JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
A comparison of vasopressin, terlipressin, and lactated ringers for resuscitation of uncontrolled hemorrhagic shock in an animal model.
PLoS ONE
PUBLISHED: 01-01-2014
The aim of this study is to compare the effect of lactated ringer (LR), vasopressin (Vaso) or terlipressin (Terli) on uncontrolled hemorrhagic shock (UHS) in rats.
Authors: Kazuyuki Nagai, Shintaro Yagi, Shinji Uemoto, Rene H. Tolba.
Published: 03-07-2013
ABSTRACT
Orthotopic liver transplantation (OLT) in rats using a whole or partial graft is an indispensable experimental model for transplantation research, such as studies on graft preservation and ischemia-reperfusion injury 1,2, immunological responses 3,4, hemodynamics 5,6, and small-for-size syndrome 7. The rat OLT is among the most difficult animal models in experimental surgery and demands advanced microsurgical skills that take a long time to learn. Consequently, the use of this model has been limited. Since the reliability and reproducibility of results are key components of the experiments in which such complex animal models are used, it is essential for surgeons who are involved in rat OLT to be trained in well-standardized and sophisticated procedures for this model. While various techniques and modifications of OLT in rats have been reported 8 since the first model was described by Lee et al. 9 in 1973, the elimination of the hepatic arterial reconstruction 10 and the introduction of the cuff anastomosis technique by Kamada et al. 11 were a major advancement in this model, because they simplified the reconstruction procedures to a great degree. In the model by Kamada et al., the hepatic rearterialization was also eliminated. Since rats could survive without hepatic arterial flow after liver transplantation, there was considerable controversy over the value of hepatic arterialization. However, the physiological superiority of the arterialized model has been increasingly acknowledged, especially in terms of preserving the bile duct system 8,12 and the liver integrity 8,13,14. In this article, we present detailed surgical procedures for a rat model of OLT with hepatic arterial reconstruction using a 50% partial graft after ex vivo liver resection. The reconstruction procedures for each vessel and the bile duct are performed by the following methods: a 7-0 polypropylene continuous suture for the supra- and infrahepatic vena cava; a cuff technique for the portal vein; and a stent technique for the hepatic artery and the bile duct.
21 Related JoVE Articles!
Play Button
Fixed Volume or Fixed Pressure: A Murine Model of Hemorrhagic Shock
Authors: Lauryn K. Kohut, Sophie S. Darwiche, John M. Brumfield, Alicia M. Frank, Timothy R. Billiar.
Institutions: University of Pittsburgh.
It is common knowledge that severe blood loss and traumatic injury can lead to a cascade of detrimental signaling events often resulting in mortality. 1, 2, 3, 4, 5 These signaling events can also lead to sepsis and/or multiple organ dysfunction (MOD). 6, 7, 8, 9 It is critical then to investigate the causes of suppressed immune function and detrimental signaling cascades in order to develop more effective ways to help patients who suffer from traumatic injuries. 10 This fixed pressure Hemorrhagic Shock (HS) procedure, although technically challenging, is an excellent resource for investigation of these pathophysiologic conditions. 11, 12, 13 Advances in the assessment of biological systems, i.e. Systems Biology have enabled the scientific community to further understand complex physiologic networks and cellular communication patterns. 14 Hemorrhagic Shock has proven to be a vital tool for unveiling these cellular communication patterns as they relate to immune function. 15, 16, 17, 18 This procedure can be mastered! This procedure can also be used as either a fixed volume or fixed pressure approach. We adapted this technique in the murine model to enhance research in innate and adaptive immune function. 19, 20, 21 Due to their small size HS in mice presents unique challenges. However due to the many available mouse strains, this species represents an unparalleled resource for the study of the biologic responses. The HS model is an important model for studying cellular communication patterns and the responses of systems such as hormonal and inflammatory mediator systems, and danger signals, i.e. DAMP and PAMP upregulation as it elicits distinct responses that differ from other forms of shock. 22, 23, 24, 25 The development of transgenic murine strains and the induction of biologic agents to inhibit specific signaling have presented valuable opportunities to further elucidate our understanding of the up and down regulation of signal transduction after severe blood loss, i.e. HS and trauma 26, 27, 28, 29, 30. There are numerous resuscitation methods (R) in association with HS and trauma. 31, 32, 33, 34 A fixed volume resuscitation method of solely lactated ringer solution (LR), equal to three times the shed blood volume, is used in this model to study endogenous mechanisms such as remote organ injury and systemic inflammation. 35, 36, 38 This method of resuscitation is proven to be effective in evaluating the effects of HS and trauma 38, 39.
