JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Are the 10 meter and 6 minute walk tests redundant in patients with spinal cord injury?
PLoS ONE
PUBLISHED: 01-01-2014
To evaluate the relationship and redundancy between gait speeds measured by the 10 Meter Walk Test (10MWT) and 6 Minute Walk Test (6MWT) after motor incomplete spinal cord injury (iSCI). To identify gait speed thresholds supporting functional ambulation as measured with the Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI).
Authors: Jae H.T. Lee, Femke Streijger, Seth Tigchelaar, Michael Maloon, Jie Liu, Wolfram Tetzlaff, Brian K. Kwon.
Published: 07-24-2012
ABSTRACT
While the majority of human spinal cord injuries occur in the cervical spinal cord, the vast majority of laboratory research employs animal models of spinal cord injury (SCI) in which the thoracic spinal cord is injured. Additionally, because most human cord injuries occur as the result of blunt, non-penetrating trauma (e.g. motor vehicle accident, sporting injury) where the spinal cord is violently struck by displaced bone or soft tissues, the majority of SCI researchers are of the opinion that the most clinically relevant injury models are those in which the spinal cord is rapidly contused.1 Therefore, an important step in the preclinical evaluation of novel treatments on their way to human translation is an assessment of their efficacy in a model of contusion SCI within the cervical spinal cord. Here, we describe the technical aspects and resultant anatomical and behavioral outcomes of an unilateral contusive model of cervical SCI that employs the Infinite Horizon spinal cord injury impactor. Sprague Dawley rats underwent a left-sided unilateral laminectomy at C5. To optimize the reproducibility of the biomechanical, functional, and histological outcomes of the injury model, we contused the spinal cords using an impact force of 150 kdyn, an impact trajectory of 22.5° (animals rotated at 22.5°), and an impact location off of midline of 1.4 mm. Functional recovery was assessed using the cylinder rearing test, horizontal ladder test, grooming test and modified Montoya's staircase test for up to 6 weeks, after which the spinal cords were evaluated histologically for white and grey matter sparing. The injury model presented here imparts consistent and reproducible biomechanical forces to the spinal cord, an important feature of any experimental SCI model. This results in discrete histological damage to the lateral half of the spinal cord which is largely contained to the ipsilateral side of injury. The injury is well tolerated by the animals, but does result in functional deficits of the forelimb that are significant and sustained in the weeks following injury. The cervical unilateral injury model presented here may be a resource to researchers who wish to evaluate potentially promising therapies prior to human translation.
21 Related JoVE Articles!
Play Button
Clinical Assessment of Spatiotemporal Gait Parameters in Patients and Older Adults
Authors: Julia F. Item-Glatthorn, Nicola A. Maffiuletti.
Institutions: Schulthess Clinic.
Spatial and temporal characteristics of human walking are frequently evaluated to identify possible gait impairments, mainly in orthopedic and neurological patients1-4, but also in healthy older adults5,6. The quantitative gait analysis described in this protocol is performed with a recently-introduced photoelectric system (see Materials table) which has the potential to be used in the clinic because it is portable, easy to set up (no subject preparation is required before a test), and does not require maintenance and sensor calibration. The photoelectric system consists of series of high-density floor-based photoelectric cells with light-emitting and light-receiving diodes that are placed parallel to each other to create a corridor, and are oriented perpendicular to the line of progression7. The system simply detects interruptions in light signal, for instance due to the presence of feet within the recording area. Temporal gait parameters and 1D spatial coordinates of consecutive steps are subsequently calculated to provide common gait parameters such as step length, single limb support and walking velocity8, whose validity against a criterion instrument has recently been demonstrated7,9. The measurement procedures are very straightforward; a single patient can be tested in less than 5 min and a comprehensive report can be generated in less than 1 min.
Medicine, Issue 93, gait analysis, walking, floor-based photocells, spatiotemporal, elderly, orthopedic patients, neurological patients
51878
Play Button
Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury
Authors: Teresa A. Evans, Deborah S. Barkauskas, Jay T. Myers, Alex Y. Huang.
