JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Loss of function of TET2 cooperates with constitutively active KIT in murine and human models of mastocytosis.
PUBLISHED: 01-01-2014
Systemic Mastocytosis (SM) is a clonal disease characterized by abnormal accumulation of mast cells in multiple organs. Clinical presentations of the disease vary widely from indolent to aggressive forms, and to the exceedingly rare mast cell leukemia. Current treatment of aggressive SM and mast cell leukemia is unsatisfactory. An imatinib-resistant activating mutation of the receptor tyrosine kinase KIT (KIT D816V) is most frequently present in transformed mast cells and is associated with all clinical forms of the disease. Thus the etiology of the variable clinical aggressiveness of abnormal mast cells in SM is unclear. TET2 appears to be mutated in primary human samples in aggressive types of SM, suggesting a possible role in disease modification. In this report, we demonstrate the cooperation between KIT D816V and loss of function of TET2 in mast cell transformation and demonstrate a more aggressive phenotype in a murine model of SM when both mutations are present in progenitor cells. We exploit these findings to validate a combination treatment strategy targeting the epigenetic deregulation caused by loss of TET2 and the constitutively active KIT receptor for the treatment of patients with aggressive SM.
Authors: Magdalena Hagn, Vivien R. Sutton, Joseph A. Trapani.
Published: 11-28-2014
The serine protease Granzyme B (GzmB) mediates target cell apoptosis when released by cytotoxic T lymphocytes (CTL) or natural killer (NK) cells. GzmB is the most studied granzyme in humans and mice and therefore, researchers need specific and reliable tools to study its function and role in pathophysiology. This especially necessitates assays that do not recognize proteases such as caspases or other granzymes that are structurally or functionally related. Here, we apply GzmB’s preference for cleavage after aspartic acid residues in a colorimetric assay using the peptide thioester Boc-Ala-Ala-Asp-S-Bzl. GzmB is the only mammalian serine protease capable of cleaving this substrate. The substrate is cleaved with similar efficiency by human, mouse and rat GzmB, a property not shared by other commercially available peptide substrates, even some that are advertised as being suitable for this purpose. This protocol is demonstrated using unfractionated lysates from activated NK cells or CTL and is also suitable for recombinant proteases generated in a variety of prokaryotic and eukaryotic systems, provided the correct controls are used. This assay is a highly specific method to ascertain the potential pro-apoptotic activity of cytotoxic molecules in mammalian lymphocytes, and of their recombinant counterparts expressed by a variety of methodologies.
26 Related JoVE Articles!
Play Button
Identifying DNA Mutations in Purified Hematopoietic Stem/Progenitor Cells
Authors: Ziming Cheng, Ting Zhou, Azhar Merchant, Thomas J. Prihoda, Brian L. Wickes, Guogang Xu, Christi A. Walter, Vivienne I. Rebel.
Institutions: UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio.
In recent years, it has become apparent that genomic instability is tightly related to many developmental disorders, cancers, and aging. Given that stem cells are responsible for ensuring tissue homeostasis and repair throughout life, it is reasonable to hypothesize that the stem cell population is critical for preserving genomic integrity of tissues. Therefore, significant interest has arisen in assessing the impact of endogenous and environmental factors on genomic integrity in stem cells and their progeny, aiming to understand the etiology of stem-cell based diseases. LacI transgenic mice carry a recoverable λ phage vector encoding the LacI reporter system, in which the LacI gene serves as the mutation reporter. The result of a mutated LacI gene is the production of β-galactosidase that cleaves a chromogenic substrate, turning it blue. The LacI reporter system is carried in all cells, including stem/progenitor cells and can easily be recovered and used to subsequently infect E. coli. After incubating infected E. coli on agarose that contains the correct substrate, plaques can be scored; blue plaques indicate a mutant LacI gene, while clear plaques harbor wild-type. The frequency of blue (among clear) plaques indicates the mutant frequency in the original cell population the DNA was extracted from. Sequencing the mutant LacI gene will show the location of the mutations in the gene and the type of mutation. The LacI transgenic mouse model is well-established as an in vivo mutagenesis assay. Moreover, the mice and the reagents for the assay are commercially available. Here we describe in detail how this model can be adapted to measure the frequency of spontaneously occurring DNA mutants in stem cell-enriched Lin-IL7R-Sca-1+cKit++(LSK) cells and other subpopulations of the hematopoietic system.