Medicine, Issue 52, trauma, shock, hemorrhage, inflammation, immunology, murine
2068
Play Button
Pseudofracture: An Acute Peripheral Tissue Trauma Model
Authors: Sophie S. Darwiche, Philipp Kobbe, Roman Pfeifer, Lauryn Kohut, Hans-Christoph Pape, Timothy Billiar.
Institutions: University of Pittsburgh, University of Aachen Medical Center.
Following trauma there is an early hyper-reactive inflammatory response that can lead to multiple organ dysfunction and high mortality in trauma patients; this response is often accompanied by a delayed immunosuppression that adds the clinical complications of infection and can also increase mortality.1-9 Many studies have begun to assess these changes in the reactivity of the immune system following trauma.10-15 Immunologic studies are greatly supported through the wide variety of transgenic and knockout mice available for in vivo modeling; these strains aid in detailed investigations to assess the molecular pathways involved in the immunologic responses.16-21 The challenge in experimental murine trauma modeling is long term investigation, as fracture fixation techniques in mice, can be complex and not easily reproducible.22-30 This pseudofracture model, an easily reproduced trauma model, overcomes these difficulties by immunologically mimicking an extremity fracture environment, while allowing freedom of movement in the animals and long term survival without the continual, prolonged use of anaesthesia. The intent is to recreate the features of long bone fracture; injured muscle and soft tissue are exposed to damaged bone and bone marrow without breaking the native bone. The pseudofracture model consists of two parts: a bilateral muscle crush injury to the hindlimbs, followed by injection of a bone solution into these injured muscles. The bone solution is prepared by harvesting the long bones from both hindlimbs of an age- and weight-matched syngeneic donor. These bones are then crushed and resuspended in phosphate buffered saline to create the bone solution. Bilateral femur fracture is a commonly used and well-established model of extremity trauma, and was the comparative model during the development of the pseudofracture model. Among the variety of available fracture models, we chose to use a closed method of fracture with soft tissue injury as our comparison to the pseudofracture, as we wanted a sterile yet proportionally severe peripheral tissue trauma model. 31 Hemorrhagic shock is a common finding in the setting of severe trauma, and the global hypoperfusion adds a very relevant element to a trauma model. 32-36 The pseudofracture model can be easily combined with a hemorrhagic shock model for a multiple trauma model of high severity. 37
Medicine, Issue 50, Trauma, musculoskeletal, mouse, extremity, inflammation, immunosuppression, immune response.
2074
Play Button
Creating Dynamic Images of Short-lived Dopamine Fluctuations with lp-ntPET: Dopamine Movies of Cigarette Smoking
Authors: Evan D. Morris, Su Jin Kim, Jenna M. Sullivan, Shuo Wang, Marc D. Normandin, Cristian C. Constantinescu, Kelly P. Cosgrove.
Institutions: Yale University, Yale University, Yale University, Yale University, Massachusetts General Hospital, University of California, Irvine.
We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized. We present the details of our unique analysis. Conventional methods for PET analysis estimate time-invariant kinetic model parameters which cannot capture short-term fluctuations in neurotransmitter release. Our analysis - yielding a dopamine movie - is based on our work with kinetic models and other decomposition techniques that allow for time-varying parameters 1-7. This aspect of the analysis - temporal-variation - is key to our work. Because our model is also linear in parameters, it is practical, computationally, to apply at the voxel level. The analysis technique is comprised of five main steps: pre-processing, modeling, statistical comparison, masking and visualization. Preprocessing is applied to the PET data with a unique 'HYPR' spatial filter 8 that reduces spatial noise but preserves critical temporal information. Modeling identifies the time-varying function that best describes the dopamine effect on 11C-raclopride uptake. The statistical step compares the fit of our (lp-ntPET) model 7 to a conventional model 9. Masking restricts treatment to those voxels best described by the new model. Visualization maps the dopamine function at each voxel to a color scale and produces a dopamine movie. Interim results and sample dopamine movies of cigarette smoking are presented.