Institutions: Case Western Reserve University, Case Western Reserve University, Case Western Reserve University.
Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury.
Cellular Biology, Issue 93, Intravital, spinal cord crush injury, chimera, microglia, macrophages, dorsal column crush, axonal dieback
52228
Play Button
A Standardized Obstacle Course for Assessment of Visual Function in Ultra Low Vision and Artificial Vision
Authors: Amy Catherine Nau, Christine Pintar, Christopher Fisher, Jong-Hyeon Jeong, KwonHo Jeong.
Institutions: University of Pittsburgh, University of Pittsburgh.
We describe an indoor, portable, standardized course that can be used to evaluate obstacle avoidance in persons who have ultralow vision. Six sighted controls and 36 completely blind but otherwise healthy adult male (n=29) and female (n=13) subjects (age range 19-85 years), were enrolled in one of three studies involving testing of the BrainPort sensory substitution device. Subjects were asked to navigate the course prior to, and after, BrainPort training. They completed a total of 837 course runs in two different locations. Means and standard deviations were calculated across control types, courses, lights, and visits. We used a linear mixed effects model to compare different categories in the PPWS (percent preferred walking speed) and error percent data to show that the course iterations were properly designed. The course is relatively inexpensive, simple to administer, and has been shown to be a feasible way to test mobility function. Data analysis demonstrates that for the outcome of percent error as well as for percentage preferred walking speed, that each of the three courses is different, and that within each level, each of the three iterations are equal. This allows for randomization of the courses during administration. Abbreviations: preferred walking speed (PWS) course speed (CS) percentage preferred walking speed (PPWS)
Medicine, Issue 84, Obstacle course, navigation assessment, BrainPort, wayfinding, low vision
51205
Play Button
A Murine Model of Cervical Spinal Cord Injury to Study Post-lesional Respiratory Neuroplasticity
Authors: Emilie Keomani, Thérèse B. Deramaudt, Michel Petitjean, Marcel Bonay, Frédéric Lofaso, Stéphane Vinit.
Institutions: Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, Université de Versailles Saint-Quentin-en-Yvelines.
A cervical spinal cord injury induces permanent paralysis, and often leads to respiratory distress. To date, no efficient therapeutics have been developed to improve/ameliorate the respiratory failure following high cervical spinal cord injury (SCI). Here we propose a murine pre-clinical model of high SCI at the cervical 2 (C2) metameric level to study diverse post-lesional respiratory neuroplasticity. The technique consists of a surgical partial injury at the C2 level, which will induce a hemiparalysis of the diaphragm due to a deafferentation of the phrenic motoneurons from the respiratory centers located in the brainstem. The contralateral side of the injury remains intact and allows the animal recovery. Unlike other SCIs which affect the locomotor function (at the thoracic and lumbar level), the respiratory function does not require animal motivation and the quantification of the deficit/recovery can be easily performed (diaphragm and phrenic nerve recordings, whole body ventilation). This pre-clinical C2 SCI model is a powerful, useful, and reliable pre-clinical model to study various respiratory and non-respiratory neuroplasticity events at different levels (molecular to physiology) and to test diverse putative therapeutic strategies which might improve the respiration in SCI patients.
Physiology, Issue 87, rat, cervical spinal cord injury, respiratory deficit, crossed phrenic phenomenon, respiratory neuroplasticity
51235
Play Button
Assessing Functional Performance in the Mdx Mouse Model
Authors: Annemieke Aartsma-Rus, Maaike van Putten.
Institutions: Leiden University Medical Center.
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder for which no cure is available. Nevertheless, several potential pharmaceutical compounds and gene therapy approaches have progressed into clinical trials. With improvement in muscle function being the most important end point in these trials, a lot of emphasis has been placed on setting up reliable, reproducible, and easy to perform functional tests to pre clinically assess muscle function, strength, condition, and coordination in the mdx mouse model for DMD. Both invasive and noninvasive tests are available. Tests that do not exacerbate the disease can be used to determine the natural history of the disease and the effects of therapeutic interventions (e.g. forelimb grip strength test, two different hanging tests using either a wire or a grid and rotarod running). Alternatively, forced treadmill running can be used to enhance disease progression and/or assess protective effects of therapeutic interventions on disease pathology. We here describe how to perform these most commonly used functional tests in a reliable and reproducible manner. Using these protocols based on standard operating procedures enables comparison of data between different laboratories.
