JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Notch-1 signaling promotes the malignant features of human breast cancer through NF-?B activation.
PLoS ONE
PUBLISHED: 01-01-2014
The aberrant activation of Notch-1 signaling pathway has been proven to be associated with the development and progression of cancers. However, the specific roles and the underlying mechanisms of Notch-1 signaling pathway on the malignant behaviors of breast cancer are poorly understood. In this study, using multiple cellular and molecular approaches, we demonstrated that activation of Notch-1 signaling pathway promoted the malignant behaviors of MDA-MB-231 cells such as increased cell proliferation, colony formation, adhesion, migration, and invasion, and inhibited apoptosis; whereas deactivation of this signaling pathway led to the reversal of the aforementioned malignant cellular behaviors. Furthermore, we found that activation of Notch-1 signaling pathway triggered the activation of NF-?B signaling pathway and up-regulated the expression of NF-?B target genes including MMP-2/-9, VEGF, Survivin, Bcl-xL, and Cyclin D1. These results suggest that Notch-1 signaling pathway play important roles in promoting the malignant phenotype of breast cancer, which may be mediated partly through the activation of NF-?B signaling pathway. Our results further suggest that targeting Notch-1 signaling pathway may become a newer approach to halt the progression of breast cancer.
ABSTRACT
Invasive breast carcinomas are a group of malignant epithelial tumors characterized by the invasion of adjacent tissues and propensity to metastasize. The interplay of signals between cancer cells and their microenvironment exerts a powerful influence on breast cancer growth and biological behavior1. However, most of these signals from the extracellular matrix are lost or their relevance is understudied when cells are grown in two dimensional culture (2D) as a monolayer. In recent years, three dimensional (3D) culture on a reconstituted basement membrane has emerged as a method of choice to recapitulate the tissue architecture of benign and malignant breast cells. Cells grown in 3D retain the important cues from the extracellular matrix and provide a physiologically relevant ex vivo system2,3. Of note, there is growing evidence suggesting that cells behave differently when grown in 3D as compared to 2D4. 3D culture can be effectively used as a means to differentiate the malignant phenotype from the benign breast phenotype and for underpinning the cellular and molecular signaling involved3. One of the distinguishing characteristics of benign epithelial cells is that they are polarized so that the apical cytoplasm is towards the lumen and the basal cytoplasm rests on the basement membrane. This apico-basal polarity is lost in invasive breast carcinomas, which are characterized by cellular disorganization and formation of anastomosing and branching tubules that haphazardly infiltrates the surrounding stroma. These histopathological differences between benign gland and invasive carcinoma can be reproduced in 3D6,7. Using the appropriate read-outs like the quantitation of single round acinar structures, or differential expression of validated molecular markers for cell proliferation, polarity and apoptosis in combination with other molecular and cell biology techniques, 3D culture can provide an important tool to better understand the cellular changes during malignant transformation and for delineating the responsible signaling.
19 Related JoVE Articles!
Play Button
Quantification of Breast Cancer Cell Invasiveness Using a Three-dimensional (3D) Model
Authors: Donna Cvetković, Cameron Glenn-Franklin Goertzen, Moshmi Bhattacharya.
Institutions: University of Western Ontario, University of Western Ontario, Lawson Health Research Institute.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.
Medicine, Issue 88, Breast cancer, cell invasion, extracellular matrix (ECM), three-dimensional (3D) cultures, immunocytochemistry, Matrigel, basement membrane matrix
51341
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
50668
Play Button
Initiation of Metastatic Breast Carcinoma by Targeting of the Ductal Epithelium with Adenovirus-Cre: A Novel Transgenic Mouse Model of Breast Cancer
Authors: Melanie R. Rutkowski, Michael J. Allegrezza, Nikolaos Svoronos, Amelia J. Tesone, Tom L. Stephen, Alfredo Perales-Puchalt, Jenny Nguyen, Paul J. Zhang, Steven N. Fiering, Julia Tchou, Jose R. Conejo-Garcia.
Institutions: Wistar Institute, University of Pennsylvania, Geisel School of Medicine at Dartmouth, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.
Medicine, Issue 85, Transgenic mice, breast cancer, metastasis, intraductal injection, latent mutations, adenovirus-Cre
51171
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
51285
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
51963
Play Button
Reconstitution Of β-catenin Degradation In Xenopus Egg Extract
Authors: Tony W. Chen, Matthew R. Broadus, Stacey S. Huppert, Ethan Lee.