Behavior, Issue 78, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Medicine, Anatomy, Physiology, Image Processing, Computer-Assisted, Receptors, Dopamine, Dopamine, Functional Neuroimaging, Binding, Competitive, mathematical modeling (systems analysis), Neurotransmission, transient, dopamine release, PET, modeling, linear, time-invariant, smoking, F-test, ventral-striatum, clinical techniques
50358
Play Button
Culturing Primary Rat Inner Medullary Collecting Duct Cells
Authors: Dörte Faust, Andrea Geelhaar, Beate Eisermann, Jenny Eichhorst, Burkhard Wiesner, Walter Rosenthal, Enno Klussmann.
Institutions: Max-Delbrück-Center for Molecular Medicine, Leibniz Institute for Molecular Pharmacology (FMP), Charité University Medicine Berlin.
Arginine-vasopressin (AVP) facilitates water reabsorption by renal collecting duct principal cells and thereby fine-tunes body water homeostasis. AVP binds to vasopressin V2 receptors (V2R) on the surface of the cells and thereby induces synthesis of cAMP. This stimulates cellular signaling processes leading to changes in the phosphorylation of the water channel aquaporin-2 (AQP2). Protein kinase A phoshorylates AQP2 and thereby triggers the translocation of AQP2 from intracellular vesicles into the plasma membrane facilitating water reabsorption from primary urine. Aberrations of AVP release from the pituitary or AVP-activated signaling in principal cells can cause central or nephrogenic diabetes insipidus, respectively; an elevated blood plasma AVP level is associated with cardiovascular diseases such as chronic heart failure and the syndrome of inappropriate antidiuretic hormone secretion. Here, we present a protocol for cultivation of primary rat inner medullary collecting duct (IMCD) cells, which express V2R and AQP2 endogenously. The cells are suitable for elucidating molecular mechanisms underlying the control of AQP2 and thus to discover novel drug targets for the treatment of diseases associated with dysregulation of AVP-mediated water reabsorption. IMCD cells are obtained from rat renal inner medullae and are used for experiments six to eight days after seeding. IMCD cells can be cultured in regular cell culture dishes, flasks and micro-titer plates of different formats, the procedure only requires a few hours, and is appropriate for standard cell culture laboratories.
Cellular Biology, Issue 76, Bioengineering, Genetics, Molecular Biology, Biochemistry, Biomedical Engineering, Medicine, Pharmacology, Intercellular Signaling Peptides and Proteins, Exocytosis, Signal Transduction, Second Messenger Systems, Calcium Signaling, Cardiovascular Diseases, Hormones, Hormone Substitutes, and Hormone Antagonists, Life Sciences (General), water reabsorption, kidney, principal cells, vasopressin, cyclic AMP, aquaporin, animal model, cell culture
50366
Play Button
A Murine Model of Cervical Spinal Cord Injury to Study Post-lesional Respiratory Neuroplasticity
Authors: Emilie Keomani, Thérèse B. Deramaudt, Michel Petitjean, Marcel Bonay, Frédéric Lofaso, Stéphane Vinit.
Institutions: Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, Université de Versailles Saint-Quentin-en-Yvelines.
A cervical spinal cord injury induces permanent paralysis, and often leads to respiratory distress. To date, no efficient therapeutics have been developed to improve/ameliorate the respiratory failure following high cervical spinal cord injury (SCI). Here we propose a murine pre-clinical model of high SCI at the cervical 2 (C2) metameric level to study diverse post-lesional respiratory neuroplasticity. The technique consists of a surgical partial injury at the C2 level, which will induce a hemiparalysis of the diaphragm due to a deafferentation of the phrenic motoneurons from the respiratory centers located in the brainstem. The contralateral side of the injury remains intact and allows the animal recovery. Unlike other SCIs which affect the locomotor function (at the thoracic and lumbar level), the respiratory function does not require animal motivation and the quantification of the deficit/recovery can be easily performed (diaphragm and phrenic nerve recordings, whole body ventilation). This pre-clinical C2 SCI model is a powerful, useful, and reliable pre-clinical model to study various respiratory and non-respiratory neuroplasticity events at different levels (molecular to physiology) and to test diverse putative therapeutic strategies which might improve the respiration in SCI patients.