Behavior, Issue 85, Duchenne muscular dystrophy, neuromuscular disorders, outcome measures, functional testing, mouse model, grip strength, hanging test wire, hanging test grid, rotarod running, treadmill running
51303
Play Button
The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
Authors: Richard A. Rudick, Deborah Miller, Francois Bethoux, Stephen M. Rao, Jar-Chi Lee, Darlene Stough, Christine Reece, David Schindler, Bernadett Mamone, Jay Alberts.
Institutions: Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation.
Precise measurement of neurological and neuropsychological impairment and disability in multiple sclerosis is challenging. We report a new test, the Multiple Sclerosis Performance Test (MSPT), which represents a new approach to quantifying MS related disability. The MSPT takes advantage of advances in computer technology, information technology, biomechanics, and clinical measurement science. The resulting MSPT represents a computer-based platform for precise, valid measurement of MS severity. Based on, but extending the Multiple Sclerosis Functional Composite (MSFC), the MSPT provides precise, quantitative data on walking speed, balance, manual dexterity, visual function, and cognitive processing speed. The MSPT was tested by 51 MS patients and 49 healthy controls (HC). MSPT scores were highly reproducible, correlated strongly with technician-administered test scores, discriminated MS from HC and severe from mild MS, and correlated with patient reported outcomes. Measures of reliability, sensitivity, and clinical meaning for MSPT scores were favorable compared with technician-based testing. The MSPT is a potentially transformative approach for collecting MS disability outcome data for patient care and research. Because the testing is computer-based, test performance can be analyzed in traditional or novel ways and data can be directly entered into research or clinical databases. The MSPT could be widely disseminated to clinicians in practice settings who are not connected to clinical trial performance sites or who are practicing in rural settings, drastically improving access to clinical trials for clinicians and patients. The MSPT could be adapted to out of clinic settings, like the patient’s home, thereby providing more meaningful real world data. The MSPT represents a new paradigm for neuroperformance testing. This method could have the same transformative effect on clinical care and research in MS as standardized computer-adapted testing has had in the education field, with clear potential to accelerate progress in clinical care and research.
Medicine, Issue 88, Multiple Sclerosis, Multiple Sclerosis Functional Composite, computer-based testing, 25-foot walk test, 9-hole peg test, Symbol Digit Modalities Test, Low Contrast Visual Acuity, Clinical Outcome Measure
51318
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
51827
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
52066
Play Button
An Ex Vivo Laser-induced Spinal Cord Injury Model to Assess Mechanisms of Axonal Degeneration in Real-time
Authors: Starlyn L. M. Okada, Nicole S. Stivers, Peter K. Stys, David P. Stirling.
Institutions: University of Louisville, University of Calgary.
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.
Neuroscience, Issue 93, spinal cord injury, axon, myelin, two-photon excitation microscopy, Nile Red, axonal degeneration, axonal dieback, axonal retraction
52173
Play Button
Assessing Forelimb Function after Unilateral Cervical SCI using Novel Tasks: Limb Step-alternation, Postural Instability and Pasta Handling
Authors: Zin Z. Khaing, Sydney A. Geissler, Timothy Schallert, Christine E. Schmidt.
Institutions: The University of Texas at Austin, The University of Texas at Austin, University of Florida.
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. A majority of the spinal cord injuries in humans occur at the cervical levels. Therefore, developing cervical injury models and developing relevant and sensitive behavioral tests is of great importance. Here we describe the use of a newly developed forelimb step-alternation test after cervical spinal cord injury in rats. In addition, we describe two behavioral tests that have not been used after spinal cord injury: a postural instability test (PIT), and a pasta-handling test. All three behavioral tests are highly sensitive to injury and are easy to use. Therefore, we feel that these behavioral tests can be instrumental in investigating therapeutic strategies after cSCI.