Institutions: Vanderbilt University Medical Center, Cincinnati Children's Hospital Medical Center, Vanderbilt University School of Medicine.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.
Molecular Biology, Issue 88, Xenopus laevis, Xenopus egg extracts, protein degradation, radiolabel, luciferase, autoradiography, high-throughput screening
51425
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Non-enzymatic, Serum-free Tissue Culture of Pre-invasive Breast Lesions for Spontaneous Generation of Mammospheres
Authors: Virginia Espina, Kirsten H. Edmiston, Lance A. Liotta.
Institutions: George Mason University, Virginia Surgery Associates.
Breast ductal carcinoma in situ (DCIS), by definition, is proliferation of neoplastic epithelial cells within the confines of the breast duct, without breaching the collagenous basement membrane. While DCIS is a non-obligate precursor to invasive breast cancers, the molecular mechanisms and cell populations that permit progression to invasive cancer are not fully known. To determine if progenitor cells capable of invasion existed within the DCIS cell population, we developed a methodology for collecting and culturing sterile human breast tissue at the time of surgery, without enzymatic disruption of tissue. Sterile breast tissue containing ductal segments is harvested from surgically excised breast tissue following routine pathological examination. Tissue containing DCIS is placed in nutrient rich, antibiotic-containing, serum free medium, and transported to the tissue culture laboratory. The breast tissue is further dissected to isolate the calcified areas. Multiple breast tissue pieces (organoids) are placed in a minimal volume of serum free medium in a flask with a removable lid and cultured in a humidified CO2 incubator. Epithelial and fibroblast cell populations emerge from the organoid after 10 - 14 days. Mammospheres spontaneously form on and around the epithelial cell monolayer. Specific cell populations can be harvested directly from the flask without disrupting neighboring cells. Our non-enzymatic tissue culture system reliably reveals cytogenetically abnormal, invasive progenitor cells from fresh human DCIS lesions.
Cancer Biology, Issue 93, Breast, ductal carcinoma in situ, epidermal growth factor, mammosphere, organoid, pre-invasive, primary cell culture, serum-free, spheroid
51926
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
50478
Play Button
Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells
Authors: Catheleyne D'hondt, Bernard Himpens, Geert Bultynck.
Institutions: KU Leuven.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.
Cellular Biology, Issue 77, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Immunology, Ophthalmology, Gap Junctions, Connexins, Connexin 43, Calcium Signaling, Ca2+, Cell Communication, Paracrine Communication, Intercellular communication, calcium wave propagation, gap junctions, hemichannels, endothelial cells, cell signaling, cell, isolation, cell culture
50443
Play Button
Live-cell Imaging of Sensory Organ Precursor Cells in Intact Drosophila Pupae
Authors: Diana Zitserman, Fabrice Roegiers.
Institutions: Fox Chase Cancer Center.
Since the discovery of Green Fluorescent Protein (GFP), there has been a revolutionary change in the use of live-cell imaging as a tool for understanding fundamental biological mechanisms. Striking progress has been particularly evident in Drosophila, whose extensive toolkit of mutants and transgenic lines provides a convenient model to study evolutionarily-conserved developmental and cell biological mechanisms. We are interested in understanding the mechanisms that control cell fate specification in the adult peripheral nervous system (PNS) in Drosophila. Bristles that cover the head, thorax, abdomen, legs and wings of the adult fly are individual mechanosensory organs, and have been studied as a model system for understanding mechanisms of Notch-dependent cell fate decisions. Sensory organ precursor (SOP) cells of the microchaetes (or small bristles), are distributed throughout the epithelium of the pupal thorax, and are specified during the first 12 hours after the onset of pupariation. After specification, the SOP cells begin to divide, segregating the cell fate determinant Numb to one daughter cell during mitosis. Numb functions as a cell-autonomous inhibitor of the Notch signaling pathway. Here, we show a method to follow protein dynamics in SOP cell and its progeny within the intact pupal thorax using a combination of tissue-specific Gal4 drivers and GFP-tagged fusion proteins 1,2.This technique has the advantage over fixed tissue or cultured explants because it allows us to follow the entire development of an organ from specification of the neural precursor to growth and terminal differentiation of the organ. We can therefore directly correlate changes in cell behavior to changes in terminal differentiation. Moreover, we can combine the live imaging technique with mosaic analysis with a repressible cell marker (MARCM) system to assess the dynamics of tagged proteins in mitotic SOPs under mutant or wildtype conditions. Using this technique, we and others have revealed novel insights into regulation of asymmetric cell division and the control of Notch signaling activation in SOP cells (examples include references 1-6,7 ,8).