Physiology, Issue 87, rat, cervical spinal cord injury, respiratory deficit, crossed phrenic phenomenon, respiratory neuroplasticity
51235
Play Button
A Method to Make a Craniotomy on the Ventral Skull of Neonate Rodents
Authors: Adrián Rodríguez-Contreras, Lingyan Shi, Bingmei M. Fu.
Institutions: The City University of New York, City College, The City University of New York, City College.
The use of a craniotomy for in vivo experiments provides an opportunity to investigate the dynamics of diverse cellular processes in the mammalian brain in adulthood and during development. Although most in vivo approaches use a craniotomy to study brain regions located on the dorsal side, brainstem regions such as the pons, located on the ventral side remain relatively understudied. The main goal of this protocol is to facilitate access to ventral brainstem structures so that they can be studied in vivo using electrophysiological and imaging methods. This approach allows study of structural changes in long-range axons, patterns of electrical activity in single and ensembles of cells, and changes in blood brain barrier permeability in neonate animals. Although this protocol has been used mostly to study the auditory brainstem in neonate rats, it can easily be adapted for studies in other rodent species such as neonate mice, adult rodents and other brainstem regions.
Neuroscience, Issue 87, auditory system; blood brain barrier permeability; development; neurophysiology; two-photon microscopy, electrophysiology,
51350
Play Button
In vitro Cell Culture Model for Toxic Inhaled Chemical Testing
Authors: Shama Ahmad, Aftab Ahmad, Keith B. Neeves, Tara Hendry-Hofer, Joan E. Loader, Carl W. White, Livia Veress.
Institutions: University of Colorado, Colorado School of Mines.
Cell cultures are indispensable to develop and study efficacy of therapeutic agents, prior to their use in animal models. We have the unique ability to model well differentiated human airway epithelium and heart muscle cells. This could be an invaluable tool to study the deleterious effects of toxic inhaled chemicals, such as chlorine, that can normally interact with the cell surfaces, and form various byproducts upon reacting with water, and limiting their effects in submerged cultures. Our model using well differentiated human airway epithelial cell cultures at air-liqiuid interface circumvents this limitation as well as provides an opportunity to evaluate critical mechanisms of toxicity of potential poisonous inhaled chemicals. We describe enhanced loss of membrane integrity, caspase release and death upon toxic inhaled chemical such as chlorine exposure. In this article, we propose methods to model chlorine exposure in mammalian heart and airway epithelial cells in culture and simple tests to evaluate its effect on these cell types.
Bioengineering, Issue 87, air-liquid interface, chlorine exposure, toxic inhaled chemicals, Transepithelial Electrical Resistance,Immunocytochemistry
51539
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
51807
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
51827
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
51905
Play Button
2-Vessel Occlusion/Hypotension: A Rat Model of Global Brain Ischemia
Authors: Thomas H. Sanderson, Joseph M. Wider.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine, Wayne State University School of Medicine.
Cardiac arrest followed by resuscitation often results in dramatic brain damage caused by ischemia and subsequent reperfusion of the brain. Global brain ischemia produces damage to specific brain regions shown to be highly sensitive to ischemia 1. Hippocampal neurons have higher sensitivity to ischemic insults compared to other cell populations, and specifically, the CA1 region of the hippocampus is particularly vulnerable to ischemia/reperfusion 2. The design of therapeutic interventions, or study of mechanisms involved in cerebral damage, requires a model that produces damage similar to the clinical condition and in a reproducible manner. Bilateral carotid vessel occlusion with hypotension (2VOH) is a model that produces reversible forebrain ischemia, emulating the cerebral events that can occur during cardiac arrest and resuscitation. We describe a model modified from Smith et al. (1984) 2, as first presented in its current form in Sanderson, et al. (2008) 3, which produces reproducible injury to selectively vulnerable brain regions 3-6. The reliability of this model is dictated by precise control of systemic blood pressure during applied hypotension, the duration of ischemia, close temperature control, a specific anesthesia regimen, and diligent post-operative care. An 8-minute ischemic insult produces cell death of CA1 hippocampal neurons that progresses over the course of 6 to 24 hr of reperfusion, while less vulnerable brain regions are spared. This progressive cell death is easily quantified after 7-14 days of reperfusion, as a near complete loss of CA1 neurons is evident at this time. In addition to this brain injury model, we present a method for CA1 damage quantification using a simple, yet thorough, methodology. Importantly, quantification can be accomplished using a simple camera-mounted microscope, and a free ImageJ (NIH) software plugin, obviating the need for cost-prohibitive stereology software programs and a motorized microscopic stage for damage assessment.
