skin. As T cell egress from inflamed sites is a potential control point of the inflammatory response, we aimed to determine alternative T cell exit receptors using a mouse and a sheep model. We show that CCR7+ and CCR7- T cells exiting from the chronically inflamed skin were highly responsive to the CXCR4 ligand CXCL12, which was induced in the lymphatics in the inflamed site. Based on these findings, we hypothesized that CXCR4 mediates T cell egress from inflamed skin. However, pharmacological inhibition of CXCR4 did not affect the tissue egress of wildtype or Ccr7-/- CD4 and CD8 T cells after adoptive transfer into chronically inflamed skin. Similarly, adoptively transferred Cxcr4-/- Ccr7-/- and Ccr7-/- T cells egressed from the inflamed skin equally well. Based on these data, we conclude that, while CXCR4 might play an essential role for other cell types that enter the afferent lymphatics, it is dispensable for T cell egress from the chronically inflamed skin.
Neutrophils are critical effector cells of the innate immune system. They are rapidly recruited at sites of acute inflammation and exert protective or pathogenic effects depending on the inflammatory milieu. Nonetheless, despite the indispensable role of neutrophils in immunity, detailed understanding of the molecular factors that mediate neutrophils' effector and immunopathogenic effects in different infectious diseases and inflammatory conditions is still lacking, partly because of their short half life, the difficulties with handling of these cells and the lack of reliable experimental protocols for obtaining sufficient numbers of neutrophils for downstream functional studies and adoptive transfer experiments. Therefore, simple, fast, economical and reliable methods are highly desirable for harvesting sufficient numbers of mouse neutrophils for assessing functions such as phagocytosis, killing, cytokine production, degranulation and trafficking. To that end, we present a reproducible density gradient centrifugation-based protocol, which can be adapted in any laboratory to isolate large numbers of neutrophils from the bone marrow of mice with high purity and viability. Moreover, we present a simple protocol that uses CellTracker dyes to label the isolated neutrophils, which can then be adoptively transferred into recipient mice and tracked in several tissues for at least 4 hr post-transfer using flow cytometry. Using this approach, differential labeling of neutrophils from wild-type and gene-deficient mice with different CellTracker dyes can be successfully employed to perform competitive repopulation studies for evaluating the direct role of specific genes in trafficking of neutrophils from the blood into target tissues in vivo.
21 Related JoVE Articles!
Play Button
Isolation of Murine Lymph Node Stromal Cells
Authors: Maria A. S. Broggi, Mathias Schmaler, Nadège Lagarde, Simona W. Rossi.
Institutions: University of Basel and University Hospital Basel.
Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host. Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed.
Immunology, Issue 90, lymph node, lymph node stromal cells, digestion, isolation, enzymes, fibroblastic reticular cell, lymphatic endothelial cell, blood endothelial cell
Play Button
A Genetic Screen to Isolate Toxoplasma gondii Host-cell Egress Mutants
Authors: Bradley I. Coleman, Marc-Jan Gubbels.
Institutions: Boston College.