Neuroscience, Issue 51, Live imaging, asymmetric cell division, Drosophila, pupa
2706
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
3040
Play Button
In vivo Dual Substrate Bioluminescent Imaging
Authors: Michael K. Wendt, Joseph Molter, Christopher A. Flask, William P. Schiemann.
Institutions: Case Western Reserve University .
Our understanding of how and when breast cancer cells transit from established primary tumors to metastatic sites has increased at an exceptional rate since the advent of in vivo bioluminescent imaging technologies 1-3. Indeed, the ability to locate and quantify tumor growth longitudinally in a single cohort of animals to completion of the study as opposed to sacrificing individual groups of animals at specific assay times has revolutionized how researchers investigate breast cancer metastasis. Unfortunately, current methodologies preclude the real-time assessment of critical changes that transpire in cell signaling systems as breast cancer cells (i) evolve within primary tumors, (ii) disseminate throughout the body, and (iii) reinitiate proliferative programs at sites of a metastatic lesion. However, recent advancements in bioluminescent imaging now make it possible to simultaneously quantify specific spatiotemporal changes in gene expression as a function of tumor development and metastatic progression via the use of dual substrate luminescence reactions. To do so, researchers take advantage for two light-producing luciferase enzymes isolated from the firefly (Photinus pyralis) and sea pansy (Renilla reniformis), both of which react to mutually exclusive substrates that previously facilitated their wide-spread use in in vitro cell-based reporter gene assays 4. Here we demonstrate the in vivo utility of these two enzymes such that one luminescence reaction specifically marks the size and location of a developing tumor, while the second luminescent reaction serves as a means to visualize the activation status of specific signaling systems during distinct stages of tumor and metastasis development. Thus, the objectives of this study are two-fold. First, we will describe the steps necessary to construct dual bioluminescent reporter cell lines, as well as those needed to facilitate their use in visualizing the spatiotemporal regulation of gene expression during specific steps of the metastatic cascade. Using the 4T1 model of breast cancer metastasis, we show that the in vivo activity of a synthetic Smad Binding Element (SBE) promoter was decreased dramatically in pulmonary metastasis as compared to that measured in the primary tumor 4-6. Recently, breast cancer metastasis was shown to be regulated by changes within the primary tumor microenvironment and reactive stroma, including those occurring in fibroblasts and infiltrating immune cells 7-9. Thus, our second objective will be to demonstrate the utility of dual bioluminescent techniques in monitoring the growth and localization of two unique cell populations harbored within a single animal during breast cancer growth and metastasis.
Medicine, Issue 56, firefly luciferase, Renilla Luciferase, breast cancer, metastasis, Smad
3245
Play Button
Spheroid Assay to Measure TGF-β-induced Invasion
Authors: Hildegonda P.H. Naber, Eliza Wiercinska, Peter ten Dijke, Theo van Laar.
Institutions: Leiden University Medical Centre.
TGF-β has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stage1,2. Moreover, TGF-β is frequently overexpressed in breast cancer and its expression correlates with poor prognosis and metastasis 3,4. The mechanisms by which TGF-β induces invasion are not well understood. TGF-β elicits its cellular responses via TGF-β type II (TβRII) and type I (TβRI) receptors. Upon TGF-β-induced heteromeric complex formation, TβRII phosphorylates the TβRI. The activated TβRI initiates its intracellular canonical signaling pathway by phosphorylating receptor Smads (R-Smads), i.e. Smad2 and Smad3. These activated R-Smads form heteromeric complexes with Smad4, which accumulate in the nucleus and regulate the transcription of target genes5. In addition to the previously described Smad pathway, receptor activation results in activation of several other non-Smad signaling pathways, for example Mitogen Activated Protein Kinase (MAPK) pathways6. To study the role of TGF-β in different stages of breast cancer, we made use of the MCF10A cell system. This system consists of spontaneously immortalized MCF10A1 (M1) breast epithelial cells7, the H-RAS transformed M1-derivative MCF10AneoT (M2), which produces premalignant lesions in mice8, and the M2-derivative MCF10CA1a (M4), which was established from M2 xenografts and forms high grade carcinomas with the ability to metastasize to the lung9. This MCF10A series offers the possibility to study the responses of cells with different grades of malignancy that are not biased by a different genetic background. For the analysis of TGF-β-induced invasion, we generated homotypic MCF10A spheroid cell cultures embedded in a 3D collagen matrix in vitro (Fig 1). Such models closely resemble human tumors in vivo by establishing a gradient of oxygen and nutrients, resulting in active and invasive cells on the outside and quiescent or even necrotic cells in the inside of the spheroid10. Spheroid based assays have also been shown to better recapitulate drug resistance than monolayer cultures11. This MCF10 3D model system allowed us to investigate the impact of TGF-β signaling on the invasive properties of breast cells in different stages of malignancy.