Behavior, Issue 79, Behavior, Animal, Motor Activity, Nervous System Diseases, Wounds and Injuries, cervical spinal cord injury, lateral hemisection model, limb alternation, pasta handling, postural instability
50955
Play Button
Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury
Authors: Sevda C. Aslan, Manpreet K. Chopra, William B. McKay, Rodney J. Folz, Alexander V. Ovechkin.
Institutions: University of Louisville, Shepherd Center, University of Louisville.
During breathing, activation of respiratory muscles is coordinated by integrated input from the brain, brainstem, and spinal cord. When this coordination is disrupted by spinal cord injury (SCI), control of respiratory muscles innervated below the injury level is compromised1,2 leading to respiratory muscle dysfunction and pulmonary complications. These conditions are among the leading causes of death in patients with SCI3. Standard pulmonary function tests that assess respiratory motor function include spirometrical and maximum airway pressure outcomes: Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Maximal Inspiratory Pressure (PImax) and Maximal Expiratory Pressure (PEmax)4,5. These values provide indirect measurements of respiratory muscle performance6. In clinical practice and research, a surface electromyography (sEMG) recorded from respiratory muscles can be used to assess respiratory motor function and help to diagnose neuromuscular pathology. However, variability in the sEMG amplitude inhibits efforts to develop objective and direct measures of respiratory motor function6. Based on a multi-muscle sEMG approach to characterize motor control of limb muscles7, known as the voluntary response index (VRI)8, we developed an analytical tool to characterize respiratory motor control directly from sEMG data recorded from multiple respiratory muscles during the voluntary respiratory tasks. We have termed this the Respiratory Motor Control Assessment (RMCA)9. This vector analysis method quantifies the amount and distribution of activity across muscles and presents it in the form of an index that relates the degree to which sEMG output within a test-subject resembles that from a group of healthy (non-injured) controls. The resulting index value has been shown to have high face validity, sensitivity and specificity9-11. We showed previously9 that the RMCA outcomes significantly correlate with levels of SCI and pulmonary function measures. We are presenting here the method to quantitatively compare post-spinal cord injury respiratory multi-muscle activation patterns to those of healthy individuals.
Medicine, Issue 77, Anatomy, Physiology, Behavior, Neurobiology, Neuroscience, Spinal Cord Injuries, Pulmonary Disease, Chronic Obstructive, Motor Activity, Analytical, Diagnostic and Therapeutic Techniques and Equipment, Respiratory Muscles, Motor Control, Electromyography, Pulmonary Function Test, Spinal Cord Injury, SCI, clinical techniques
50178
Play Button
A Contusion Model of Severe Spinal Cord Injury in Rats
Authors: Vibhor Krishna, Hampton Andrews, Xing Jin, Jin Yu, Abhay Varma, Xuejun Wen, Mark Kindy.
Institutions: Medical University of South Carolina, Clemson University, Clemson-MUSC Bioengineering Joint Program.
The translational potential of novel treatments should be investigated in severe spinal cord injury (SCI) contusion models. A detailed methodology is described to obtain a consistent model of severe SCI. Use of a stereotactic frame and computer controlled impactor allows for creation of reproducible injury. Hypothermia and urinary tract infection pose significant challenges in the post-operative period. Careful monitoring of animals with daily weight recording and bladder expression allows for early detection of post-operative complications. The functional results of this contusion model are equivalent to transection models. The contusion model can be utilized to evaluate the efficacy of both neuroprotective and neuroregenerative approaches.
Biomedical Engineering, Issue 78, Medicine, Neurobiology, Neuroscience, Anatomy, Physiology, Surgery, Cerebrovascular Trauma, Spinal Cord Injuries, spinal cord injury model, contusion spinal cord injury, spinal cord contusion, translational spinal cord injury model, animal model
50111
Play Button
Methods to Quantify Pharmacologically Induced Alterations in Motor Function in Human Incomplete SCI
Authors: Christopher K. Thompson, Arun Jayaraman, Catherine Kinnaird, T. George Hornby.