The widespread, obligate intracellular, protozoan parasite Toxoplasma gondii causes opportunistic disease in immuno-compromised patients and causes birth defects upon congenital infection. The lytic replication cycle is characterized by three stages: 1. active invasion of a nucleated host cell; 2. replication inside the host cell; 3. active egress from the host cell. The mechanism of egress is increasingly being appreciated as a unique, highly regulated process, which is still poorly understood at the molecular level. The signaling pathways underlying egress have been characterized through the use of pharmacological agents acting on different aspects of the pathways1-5. As such, several independent triggers of egress have been identified which all converge on the release of intracellular Ca2+, a signal that is also critical for host cell invasion6-8. This insight informed a candidate gene approach which led to the identification of plant like calcium dependent protein kinase (CDPK) involved in egress9. In addition, several recent breakthroughs in understanding egress have been made using (chemical) genetic approaches10-12. To combine the wealth of pharmacological information with the increasing genetic accessibility of Toxoplasma we recently established a screen permitting the enrichment for parasite mutants with a defect in host cell egress13. Although chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) or ethyl methanesulfonate (EMS) has been used for decades in the study of Toxoplasma biology11,14,15, only recently has genetic mapping of mutations underlying the phenotypes become routine16-18. Furthermore, by generating temperature-sensitive mutants, essential processes can be dissected and the underlying genes directly identified. These mutants behave as wild-type under the permissive temperature (35 °C), but fail to proliferate at the restrictive temperature (40 °C) as a result of the mutation in question. Here we illustrate a new phenotypic screening method to isolate mutants with a temperature-sensitive egress phenotype13. The challenge for egress screens is to separate egressed from non-egressed parasites, which is complicated by fast re-invasion and general stickiness of the parasites to host cells. A previously established egress screen was based on a cumbersome series of biotinylation steps to separate intracellular from extracellular parasites11. This method also did not generate conditional mutants resulting in weak phenotypes. The method described here overcomes the strong attachment of egressing parasites by including a glycan competitor, dextran sulfate (DS), that prevents parasites from sticking to the host cell19. Moreover, extracellular parasites are specifically killed off by pyrrolidine dithiocarbamate (PDTC), which leaves intracellular parasites unharmed20. Therefore, with a new phenotypic screen to specifically isolate parasite mutants with defects in induced egress, the power of genetics can now be fully deployed to unravel the molecular mechanisms underlying host cell egress.
Immunology, Issue 60, Genetics, Toxoplasma gondii, chemical mutagenesis, egress, genetic screen
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Identification of Specific Sensory Neuron Populations for Study of Expressed Ion Channels
Authors: Renuka Ramachandra, Stephanie McGrew, Keith Elmslie.
Institutions: AT Still University of Health Sciences.
Sensory neurons transmit signals from various parts of the body to the central nervous system. The soma for these neurons are located in the dorsal root ganglia that line the spinal column. Understanding the receptors and channels expressed by these sensory afferent neurons could lead to novel therapies for disease. The initial step is to identify the specific subset of sensory neurons of interest. Here we describe a method to identify afferent neurons innervating the muscles by retrograde labeling using a fluorescent dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate). Understanding the contribution of ion channels to excitation of muscle afferents could help to better control excessive excitability induced by certain disease states such as peripheral vascular disease or heart failure. We used two approaches to identify the voltage dependent ion channels expressed by these neurons, patch clamp electrophysiology and immunocytochemistry. While electrophysiology plus pharmacological blockers can identify functional ion channel types, we used immunocytochemistry to identify channels for which specific blockers were unavailable and to better understand the ion channel distribution pattern in the cell population. These techniques can be applied to other areas of the nervous system to study specific neuronal groups.
Neuroscience, Issue 82, DiI, patch clamp, sensory neurons, muscle afferent neurons, immunocytochemistry, electrophysiology
Play Button
Flexible Colonoscopy in Mice to Evaluate the Severity of Colitis and Colorectal Tumors Using a Validated Endoscopic Scoring System
Authors: Tomohiro Kodani, Alex Rodriguez-Palacios, Daniele Corridoni, Loris Lopetuso, Luca Di Martino, Brian Marks, James Pizarro, Theresa Pizarro, Amitabh Chak, Fabio Cominelli.
Institutions: Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland.
The use of modern endoscopy for research purposes has greatly facilitated our understanding of gastrointestinal pathologies. In particular, experimental endoscopy has been highly useful for studies that require repeated assessments in a single laboratory animal, such as those evaluating mechanisms of chronic inflammatory bowel disease and the progression of colorectal cancer. However, the methods used across studies are highly variable. At least three endoscopic scoring systems have been published for murine colitis and published protocols for the assessment of colorectal tumors fail to address the presence of concomitant colonic inflammation. This study develops and validates a reproducible endoscopic scoring system that integrates evaluation of both inflammation and tumors simultaneously. This novel scoring system has three major components: 1) assessment of the extent and severity of colorectal inflammation (based on perianal findings, transparency of the wall, mucosal bleeding, and focal lesions), 2) quantitative recording of tumor lesions (grid map and bar graph), and 3) numerical sorting of clinical cases by their pathological and research relevance based on decimal units with assigned categories of observed lesions and endoscopic complications (decimal identifiers). The video and manuscript presented herein were prepared, following IACUC-approved protocols, to allow investigators to score their own experimental mice using a well-validated and highly reproducible endoscopic methodology, with the system option to differentiate distal from proximal endoscopic colitis (D-PECS).