Medicine, Issue 76, Biomedical Engineering, Neurobiology, Neuroscience, Immunology, Anatomy, Physiology, Cardiology, Brain Ischemia, ischemia, reperfusion, cardiac arrest, resuscitation, 2VOH, brain injury model, CA1 hippocampal neurons, brain, neuron, blood vessel, occlusion, hypotension, animal model
50173
Play Button
A Radio-telemetric System to Monitor Cardiovascular Function in Rats with Spinal Cord Transection and Embryonic Neural Stem Cell Grafts
Authors: Shaoping Hou, Armin Blesch, Paul Lu.
Institutions: Drexel University College of Medicine, Heidelberg University Hospital, Veterans Administration Medical Center, San Diego, CA, University of California, San Diego.
High thoracic or cervical spinal cord injury (SCI) can lead to cardiovascular dysfunction. To monitor cardiovascular parameters, we implanted a catheter connected to a radio transmitter into the femoral artery of rats that underwent a T4 spinal cord transection with or without grafting of embryonic brainstem-derived neural stem cells expressing green fluorescent protein. Compared to other methods such as cannula insertion or tail-cuff, telemetry is advantageous to continuously monitor blood pressure and heart rate in freely moving animals. It is also capable of long term multiple data acquisitions. In spinal cord injured rats, basal cardiovascular data under unrestrained condition and autonomic dysreflexia in response to colorectal distension were successfully recorded. In addition, cardiovascular parameters before and after SCI can be compared in the same rat if a transmitter is implanted before a spinal cord transection. One limitation of the described telemetry procedure is that implantation in the femoral artery may influence the blood supply to the ipsilateral hindlimb.
Medicine, Issue 92, spinal cord injury, telemetric recording, blood pressure, heart rate, autonomic dysreflexia, embryonic neural stem cell
51914
Play Button
Cecal Ligation Puncture Procedure
Authors: Miguel G. Toscano, Doina Ganea, Ana M. Gamero.
Institutions: Temple University , Temple University .
Human sepsis is characterized by a set of systemic reactions in response to intensive and massive infection that failed to be locally contained by the host. Currently, sepsis ranks among the top ten causes of mortality in the USA intensive care units 1. During sepsis there are two established haemodynamic phases that may overlap. The initial phase (hyperdynamic) is defined as a massive production of proinflammatory cytokines and reactive oxygen species by macrophages and neutrophils that affects vascular permeability (leading to hypotension), cardiac function and induces metabolic changes culminating in tissue necrosis and organ failure. Consequently, the most common cause of mortality is acute kidney injury. The second phase (hypodynamic) is an anti-inflammatory process involving altered monocyte antigen presentation, decreased lymphocyte proliferation and function and increased apoptosis. This state known as immunosuppression or immune depression sharply increases the risk of nocosomial infections and ultimately, death. The mechanisms of these pathophysiological processes are not well characterized. Because both phases of sepsis may cause irreversible and irreparable damage, it is essential to determine the immunological and physiological status of the patient. This is the main reason why many therapeutic drugs have failed. The same drug given at different stages of sepsis may be therapeutic or otherwise harmful or have no effect 2,3. To understand sepsis at various levels it is crucial to have a suitable and comprehensive animal model that reproduces the clinical course of the disease. It is important to characterize the pathophysiological mechanisms occurring during sepsis and control the model conditions for testing potential therapeutic agents. To study the etiology of human sepsis researchers have developed different animal models. The most widely used clinical model is cecal ligation and puncture (CLP). The CLP model consists of the perforation of the cecum allowing the release of fecal material into the peritoneal cavity to generate an exacerbated immune response induced by polymicrobial infection. This model fulfills the human condition that is clinically relevant. As in humans, mice that undergo CLP with fluid resuscitation show the first (early) hyperdynamic phase that in time progresses to the second (late) hypodynamic phase. In addition, the cytokine profile is similar to that seen in human sepsis where there is increased lymphocyte apoptosis (reviewed in 4,5). Due to the multiple and overlapping mechanisms involved in sepsis, researchers need a suitable sepsis model of controlled severity in order to obtain consistent and reproducible results.