Institutions: Rehabilitation Institute of Chicago, University of Illinois at Chicago, University of Illinois at Chicago.
Spinal cord injury (SCI) is a debilitating disorder, which produces profound deficits in volitional motor control. Following medical stabilization, recovery from SCI typically involves long term rehabilitation. While recovery of walking ability is a primary goal in many patients early after injury, those with a motor incomplete SCI, indicating partial preservation of volitional control, may have the sufficient residual descending pathways necessary to attain this goal. However, despite physical interventions, motor impairments including weakness, and the manifestation of abnormal involuntary reflex activity, called spasticity or spasms, are thought to contribute to reduced walking recovery. Doctrinaire thought suggests that remediation of this abnormal motor reflexes associated with SCI will produce functional benefits to the patient. For example, physicians and therapists will provide specific pharmacological or physical interventions directed towards reducing spasticity or spasms, although there continues to be little empirical data suggesting that these strategies improve walking ability. In the past few decades, accumulating data has suggested that specific neuromodulatory agents, including agents which mimic or facilitate the actions of the monoamines, including serotonin (5HT) and norepinephrine (NE), can initiate or augment walking behaviors in animal models of SCI. Interestingly, many of these agents, particularly 5HTergic agonists, can markedly increase spinal excitability, which in turn also increases reflex activity in these animals. Counterintuitive to traditional theories of recovery following human SCI, the empirical evidence from basic science experiments suggest that this reflex hyper excitability and generation of locomotor behaviors are driven in parallel by neuromodulatory inputs (5HT) and may be necessary for functional recovery following SCI. The application of this novel concept derived from basic scientific studies to promote recovery following human SCI would appear to be seamless, although the direct translation of the findings can be extremely challenging. Specifically, in the animal models, an implanted catheter facilitates delivery of very specific 5HT agonist compounds directly onto the spinal circuitry. The translation of this technique to humans is hindered by the lack of specific surgical techniques or available pharmacological agents directed towards 5HT receptor subtypes that are safe and effective for human clinical trials. However, oral administration of commonly available 5HTergic agents, such as selective serotonin reuptake inhibitors (SSRIs), may be a viable option to increase central 5HT concentrations in order to facilitate walking recovery in humans. Systematic quantification of how these SSRIs modulate human motor behaviors following SCI, with a specific focus on strength, reflexes, and the recovery of walking ability, are missing. This video demonstration is a progressive attempt to systematically and quantitatively assess the modulation of reflex activity, volitional strength and ambulation following the acute oral administration of an SSRI in human SCI. Agents are applied on single days to assess the immediate effects on motor function in this patient population, with long-term studies involving repeated drug administration combined with intensive physical interventions.
Medicine, Issue 50, spinal cord injury, spasticity, locomotion, strength, vector coding, biomechanics, reflex, serotonin, human, electromyography
2148
Play Button
A Novel Method for Assessing Proximal and Distal Forelimb Function in the Rat: the Irvine, Beatties and Bresnahan (IBB) Forelimb Scale
Authors: Karen-Amanda Irvine, Adam R. Ferguson, Kathleen D. Mitchell, Stephanie B. Beattie, Michael S. Beattie, Jacqueline C. Bresnahan.
Institutions: University of California, San Francisco.