Medicine, Issue 80, Crohn's disease, ulcerative colitis, colon cancer, Clostridium difficile, SAMP mice, DSS/AOM-colitis, decimal scoring identifier
Play Button
Intralymphatic Immunotherapy and Vaccination in Mice
Authors: Pål Johansen, Thomas M. Kündig.
Institutions: University Hospital Zurich.
Vaccines are typically injected subcutaneously or intramuscularly for stimulation of immune responses. The success of this requires efficient drainage of vaccine to lymph nodes where antigen presenting cells can interact with lymphocytes for generation of the wanted immune responses. The strength and the type of immune responses induced also depend on the density or frequency of interactions as well as the microenvironment, especially the content of cytokines. As only a minute fraction of peripherally injected vaccines reaches the lymph nodes, vaccinations of mice and humans were performed by direct injection of vaccine into inguinal lymph nodes, i.e. intralymphatic injection. In man, the procedure is guided by ultrasound. In mice, a small (5-10 mm) incision is made in the inguinal region of anesthetized animals, the lymph node is localized and immobilized with forceps, and a volume of 10-20 μl of the vaccine is injected under visual control. The incision is closed with a single stitch using surgical sutures. Mice were vaccinated with plasmid DNA, RNA, peptide, protein, particles, and bacteria as well as adjuvants, and strong improvement of immune responses against all type of vaccines was observed. The intralymphatic method of vaccination is especially appropriate in situations where conventional vaccination produces insufficient immunity or where the amount of available vaccine is limited.
Immunology, Issue 84, Vaccination, Immunization, intralymphatic immunotherapy, Lymph node injection, vaccines, adjuvants, surgery, anesthesia
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Play Button
Long-term Intravital Immunofluorescence Imaging of Tissue Matrix Components with Epifluorescence and Two-photon Microscopy
Authors: Esra Güç, Manuel Fankhauser, Amanda W. Lund, Melody A. Swartz, Witold W. Kilarski.
Institutions: École Polytechnique Fédérale de Lausanne, Oregon Health & Science University.
Besides being a physical scaffold to maintain tissue morphology, the extracellular matrix (ECM) is actively involved in regulating cell and tissue function during development and organ homeostasis. It does so by acting via biochemical, biomechanical, and biophysical signaling pathways, such as through the release of bioactive ECM protein fragments, regulating tissue tension, and providing pathways for cell migration. The extracellular matrix of the tumor microenvironment undergoes substantial remodeling, characterized by the degradation, deposition and organization of fibrillar and non-fibrillar matrix proteins. Stromal stiffening of the tumor microenvironment can promote tumor growth and invasion, and cause remodeling of blood and lymphatic vessels. Live imaging of matrix proteins, however, to this point is limited to fibrillar collagens that can be detected by second harmonic generation using multi-photon microscopy, leaving the majority of matrix components largely invisible. Here we describe procedures for tumor inoculation in the thin dorsal ear skin, immunolabeling of extracellular matrix proteins and intravital imaging of the exposed tissue in live mice using epifluorescence and two-photon microscopy. Our intravital imaging method allows for the direct detection of both fibrillar and non-fibrillar matrix proteins in the context of a growing dermal tumor. We show examples of vessel remodeling caused by local matrix contraction. We also found that fibrillar matrix of the tumor detected with the second harmonic generation is spatially distinct from newly deposited matrix components such as tenascin C. We also showed long-term (12 hours) imaging of T-cell interaction with tumor cells and tumor cells migration along the collagen IV of basement membrane. Taken together, this method uniquely allows for the simultaneous detection of tumor cells, their physical microenvironment and the endogenous tissue immune response over time, which may provide important insights into the mechanisms underlying tumor progression and ultimate success or resistance to therapy.