Medicine, Issue 51, sepsis, systemic inflammation, infection, septic shock, animal model
2860
Play Button
Normothermic Cardiac Arrest and Cardiopulmonary Resuscitation: A Mouse Model of Ischemia-Reperfusion Injury
Authors: Michael P. Hutchens, Richard J. Traystman, Tetsuhiro Fujiyoshi, Shin Nakayama, Paco S. Herson.
Institutions: Oregon Health & Sciences University, University of Colorado Denver.
Acute Kidney Injury (AKI) is a common, highly lethal, complication of critical illness which has a high mortality1-4 and which is most frequently caused by whole-body hypoperfusion.5,6 Successful reproduction of whole-body hypoperfusion in rodent models has been fraught with difficulty.7-9,9,10 Models which employ focal ischemia have repeatedly demonstrated results which do not translate to the clinical setting, and larger animal models which allow for whole body hypoperfusion lack access to the full toolset of genetic manipulation possible in the mouse.11,12 However, in recent years a mouse model of cardiac arrest and cardiopulmonary resuscitation has emerged which can be adapted to model AKI.13 This model reliably reproduces physiologic, functional, anatomic, and histologic outcomes seen in clinical AKI, is rapidly repeatable, and offers all of the significant advantages of a murine surgical model, including access to genetic manipulative techniques, low cost relative to large animals, and ease of use. Our group has developed extensive experience with use of this model to assess a number of organ-specific outcomes in AKI.14,15
Medicine, Issue 54, AKI, Acute Kidney Injury, Acute Renal Failure, Cardiac Arrest, Cardiopulmonary Resuscitation, Mouse Model, Chest Compressions, CA/CPR. stereology, perfusion-fixation
3116
Play Button
Using a Comparative Species Approach to Investigate the Neurobiology of Paternal Responses
Authors: Catherine L. Franssen, Massimo Bardi, Kelly G. Lambert.
Institutions: Randolph-Macon College, Marshall University.
A goal of behavioral neuroscience is to identify underlying neurobiological factors that regulate specific behaviors. Using animal models to accomplish this goal, many methodological strategies require invasive techniques to manipulate the intensity of the behavior of interest (e.g., lesion methods, pharmacological manipulations, microdialysis techniques, genetically-engineered animal models). The utilization of a comparative species approach allows researchers to take advantage of naturally occurring differences in response strategies existing in closely related species. In our lab, we use two species of the Peromyscus genus that differ in paternal responses. The male California deer mouse (Peromyscus californicus) exhibits the same parental responses as the female whereas its cousin, the common deer mouse (Peromyscus maniculatus) exhibits virtually no nurturing/parental responses in the presence of pups. Of specific interest in this article is an exploration of the neurobiological factors associated with the affiliative social responses exhibited by the paternal California deer mouse. Because the behavioral neuroscience approach is multifaceted, the following key components of the study will be briefly addressed: the identification of appropriate species for this type of research; data collection for behavioral analysis; preparation and sectioning of the brains; basic steps involved in immunocytochemistry for the quantification of vasopressin-immunoreactivity; the use of neuroimaging software to quantify the brain tissue; the use of a microsequencing video analysis to score behavior and, finally, the appropriate statistical analyses to provide the most informed interpretations of the research findings.
Neuroscience, Issue 55, Peromyscus, mouse, paternal behavior, vasopressin, immunocytochemistry, microsequencing behavioral analysis
3173
Play Button
Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson's Disease
Authors: Sherri L. Thiele, Ruth Warre, Joanne E. Nash.
Institutions: University of Toronto at Scarborough.
The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients1-4. However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise3,5. In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)8, allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice9,10. However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer11. More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia11,12,13,14 was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse15. Whilst this model has proven useful in the assessment of potential neuroprotective agents16, it is less suitable for understanding mechanisms underlying symptoms of PD, as this model often fails to induce motor deficits, and shows a wide variability in the extent of lesion17, 18. Here we have developed a stable unilateral 6-OHDA-lesioned mouse model of PD by direct administration of 6-OHDA into the MFB, which consistently causes >95% loss of striatal dopamine (as measured by HPLC), as well as producing the behavioural imbalances observed in the well characterised unilateral 6-OHDA-lesioned rat model of PD. This newly developed mouse model of PD will prove a valuable tool in understanding the mechanisms underlying generation of parkinsonian symptoms.