Several experimental models of cervical spinal cord injury (SCI) have been developed recently to assess the consequences of damage to this level of the spinal cord (Pearse et al., 2005, Gensel et al., 2006, Anderson et al., 2009), as the majority of human SCI occur here (Young, 2010; www.sci-info-pages.com). Behavioral deficits include loss of forelimb function due to damage to the white matter affecting both descending motor and ascending sensory systems, and to the gray matter containing the segmental circuitry for processing sensory input and motor output for the forelimb. Additionally, a key priority for human patients with cervical SCI is restoration of hand/arm function (Anderson, 2004). Thus, outcome measures that assess both proximal and distal forelimb function are needed. Although there are several behavioral assays that are sensitive to different aspects of forelimb recovery in experimental models of cervical SCI (Girgis et al., 2007, Gensel et al., 2006, Ballerman et al., 2001, Metz and Whishaw, 2000, Bertelli and Mira, 1993, Montoya et al., 1991, Whishaw and Pellis, 1990), few techniques provide detailed information on the recovery of fine motor control and digit movement. The current measurement technique, the Irvine, Beatties and Bresnahan forelimb scale (IBB), can detect recovery of both proximal and distal forelimb function including digit movements during a naturally occurring behavior that does not require extensive training or deprivation to enhance motivation. The IBB was generated by observing recovery after a unilateral C6 SCI, and involves video recording of animals eating two differently shaped cereals (spherical and doughnut) of a consistent size. These videos were then used to assess features of forelimb use, such as joint position, object support, digit movement and grasping technique. The IBB, like other forelimb behavioral tasks, shows a consistent pattern of recovery that is sensitive to injury severity. Furthermore, the IBB scale could be used to assess recovery following other types of injury that impact normal forelimb function.
Neuroscience, Issue 46, spinal cord injury, recovery of function, forelimb function, neurological test, cervical injuries
2246
Play Button
Intraspinal Cell Transplantation for Targeting Cervical Ventral Horn in Amyotrophic Lateral Sclerosis and Traumatic Spinal Cord Injury
Authors: Angelo C. Lepore.
Institutions: Thomas Jefferson University Medical College.
Respiratory compromise due to phrenic motor neuron loss is a debilitating consequence of a large proportion of human traumatic spinal cord injury (SCI) cases 1 and is the ultimate cause of death in patients with the motor neuron disorder, amyotrophic laterals sclerosis (ALS) 2. ALS is a devastating neurological disorder that is characterized by relatively rapid degeneration of upper and lower motor neurons. Patients ultimately succumb to the disease on average 2-5 years following diagnosis because of respiratory paralysis due to loss of phrenic motor neuron innnervation of the diaphragm 3. The vast majority of cases are sporadic, while 10% are of the familial form. Approximately twenty percent of familial cases are linked to various point mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene on chromosome 21 4. Transgenic mice 4,5 and rats 6 carrying mutant human SOD1 genes (G93A, G37R, G86R, G85R) have been generated, and, despite the existence of other animal models of motor neuron loss, are currently the most highly used models of the disease. Spinal cord injury (SCI) is a heterogeneous set of conditions resulting from physical trauma to the spinal cord, with functional outcome varying according to the type, location and severity of the injury 7. Nevertheless, approximately half of human SCI cases affect cervical regions, resulting in debilitating respiratory dysfunction due to phrenic motor neuron loss and injury to descending bulbospinal respiratory axons 1. A number of animal models of SCI have been developed, with the most commonly used and clinically-relevant being the contusion 8. Transplantation of various classes of neural precursor cells (NPCs) is a promising therapeutic strategy for treatment of traumatic CNS injuries and neurodegeneration, including ALS and SCI, because of the ability to replace lost or dysfunctional CNS cell types, provide neuroprotection, and deliver gene factors of interest 9. Animal models of both ALS and SCI can model many clinically-relevant aspects of these diseases, including phrenic motor neuron loss and consequent respiratory compromise 10,11. In order to evaluate the efficacy of NPC-based strategies on respiratory function in these animal models of ALS and SCI, cellular interventions must be specifically directed to regions containing therapeutically relevant targets such as phrenic motor neurons. We provide a detailed protocol for multi-segmental, intraspinal transplantation of NPCs into the cervical spinal cord ventral gray matter of neurodegenerative models such as SOD1G93A mice and rats, as well as spinal cord injured rats and mice 11.
Medicine, Issue 55, cell transplantation, engraftment, graft, spinal cord, stem cells, precursors, ALS, amyotrophic lateral sclerosis, motor neuron, SCI, spinal cord injury
3069
Play Button
Acute and Chronic Tactile Sensory Testing after Spinal Cord Injury in Rats
Authors: Megan Ryan Detloff, Lesley C. Fisher, Rochelle J. Deibert, D. Michele Basso.