Bioengineering, Issue 86, Intravital imaging, epifluorescence, two-photon imaging, Tumor matrix, Matrix remodeling
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents
Authors: Joy A. Franco, Heidi E. Kloefkorn, Shawn Hochman, Katherine A. Wilkinson.
Institutions: San José State University, University of Florida, Emory University School of Medicine, San José State University.
Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice.
Neuroscience, Issue 91, muscle spindle, muscle afferent, extensor digitorum longus, sensory neurons, electrophysiology
Play Button
Examination of Thymic Positive and Negative Selection by Flow Cytometry
Authors: Qian Hu, Stephanie A. Nicol, Alexander Y.W. Suen, Troy A. Baldwin.
Institutions: University of Alberta.
A healthy immune system requires that T cells respond to foreign antigens while remaining tolerant to self-antigens. Random rearrangement of the T cell receptor (TCR) α and β loci generates a T cell repertoire with vast diversity in antigen specificity, both to self and foreign. Selection of the repertoire during development in the thymus is critical for generating safe and useful T cells. Defects in thymic selection contribute to the development of autoimmune and immunodeficiency disorders1-4. T cell progenitors enter the thymus as double negative (DN) thymocytes that do not express CD4 or CD8 co-receptors. Expression of the αβTCR and both co-receptors occurs at the double positive (DP) stage. Interaction of the αβTCR with self-peptide-MHC (pMHC) presented by thymic cells determines the fate of the DP thymocyte. High affinity interactions lead to negative selection and elimination of self-reactive thymocytes. Low affinity interactions result in positive selection and development of CD4 or CD8 single positive (SP) T cells capable of recognizing foreign antigens presented by self-MHC5. Positive selection can be studied in mice with a polyclonal (wildtype) TCR repertoire by observing the generation of mature T cells. However, they are not ideal for the study of negative selection, which involves deletion of small antigen-specific populations. Many model systems have been used to study negative selection but vary in their ability to recapitulate physiological events6. For example, in vitro stimulation of thymocytes lacks the thymic environment that is intimately involved in selection, while administration of exogenous antigen can lead to non-specific deletion of thymocytes7-9. Currently, the best tools for studying in vivo negative selection are mice that express a transgenic TCR specific for endogenous self-antigen. However, many classical TCR transgenic models are characterized by premature expression of the transgenic TCRα chain at the DN stage, resulting in premature negative selection. Our lab has developed the HYcd4 model, in which the transgenic HY TCRα is conditionally expressed at the DP stage, allowing negative selection to occur during the DP to SP transition as occurs in wildtype mice10. Here, we describe a flow cytometry-based protocol to examine thymic positive and negative selection in the HYcd4 mouse model. While negative selection in HYcd4 mice is highly physiological, these methods can also be applied to other TCR transgenic models. We will also present general strategies for analyzing positive selection in a polyclonal repertoire applicable to any genetically manipulated mice.
Immunology, Issue 68, Medicine, Cellular Biology, Anatomy, Physiology, Thymus, T cell, negative selection, positive selection, autoimmunity, flow cytometry
Play Button
Directed Differentiation of Induced Pluripotent Stem Cells towards T Lymphocytes
Authors: Fengyang Lei, Rizwanul Haque, Xiaofang Xiong, Jianxun Song.
Institutions: Pennsylvania State University College of Medicine.
Adoptive cell transfer (ACT) of antigen-specific CD8+ cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies 1. CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines 2-7. However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases 8-10. However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic 11-13, HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture 14-16. Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.
Stem Cell Biology, Issue 63, Immunology, T cells, induced pluripotent stem cells, differentiation, Notch signaling, T cell receptor, adoptive cell transfer
Play Button
Determining heat and mechanical pain threshold in inflamed skin of human subjects
Authors: Martin S Angst, Martha Tingle, Nicholas G Phillips, Brendan Carvalho.
Institutions: Stanford University School of Medicine.