Medicine, Issue 60, mouse, 6-OHDA, Parkinson’s disease, medial forebrain bundle, unilateral
3234
Play Button
Gene Transfer to the Developing Mouse Inner Ear by In Vivo Electroporation
Authors: Lingyan Wang, Han Jiang, John V. Brigande.
Institutions: Oregon Health & Science University.
The mammalian inner ear has 6 distinct sensory epithelia: 3 cristae in the ampullae of the semicircular canals; maculae in the utricle and saccule; and the organ of Corti in the coiled cochlea. The cristae and maculae contain vestibular hair cells that transduce mechanical stimuli to subserve the special sense of balance, while auditory hair cells in the organ of Corti are the primary transducers for hearing 1. Cell fate specification in these sensory epithelia and morphogenesis of the semicircular canals and cochlea take place during the second week of gestation in the mouse and are largely completed before birth 2,3. Developmental studies of the mouse inner ear are routinely conducted by harvesting transgenic embryos at different embryonic or postnatal stages to gain insight into the molecular basis of cellular and/or morphological phenotypes 4,5. We hypothesize that gene transfer to the developing mouse inner ear in utero in the context of gain- and loss-of-function studies represents a complimentary approach to traditional mouse transgenesis for the interrogation of the genetic mechanisms underlying mammalian inner ear development6. The experimental paradigm to conduct gene misexpression studies in the developing mouse inner ear demonstrated here resolves into three general steps: 1) ventral laparotomy; 2) transuterine microinjection; and 3) in vivo electroporation. Ventral laparotomy is a mouse survival surgical technique that permits externalization of the uterus to gain experimental access to the implanted embryos7. Transuterine microinjection is the use of beveled, glass capillary micropipettes to introduce expression plasmid into the lumen of the otic vesicle or otocyst. In vivo electroporation is the application of square wave, direct current pulses to drive expression plasmid into progenitor cells8-10. We previously described this electroporation-based gene transfer technique and included detailed notes on each step of the protocol11. Mouse experimental embryological techniques can be difficult to learn from prose and still images alone. In the present work, we demonstrate the 3 steps in the gene transfer procedure. Most critically, we deploy digital video microscopy to show precisely how to: 1) identify embryo orientation in utero; 2) reorient embryos for targeting injections to the otocyst; 3) microinject DNA mixed with tracer dye solution into the otocyst at embryonic days 11.5 and 12.5; 4) electroporate the injected otocyst; and 5) label electroporated embryos for postnatal selection at birth. We provide representative examples of successfully transfected inner ears; a pictorial guide to the most common causes of otocyst mistargeting; discuss how to avoid common methodological errors; and present guidelines for writing an in utero gene transfer animal care protocol.
Neuroscience, Issue 64, Developmental Biology, Physiology, Genetics, Inner ear, otocyst, in vivo electroporation, ventral laparotomy, transuterine microinjection, video microscopy
3653
Play Button
Development of Obliterative Bronchiolitis in a Murine Model of Orthotopic Lung Transplantation
Authors: Hidemi Suzuki, Lin Fan, David S. Wilkes.
Institutions: Indiana University School of Medicine, Indiana University School of Medicine.
Orthotopic lung transplantation in rats was first reported by Asimacopoulos and colleagues in 1971 1. Currently, this method is well accepted and standardized not only for the study of allo-rejection but also between syngeneic strains for examining mechanisms of ischemia-reperfusion injury after lung transplantation. Although the application of the rat and other large animal model 2 contributed significantly to the elucidation of these studies, the scope of those investigations is limited by the scarcity of knockout and transgenic rats. Due to no effective therapies for obliterative bronchiolitis, the leading cause of death in lung transplant patients, there has been an intensive search for pre-clinical models that replicate obliterative bronchiolitis. The tracheal allograft model is the most widely used and may reproduce some of the histopathologic features of obliterative bronchiolitis 3. However, the lack of an intact vasculature with no connection to the recipient's conducting airways, and incomplete pathologic features of obliterative bronchiolitis limit the utility of this model 4. Unlike transplantation of other solid organs, vascularized mouse lung transplants have only recently been reported by Okazaki and colleagues for the first time in 2007 5. Applying the basic principles of the rat lung transplant, our lab initiated the obliterative bronchiolitis model using minor histoincompatible antigen murine orthotopic single-left lung transplants which allows the further study of obliterative bronchiolitis immunopathogenesis6.