Institutions: School of Allied Medical Professions, The Ohio State University, Drexel University College of Medicine.
Spinal cord injury (SCI) impairs sensory systems causing allodynia1-8. To identify cellular and molecular causes of allodynia, sensitive and valid sensory testing in rat SCI models is needed. However, until recently, no single testing approach had been validated for SCI so that standardized methods have not been implemented across labs. Additionally, available testing methods could not be implemented acutely or when severe motor impairments existed, preventing studies of the development of SCI-induced allodynia3. Here we present two validated sensory testing methods using von Frey Hair (VFH) monofilaments which quantify changes in tactile sensory thresholds after SCI4-5. One test is the well-established Up-Down test which demonstrates high sensitivity and specificity across different SCI severities when tested chronically5. The other test is a newly-developed dorsal VFH test that can be applied acutely after SCI when allodynia develops, prior to motor recovery4-5. Each VFH monofilament applies a calibrated force when touched to the skin of the hind paw until it bends. In the up-down method, alternating VFHs of higher or lower forces are used on the plantar L5 dermatome to delineate flexor withdrawal thresholds. Successively higher forces are applied until withdrawal occurs then lower force VFHs are used until withdrawal ceases. The tactile threshold reflects the force required to elicit withdrawal in 50% of the stimuli. For the new test, each VFH is applied to the dorsal L5 dermatome of the paw while the rat is supported by the examiner. The VFH stimulation occurs in ascending order of force until at least 2 of 3 applications at a given force produces paw withdrawal. Tactile sensory threshold is the lowest force to elicit withdrawal 66% of the time. Acclimation, testing and scoring procedures are described. Aberrant trials that require a retest and typical trials are defined. Animal use was approved by Ohio State University Animal Care and Use Committee.
Medicine, Issue 62, Rat, neuropathic pain, allodynia, tactile sensation, spinal cord injury, SCI, von Frey monofilaments
3247
Play Button
Breathing-controlled Electrical Stimulation (BreEStim) for Management of Neuropathic Pain and Spasticity
Authors: Sheng Li.
Institutions: University of Texas Health Science Center at Houston , TIRR Memorial Hermann Hospital, TIRR Memorial Hermann Hospital.
Electrical stimulation (EStim) refers to the application of electrical current to muscles or nerves in order to achieve functional and therapeutic goals. It has been extensively used in various clinical settings. Based upon recent discoveries related to the systemic effects of voluntary breathing and intrinsic physiological interactions among systems during voluntary breathing, a new EStim protocol, Breathing-controlled Electrical Stimulation (BreEStim), has been developed to augment the effects of electrical stimulation. In BreEStim, a single-pulse electrical stimulus is triggered and delivered to the target area when the airflow rate of an isolated voluntary inspiration reaches the threshold. BreEStim integrates intrinsic physiological interactions that are activated during voluntary breathing and has demonstrated excellent clinical efficacy. Two representative applications of BreEStim are reported with detailed protocols: management of post-stroke finger flexor spasticity and neuropathic pain in spinal cord injury.
Medicine, Issue 71, Neuroscience, Neurobiology, Anatomy, Physiology, Behavior, electrical stimulation, BreEStim, electrode, voluntary breathing, respiration, inspiration, pain, neuropathic pain, pain management, spasticity, stroke, spinal cord injury, brain, central nervous system, CNS, clinical, electromyogram, neuromuscular electrical stimulation
50077
Play Button
A Simple Composite Phenotype Scoring System for Evaluating Mouse Models of Cerebellar Ataxia
Authors: Stephan J. Guyenet, Stephanie A. Furrer, Vincent M. Damian, Travis D. Baughan, Albert R. La Spada, Gwenn A. Garden.
Institutions: University of Washington, University of Washington, University of California, San Diego - Rady Children’s Hospital.