In a previous article in the Journal of Visualized Experiments we have demonstrated skin microdialysis techniques for the collection of tissue-specific nociceptive and inflammatory biochemicals in humans. In this article we will show pain-testing paradigms that are often used in tandem with microdialysis procedures. Combining pain tests with microdialysis provides the critical link between behavioral and biochemical data that allows identifying key biochemicals responsible for generating and propagating pain. Two models of evoking pain in inflamed skin of human study participants are shown. The first model evokes pain with aid of heat stimuli. Heat evoked pain as described here is predominantly mediated by small, non-myelinated peripheral nociceptive nerve fibers (C-fibers). The second model evokes pain via punctuated pressure stimuli. Punctuated pressure evoked pain is predominantly mediated by small, myelinated peripheral nociceptive nerve fibers (A-delta fibers). The two models are mechanistically distinct and independently examine nociceptive processing by the two major peripheral nerve fiber populations involved in pain signaling. Heat pain is evoked with aid of the TSA II, a commercially available thermo-sensory analyzer (Medoc Advanced Medical Systems, Durham, NC). Stimulus configuration and delivery is handled with aid of specific software. Thermodes vary in size and shape but in principle consist of a metal plate that can be heated or cooled at various rates and for different periods of time. Algorithms assessing heat-evoked pain are manifold. In the experiments shown here, study participants are asked to indicate at what point they start experiencing pain while the thermode in contact with skin is heated at a predetermined rate starting at a temperature that does not evoke pain. The thermode temperature at which a subject starts experiencing pain constitutes the heat pain threshold. Mechanical pain is evoked with punctuated probes. Such probes are commercially available from several manufacturers (von Frey hairs). However, the accuracy of von Frey hairs has been criticized and many investigators use custom made punctuated pressure probes. In the experiments shown here eight custom-made punctuated probes of different weights are applied in consecutive order, a procedure called up-down algorithm, to identify perceptional deflection points, i.e., a change from feeling no pain to feeling pain or vice versa. The average weight causing a perceptional deflection constitutes the mechanical pain threshold.
Medicine, Issue 23, Experimental pain, experimental inflammation, human, skin, heat stimuli, mechanical stimuli, pain threshold, psychophysics, non-myelinated nociceptive nerve fiber, small myelinated nociceptive nerve fiber
Play Button
Generation of Human CD40-activated B cells
Authors: Tanja M. Liebig, Anne Fiedler, Shahram Zoghi, Alexander Shimabukuro-Vornhagen, Michael S. von Bergwelt-Baildon.
Institutions: University Hospital of Cologne, Department I of Internal Medicine.
CD40-activated B cells (CD40-B cells) have been identified as an alternative source of immuno-stimulatory antigen-presenting cells (APC) for cancer immunotherapy 1-3. Compared to Dendritic cells (DCs), the best characterized APC, CD40-B cells have several distinct biological and technical properties. Similar to DCs, B cells show an increased expression of MHC and co-stimulatory molecules (Fig.1b), exhibit a strong migratory capacity and present antigen presentation efficiently to T cells, after stimulation with interleukin-4 and CD40 ligand (CD40L). However, in contrast to immature or mature DCs, CD40-B cells express the full lymph node homing triad consisting of CD62L, CCR7/CXCR4, and leukocyte function antigen-1 (LFA1, CD11a/CD18), necessary for homing to secondary lymphoid organs (Fig.1a) 3. CD40-B cells can be generated without difficulties from very small amounts of peripheral blood which can be further expanded in vitro to very large amounts of highly-pure CD40-B cells (>109 cells per patient) from healthy donors as well as cancer patients (Fig.1c,d) 1,4. In this protocol we demonstrate how to obtain fully activated CD40-B cells from human PBMC. Key molecules for the cell culture are CD40 ligand, interleukin-4 (IL-4) and cyclosporin A (CsA), which are replenished in a 3-4 day culture cycle. For laboratory purposes CD40-stimulation is provided by NIH/3T3 cells expressing recombinant human CD40 ligand (tCD40L NIH/3T3) 5. To avoid contamination with non-transfected cells, expression of the human CD40 ligand on the transfectants has to be checked regularly (Fig.2). After 14 days CD40-B cell cultures consist of more than 95% pure B cells and an expansion of CD40-B cells over 65 days is frequently possible without any loss of function 1, 4. CD40-B cells efficiently take up, process and present antigens to T cells 6. They do not only prime naϊve, but also expand memory T cells 7,8. CD40-activated B cells can be used to study B-cell activation, differentiation and function. Moreover, they represent a promising tool for therapeutic or preventive vaccination against tumors 9.