Medicine, Issue 57, TGF-β, TGF, breast cancer, assay, invasion, collagen, spheroids, oncology
3337
Play Button
Intraductal Injection of LPS as a Mouse Model of Mastitis: Signaling Visualized via an NF-κB Reporter Transgenic
Authors: Whitney Barham, Taylor Sherrill, Linda Connelly, Timothy S. Blackwell, Fiona E. Yull.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, University of Hawaii at Hilo College of Pharmacy.
Animal models of human disease are necessary in order to rigorously study stages of disease progression and associated mechanisms, and ultimately, as pre-clinical models to test interventions. In these methods, we describe a technique in which lipopolysaccharide (LPS) is injected into the lactating mouse mammary gland via the nipple, effectively modeling mastitis, or inflammation, of the gland. This simulated infection results in increased nuclear factor kappa B (NF-κB) signaling, as visualized through bioluminescent imaging of an NF-κB luciferase reporter mouse1. Our ultimate goal in developing these methods was to study the inflammation associated with mastitis in the lactating gland, which often includes redness, swelling, and immune cell infiltration2,3. Therefore, we were keenly aware that incision or any type of wounding of the skin, the nipple, or the gland in order to introduce the LPS could not be utilized in our methods since the approach would likely confound the read-out of inflammation. We also desired a straight-forward method that did not require specially made hand-drawn pipettes or the use of micromanipulators to hold these specialized tools in place. Thus, we determined to use a commercially available insulin syringe and to inject the agent into the mammary duct of an intact nipple. This method was successful and allowed us to study the inflammation associated with LPS injection without any additional effects overlaid by the process of injection. In addition, this method also utilized an NF-κB luciferase reporter transgenic mouse and bioluminescent imaging technology to visually and quantitatively show increased NF-κB signaling within the LPS-injected gland4. These methods are of interest to researchers of many disciplines who wish to model disease within the lactating mammary gland, as ultimately, the technique described here could be utilized for injection of a number of substances, and is not limited to only LPS.
Medicine, Issue 67, mastitis, intraductal injection, NF-kappaB, reporter transgenic, LPS, bioluminescent imaging, lactation
4030
Play Button
Three-dimensional Cell Culture Model for Measuring the Effects of Interstitial Fluid Flow on Tumor Cell Invasion
Authors: Alimatou M. Tchafa, Arpit D. Shah, Shafei Wang, Melissa T. Duong, Adrian C. Shieh.
Institutions: Drexel University .
The growth and progression of most solid tumors depend on the initial transformation of the cancer cells and their response to stroma-associated signaling in the tumor microenvironment 1. Previously, research on the tumor microenvironment has focused primarily on tumor-stromal interactions 1-2. However, the tumor microenvironment also includes a variety of biophysical forces, whose effects remain poorly understood. These forces are biomechanical consequences of tumor growth that lead to changes in gene expression, cell division, differentiation and invasion3. Matrix density 4, stiffness 5-6, and structure 6-7, interstitial fluid pressure 8, and interstitial fluid flow 8 are all altered during cancer progression. Interstitial fluid flow in particular is higher in tumors compared to normal tissues 8-10. The estimated interstitial fluid flow velocities were measured and found to be in the range of 0.1-3 μm s-1, depending on tumor size and differentiation 9, 11. This is due to elevated interstitial fluid pressure caused by tumor-induced angiogenesis and increased vascular permeability 12. Interstitial fluid flow has been shown to increase invasion of cancer cells 13-14, vascular fibroblasts and smooth muscle cells 15. This invasion may be due to autologous chemotactic gradients created around cells in 3-D 16 or increased matrix metalloproteinase (MMP) expression 15, chemokine secretion and cell adhesion molecule expression 17. However, the mechanism by which cells sense fluid flow is not well understood. In addition to altering tumor cell behavior, interstitial fluid flow modulates the activity of other cells in the tumor microenvironment. It is associated with (a) driving differentiation of fibroblasts into tumor-promoting myofibroblasts 18, (b) transporting of antigens and other soluble factors to lymph nodes 19, and (c) modulating lymphatic endothelial cell morphogenesis 20. The technique presented here imposes interstitial fluid flow on cells in vitro and quantifies its effects on invasion (Figure 1). This method has been published in multiple studies to measure the effects of fluid flow on stromal and cancer cell invasion 13-15, 17. By changing the matrix composition, cell type, and cell concentration, this method can be applied to other diseases and physiological systems to study the effects of interstitial flow on cellular processes such as invasion, differentiation, proliferation, and gene expression.