We describe a protocol for the rapid and sensitive quantification of disease severity in mouse models of cerebella ataxia. It is derived from previously published phenotype assessments in several disease models, including spinocerebellar ataxias, Huntington s disease and spinobulbar muscular atrophy. Measures include hind limb clasping, ledge test, gait and kyphosis. Each measure is recorded on a scale of 0-3, with a combined total of 0-12 for all four measures. The results effectively discriminate between affected and non-affected individuals, while also quantifying the temporal progression of neurodegenerative disease phenotypes. Measures may be analyzed individually or combined into a composite phenotype score for greater statistical power. The ideal combination of the four described measures will depend upon the disorder in question. We present an example of the protocol used to assess disease severity in a transgenic mouse model of spinocerebellar ataxia type 7 (SCA7). Albert R. La Spada and Gwenn A. Garden contributed to this manuscript equally.
JoVE Neuroscience, Issue 39, Neurodegeneration, Mouse behavior assay, cerebellar ataxia, polyglutamine disease
1787
Play Button
The Ladder Rung Walking Task: A Scoring System and its Practical Application.
Authors: Gerlinde A. Metz, Ian Q. Whishaw.
Institutions: University of Lethbridge.
Progress in the development of animal models for/stroke, spinal cord injury, and other neurodegenerative disease requires tests of high sensitivity to elaborate distinct aspects of motor function and to determine even subtle loss of movement capacity. To enhance efficacy and resolution of testing, tests should permit qualitative and quantitative measures of motor function and be sensitive to changes in performance during recovery periods. The present study describes a new task to assess skilled walking in the rat to measure both forelimb and hindlimb function at the same time. Animals are required to walk along a horizontal ladder on which the spacing of the rungs is variable and is periodically changed. Changes in rung spacing prevent animals from learning the absolute and relative location of the rungs and so minimize the ability of the animals to compensate for impairments through learning. In addition, changing the spacing between the rungs allows the test to be used repeatedly in long-term studies. Methods are described for both quantitative and qualitative description of both fore- and hindlimb performance, including limb placing, stepping, co-ordination. Furthermore, use of compensatory strategies is indicated by missteps or compensatory steps in response to another limb’s misplacement.
Neuroscience, Issue 28, rat, animal model of walking, skilled movement, ladder test, rung test, neuroscience
1204
Play Button
The Structure of Skilled Forelimb Reaching in the Rat: A Movement Rating Scale
Authors: Ian Q Whishaw, Paul Whishaw, Bogdan Gorny.
Institutions: University of Lethbridge.
Skilled reaching for food is an evolutionary ancient act and is displayed by many animal species, including those in the sister clades of rodents and primates. The video describes a test situation that allows filming of repeated acts of reaching for food by the rat that has been mildly food deprived. A rat is trained to reach through a slot in a holding box for food pellet that it grasps and then places in its mouth for eating. Reaching is accomplished in the main by proximally driven movements of the limb but distal limb movements are used for pronating the paw, grasping the food, and releasing the food into the mouth. Each reach is divided into at least 10 movements of the forelimb and the reaching act is facilitated by postural adjustments. Each of the movements is described and examples of the movements are given from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Because the reaching act for the rat is very similar to that displayed by humans and nonhuman primates, the scale can be used for comparative purposes. from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Experiments on animals were performed in accordance with the guidelines and regulations set forth by the University of Lethbridge Animal Care Committee in accordance with the regulations of the Canadian Council on Animal Care.
Neuroscience, Issue 18, rat skilled reaching, rat reaching scale, rat, rat movement element rating scale, reaching elements
816
Play Button
Layers of Symbiosis - Visualizing the Termite Hindgut Microbial Community
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter takes us for a nature walk through the diversity of life resident in the termite hindgut - a microenvironment containing 250 different species found nowhere else on Earth. Jared reveals that the symbiosis exhibited by this system is multi-layered and involves not only a relationship between the termite and its gut inhabitants, but also involves a complex web of symbiosis among the gut microbes themselves.
Microbiology, issue 4, microbial community, symbiosis, hindgut
197
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.