Immunology, Issue 32, CD40-activated B cell, B cell, antigen presentation, APC, immunotherapy, cancer vaccine
Play Button
Postsynaptic Recordings at Afferent Dendrites Contacting Cochlear Inner Hair Cells: Monitoring Multivesicular Release at a Ribbon Synapse
Authors: Lisa Grant, Eunyoung Yi, Juan D. Goutman, Elisabeth Glowatzki.
Institutions: The Johns Hopkins School of Medicine, Consejo Nacional de Investigaciones Científicas y Técnicas.
The afferent synapse between the inner hair cell (IHC) and the auditory nerve fiber provides an electrophysiologically accessible site for recording the postsynaptic activity of a single ribbon synapse 1-4. Ribbon synapses of sensory cells release neurotransmitter continuously, the rate of which is modulated in response to graded changes in IHC membrane potential 5. Ribbon synapses have been shown to operate by multivesicular release, where multiple vesicles can be released simultaneously to evoke excitatory postsynaptic currents (EPSCs) of varying amplitudes 1, 4, 6-11. Neither the role of the presynaptic ribbon, nor the mechanism underlying multivesicular release is currently well understood. The IHC is innervated by 10-20 auditory nerve fibers, and every fiber contacts the IHC with a unmyelinated single ending to form a single ribbon synapse. The small size of the afferent boutons contacting IHCs (approximately 1 μm in diameter) enables recordings with exceptional temporal resolution to be made. Furthermore, the technique can be adapted to record from both pre- and postsynaptic cells simultaneously, allowing the transfer function at the synapse to be studied directly 2. This method therefore provides a means by which fundamental aspects of neurotransmission can be studied, from multivesicular release to the elusive function of the ribbon in sensory cells.
Neuroscience, Issue 48, electrophysiology, whole-cell recording, patch clamp, synaptic transmission, ribbon synapse, multivesicular, dendrite, auditory nerve, hearing, hair cell.
Play Button
Intravital Imaging of the Mouse Popliteal Lymph Node
Authors: H. L. Rachel Liou, Jay T. Myers, Deborah S. Barkauskas, Alex Y. Huang.
Institutions: Case Western Reserve University , Case Western Reserve University .
Lymph nodes (LNs) are secondary lymphoid organs, which are strategically located throughout the body to allow for trapping and presentation of foreign antigens from peripheral tissues to prime the adaptive immune response. Juxtaposed between innate and adaptive immune responses, the LN is an ideal site to study immune cell interactions1,2. Lymphocytes (T cells, B cells and NK cells), dendritic cells (DCs), and macrophages comprise the bulk of bone marrow-derived cellular elements of the LN. These cells are strategically positioned in the LN to allow efficient surveillance of self antigens and potential foreign antigens3-5. The process by which lymphocytes successfully encounter cognate antigens is a subject of intense investigation in recent years, and involves an integration of molecular contacts including antigen receptors, adhesion molecules, chemokines, and stromal structures such as the fibro-reticular network2,6-12. Prior to the development of high-resolution real-time fluorescent in vivo imaging, investigators relied on static imaging, which only offers answers regarding morphology, position, and architecture. While these questions are fundamental in our understanding of immune cell behavior, the limitations intrinsic with this technique does not permit analysis to decipher lymphocyte trafficking and environmental clues that affect dynamic cell behavior. Recently, the development of intravital two-photon laser scanning microscopy (2P-LSM) has allowed investigators to view the dynamic movements and interactions of individual cells within live LNs in situ12-16. In particular, we and others have applied this technique to image cellular behavior and interactions within the popliteal LN, where its compact, dense nature offers the advantage of multiplex data acquisition over a large tissue area with diverse tissue sub-structures11,17-18. It is important to note that this technique offers added benefits over explanted tissue imaging techniques, which require disruption of blood, lymph flow, and ultimately the cellular dynamics of the system. Additionally, explanted tissues have a very limited window of time in which the tissue remains viable for imaging after explant. With proper hydration and monitoring of the animal's environmental conditions, the imaging time can be significantly extended with this intravital technique. Here, we present a detailed method of preparing mouse popliteal LN for the purpose of performing intravital imaging.