Medicine, Issue 65, Immunology, Microbiology, Physiology, lung, transplantation, mouse, obliterative bronchiolitis, vascularized lung transplants
3947
Play Button
Multielectrode Array Recordings of the Vomeronasal Epithelium
Authors: Hannah A. Arnson, Xiaoyan Fu, Timothy E. Holy.
Institutions: Washington University School of Medicine.
Understanding neural circuits requires methods to record from many neurons simultaneously. For in vitro studies, one currently available technology is planar multielectrode array (MEA) recording. Here we document the use of MEAs to study the mouse vomeronasal organ (VNO), which plays an essential role in the detection of pheromones and social cues via a diverse population of sensory neurons expressing hundreds of types of receptors. Combining MEA recording with a robotic liquid handler to deliver chemical stimuli, the sensory responses of a large and diverse population of neurons can be recorded. The preparation allows us to remove the intact neuroepithelium of the VNO from the mouse and stimulate with a battery of chemicals or potential ligands while monitoring the electrical activity of the neurons for several hours. Therefore, this technique serves as a useful method for assessing ligand activity as well as exploring the properties of receptor neurons. We present the techniques needed to prepare the vomeronasal epithelium, MEA recording, and chemical stimulation.
JoVE Neuroscience, Issue 37, electrophysiology, multielectrode array, accessory olfactory system
1845
Play Button
Human In-Vivo Bioassay for the Tissue-Specific Measurement of Nociceptive and Inflammatory Mediators
Authors: Martin S Angst, Martha Tingle, Martin Schmelz, Brendan Carvalho, David C Yeomans.
Institutions: Stanford University School of Medicine, University of Mannheim, University of Heidelberg.
This in-vivo human bioassay can be used to study human volunteers and patients. Samples are collected from pertinent tissue sites such as the skin via aseptically inserted microdialysis catheters (Dermal Dialysis, Erlangen, Germany). Illustrated in this example is the collection of interstitial fluid from experimentally inflamed skin in human volunteers. Sample collection can be combined with other experimental tests. For example, the simultaneous assessment of locally released biochemicals and subjective sensitivity to painful stimuli in experimentally inflamed skin provides the critical biochemical-behavioral link to identify biomarkers of pain and inflammation. Presented assay in the living human organism allows for mechanistic insight into tissue-specific processes underlying pain and/or inflammation. The method is also well suited to examine the effectiveness of existing or novel interventions - such as new drug candidates - targeting the treatment of painful and/or inflammatory conditions. This article will provide a detailed description on the use of microdialysis techniques for collecting interstitial fluid from experimentally inflamed skin lesion of human study subjects. Interstitial fluid samples are typically processed with aid of multiplex bead array immunoassays allowing assaying up to 100 analytes in samples as small in volume as 50 microliters.
Medicine, Issue 22, Microdialysis, experimental pain, cytokines, skin, interstitial fluid, experimental inflammation, human, inflammatory mediators, nociceptive mediators, biomarkers
1074
Play Button
Transformation of Plasmid DNA into E. coli Using the Heat Shock Method
Authors: Alexandrine Froger, James E. Hall.
Institutions: University of California, Irvine (UCI).
Transformation of plasmid DNA into E. coli using the heat shock method is a basic technique of molecular biology. It consists of inserting a foreign plasmid or ligation product into bacteria. This video protocol describes the traditional method of transformation using commercially available chemically competent bacteria from Genlantis. After a short incubation in ice, a mixture of chemically competent bacteria and DNA is placed at 42°C for 45 seconds (heat shock) and then placed back in ice. SOC media is added and the transformed cells are incubated at 37°C for 30 min with agitation. To be assured of isolating colonies irrespective of transformation efficiency, two quantities of transformed bacteria are plated. This traditional protocol can be used successfully to transform most commercially available competent bacteria. The turbocells from Genlantis can also be used in a novel 3-minute transformation protocol, described in the instruction manual.
Issue 6, Basic Protocols, DNA, transformation, plasmid, cloning
253
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.