Biomedical Engineering, Issue 65, Bioengineering, Biophysics, Cancer Biology, Cancer, interstitial fluid flow, invasion, mechanobiology, migration, three-dimensional cell culture, tumor microenvironment
4159
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Polarized Translocation of Fluorescent Proteins in Xenopus Ectoderm in Response to Wnt Signaling
Authors: Keiji Itoh, Sergei Y. Sokol.
Institutions: Mount Sinai School of Medicine .
Cell polarity is a fundamental property of eukaryotic cells that is dynamically regulated by both intrinsic and extrinsic factors during embryonic development 1, 2. One of the signaling pathways involved in this regulation is the Wnt pathway, which is used many times during embryogenesis and critical for human disease3, 4, 5. Multiple molecular components of this pathway coordinately regulate signaling in a spatially-restricted manner, but the underlying mechanisms are not fully understood. Xenopus embryonic epithelial cells is an excellent system to study subcellular localization of various signaling proteins. Fluorescent fusion proteins are expressed in Xenopus embryos by RNA microinjection, ectodermal explants are prepared and protein localization is evaluated by epifluorescence. In this experimental protocol we describe how subcellular localization of Diversin, a cytoplasmic protein that has been implicated in signaling and cell polarity determination6, 7 is visualized in Xenopus ectodermal cells to study Wnt signal transduction8. Coexpression of a Wnt ligand or a Frizzled receptor alters the distribution of Diversin fused with red fluorescent protein, RFP, and recruits it to the cell membrane in a polarized fashion 8, 9. This ex vivo protocol should be a useful addition to in vitro studies of cultured mammalian cells, in which spatial control of signaling differs from that of the intact tissue and is much more difficult to analyze.
Developmental Biology, Issue 51, Xenopus embryo, ectoderm, Diversin, Frizzled, membrane recruitment, polarity, Wnt
2700
Play Button
Using an Automated Cell Counter to Simplify Gene Expression Studies: siRNA Knockdown of IL-4 Dependent Gene Expression in Namalwa Cells
Authors: Adam M. McCoy, Claudia Litterst, Michelle L. Collins, Luis A. Ugozzoli.
Institutions: Bio-Rad Laboratories.
The use of siRNA mediated gene knockdown is continuing to be an important tool in studies of gene expression. siRNA studies are being conducted not only to study the effects of downregulating single genes, but also to interrogate signaling pathways and other complex interaction networks. These pathway analyses require both the use of relevant cellular models and methods that cause less perturbation to the cellular physiology. Electroporation is increasingly being used as an effective way to introduce siRNA and other nucleic acids into difficult to transfect cell lines and primary cells without altering the signaling pathway under investigation. There are multiple critical steps to a successful siRNA experiment, and there are ways to simplify the work while improving the data quality at several experimental stages. To help you get started with your siRNA mediated gene knockdown project, we will demonstrate how to perform a pathway study complete from collecting and counting the cells prior to electroporation through post transfection real-time PCR gene expression analysis. The following study investigates the role of the transcriptional activator STAT6 in IL-4 dependent gene expression of CCL17 in a Burkitt lymphoma cell line (Namalwa). The techniques demonstrated are useful for a wide range of siRNA-based experiments on both adherent and suspension cells. We will also show how to streamline cell counting with the TC10 automated cell counter, how to electroporate multiple samples simultaneously using the MXcell electroporation system, and how to simultaneously assess RNA quality and quantity with the Experion automated electrophoresis system.
Cellular Biology, Issue 38, Cell Counting, Gene Silencing, siRNA, Namalwa Cells, IL4, Gene Expression, Electroporation, Real Time PCR
1904
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.