Immunology, Issue 60, Lymph node, popliteal, intravital, multi-photon, microscopy, cell trafficking, mouse, tumor immunology
Play Button
Isolation of Brain and Spinal Cord Mononuclear Cells Using Percoll Gradients
Authors: Paula A. Pino, Astrid E. Cardona.
Institutions: University of Texas at San Antonio - UTSA.
Isolation of immune cells that infiltrate the central nervous system (CNS) during infection, trauma, autoimmunity or neurodegeneration, is often required to define their phenotype and effector functions. Histochemical approaches are instrumental to determine the location of the infiltrating cells and to analyze the associated CNS pathology. However, in-situ histochemistry and immunofluorescent staining techniques are limited by the number of antibodies that can be used at a single time to characterize immune cell subtypes in a particular tissue. Therefore, histological approaches in conjunction with immune-phenotyping by flow cytometry are critical to fully characterize the composition of local CNS infiltration. This protocol is based on the separation of CNS cellular suspensions over discontinous percoll gradients. The current article describes a rapid protocol to efficiently isolate mononuclear cells from brain and spinal cord tissues that can be effectively utilized for identification of various immune cell populations in a single sample by flow cytometry.
Immunology, Issue 48, Microglia, monocytes/macrophages, CNS, inflammation, EAE, chemokines, mouse, flow cytometry
Play Button
Human In-Vivo Bioassay for the Tissue-Specific Measurement of Nociceptive and Inflammatory Mediators
Authors: Martin S Angst, Martha Tingle, Martin Schmelz, Brendan Carvalho, David C Yeomans.
Institutions: Stanford University School of Medicine, University of Mannheim, University of Heidelberg.
This in-vivo human bioassay can be used to study human volunteers and patients. Samples are collected from pertinent tissue sites such as the skin via aseptically inserted microdialysis catheters (Dermal Dialysis, Erlangen, Germany). Illustrated in this example is the collection of interstitial fluid from experimentally inflamed skin in human volunteers. Sample collection can be combined with other experimental tests. For example, the simultaneous assessment of locally released biochemicals and subjective sensitivity to painful stimuli in experimentally inflamed skin provides the critical biochemical-behavioral link to identify biomarkers of pain and inflammation. Presented assay in the living human organism allows for mechanistic insight into tissue-specific processes underlying pain and/or inflammation. The method is also well suited to examine the effectiveness of existing or novel interventions - such as new drug candidates - targeting the treatment of painful and/or inflammatory conditions. This article will provide a detailed description on the use of microdialysis techniques for collecting interstitial fluid from experimentally inflamed skin lesion of human study subjects. Interstitial fluid samples are typically processed with aid of multiplex bead array immunoassays allowing assaying up to 100 analytes in samples as small in volume as 50 microliters.
Medicine, Issue 22, Microdialysis, experimental pain, cytokines, skin, interstitial fluid, experimental inflammation, human, inflammatory mediators, nociceptive mediators, biomarkers
Play Button
Imaging Effector Memory T cells in the Ear After Induction of Adoptive DTH
Authors: Melanie P. Matheu, Christine Beeton, Ian Parker, K. George Chandy, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Delayed type hypersensitivity (DTH) is an immune reaction in which the main players are CCR7- effector / memory T lymphocytes. Here, we demonstrate a method for inducing and recording the progress of a DTH reaction in the rat ear. This is followed by a demonstration of the preparation of rat ear tissue for two-photon imaging of the CCR7- effector / memory T cell response. An adoptive DTH is induced by the intraperitoneal injection of GFP-labeled Ova-specific CCR7- effector / memory T cell line (Beeton, C J. Visualized Experiments, Issue 8). Cells are then allowed to equilibrate in the rat for 48 hours before challenge by injecting one ear with saline (control ear) and the other with a 1:1 mix of Ova and Ova conjugated to Texas-Red (Ova-TR) to allow visualization of resident antigen-presenting cells. We describe a method of tissue preparation useful for imaging the motility of cells within the deep dermal layer during an immune response, in conjunction with visualization of collagen fibers by second harmonic generation. Ear tissue is cut into 5 x 5 mm squares (slightly larger is better) and mounted onto plastic cover slips using Vetbond™, which are then secured using silicone grease in an imaging chamber and superfused by oxygen-bubbled tissue culture medium at 37°C.
Immunology, Issue 18, 2-photon imaging, delayed type hypersensitivity, inflammation, T cells, antigen presenting cells, ear, rat,
Play Button
Induction and Monitoring of Adoptive Delayed-Type Hypersensitivity in Rats
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Delayed type hypersensitivity (DTH) is an inflammatory reaction mediated by CCR7- effector memory T lymphocytes that infiltrate the site of injection of an antigen against which the immune system has been primed. The inflammatory reaction is characterized by redness and swelling of the site of antigenic challenge. It is a convenient model to determine the in vivo efficacy of immunosuppressants. Cutaneous DTH can be induced either by adoptive transfer of antigen-specific T lymphocytes or by active immunization with an antigen, and subsequent intradermal challenge with the antigen to induce the inflammatory reaction in a given skin area. DTH responses can be induced to various antigens, for example ovalbumin, tuberculin, tetanus toxoid, or keyhole limpet hemocyanin. Such reactions can also be induced against autoantigen, for example to myelin basic protein (MBP) in rats with experimental autoimmune encephalomyelitis induced with MBP, an animal model for multiple sclerosis (1). Here we demonstrate how to induce an adoptive DTH reaction in Lewis rats. We will first stimulate ovalbumin-specific T cells in vitro and inject these activated cells intraperitoneally to naive rats. After allowing the cells to equilibrate in vivo for 2 days, we will challenge the rats with ovalbumin in the pinna of one ear, while the other ear wil receive saline. The inflammatory reaction will be visible 3-72 hours later and ear thickness will be measured as an indication of DTH severity.
Immunology, Issue 8, Rodent, Hypersensitivity, Mouse, Skin, Immune Reaction, Blood Draw, Serum, Video Protocol, Vaccination, Adjuvant
Play Button
Induction and Monitoring of Active Delayed Type Hypersensitivity (DTH) in Rats
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Delayed type hypersensitivity (DTH) is an inflammatory reaction mediated by CCR7- effector memory T lymphocytes that infiltrate the site of injection of an antigen against which the immune system has been primed. The inflammatory reaction is characterized by redness and swelling of the site of antigenic challenge. It is a convenient model to determine the in vivo efficacy of immunosuppressants. Cutaneous DTH can be induced either by adoptive transfer of antigen-specific T lymphocytes or by active immunization with an antigen, and subsequent intradermal challenge with the antigen to induce the inflammatory reaction in a given skin area. DTH responses can be induced to various antigens, for example ovalbumin, tuberculin, tetanus toxoid, or keyhole limpet hemocyanin (KLH). Here we demonstrate how to induce an active DTH reaction in Lewis rats. We will first prepare a water-in-oil emulsion of KLH, our antigen of interest, in complete Freund's adjuvant and inject this emulsion subcutaneously to rats. This will prime the immune system to develop memory T cells directed to KLH. Seven days later we will challenge the rats intradermally on the back with KLH on one side and with ovalbumin, an irrelevant antigen, on the other side. The inflammatory reaction will be visible 16-72 hours later and the red and swollen area will be measured as an indication of DTH severity.
Cell Biology, Issue 6, Immunology, Immune Response, Inflammation, lymphocyte, inflammatory reaction, skin test, video protocol
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.