Infection, Issue 84, In vivo mutagenesis, hematopoietic stem/progenitor cells, LacI mouse model, DNA mutations, E. coli
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
Play Button
Measuring Changes in Tactile Sensitivity in the Hind Paw of Mice Using an Electronic von Frey Apparatus
Authors: Tijana Martinov, Madison Mack, Akilah Sykes, Devavani Chatterjea.
Institutions: Macalester College.
Measuring inflammation-induced changes in thresholds of hind paw withdrawal from mechanical pressure is a useful technique to assess changes in pain perception in rodents. Withdrawal thresholds can be measured first at baseline and then following drug, venom, injury, allergen, or otherwise evoked inflammation by applying an accurate force on very specific areas of the skin. An electronic von Frey apparatus allows precise assessment of mouse hind paw withdrawal thresholds that are not limited by the available filament sizes in contrast to classical von Frey measurements. The ease and rapidity of measurements allow for incorporation of assessment of tactile sensitivity outcomes in diverse models of rapid-onset inflammatory and neuropathic pain as multiple measurements can be taken within a short time period. Experimental measurements for individual rodent subjects can be internally controlled against individual baseline responses and exclusion criteria easily established to standardize baseline responses within and across experimental groups. Thus, measurements using an electronic von Frey apparatus represent a useful modification of the well-established classical von Frey filament-based assays for rodent mechanical allodynia that may also be applied to other nonhuman mammalian models.
Neuroscience, Issue 82, Natural Science Disciplines, Life Sciences (General), Behavioral Sciences, mechanical hyperalgesia, mice, electronic pressure meter, inflammation, snake venom
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Transgenic Rodent Assay for Quantifying Male Germ Cell Mutant Frequency
Authors: Jason M. O'Brien, Marc A. Beal, John D. Gingerich, Lynda Soper, George R. Douglas, Carole L. Yauk, Francesco Marchetti.
Institutions: Environmental Health Centre.
De novo mutations arise mostly in the male germline and may contribute to adverse health outcomes in subsequent generations. Traditional methods for assessing the induction of germ cell mutations require the use of large numbers of animals, making them impractical. As such, germ cell mutagenicity is rarely assessed during chemical testing and risk assessment. Herein, we describe an in vivo male germ cell mutation assay using a transgenic rodent model that is based on a recently approved Organisation for Economic Co-operation and Development (OECD) test guideline. This method uses an in vitro positive selection assay to measure in vivo mutations induced in a transgenic λgt10 vector bearing a reporter gene directly in the germ cells of exposed males. We further describe how the detection of mutations in the transgene recovered from germ cells can be used to characterize the stage-specific sensitivity of the various spermatogenic cell types to mutagen exposure by controlling three experimental parameters: the duration of exposure (administration time), the time between exposure and sample collection (sampling time), and the cell population collected for analysis. Because a large number of germ cells can be assayed from a single male, this method has superior sensitivity compared with traditional methods, requires fewer animals and therefore much less time and resources.
Genetics, Issue 90, sperm, spermatogonia, male germ cells, spermatogenesis, de novo mutation, OECD TG 488, transgenic rodent mutation assay, N-ethyl-N-nitrosourea, genetic toxicology
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
A Method for Screening and Validation of Resistant Mutations Against Kinase Inhibitors
Authors: Meenu Kesarwani, Erika Huber, Zachary Kincaid, Mohammad Azam.
Institutions: Cincinnati Children's Hospital Medical Center.
The discovery of BCR/ABL as a driver oncogene in chronic myeloid leukemia (CML) resulted in the development of Imatinib, which, in fact, demonstrated the potential of targeting the kinase in cancers by effectively treating the CML patients. This observation revolutionized drug development to target the oncogenic kinases implicated in various other malignancies, such as, EGFR, B-RAF, KIT and PDGFRs. However, one major drawback of anti-kinase therapies is the emergence of drug resistance mutations rendering the target to have reduced or lost affinity for the drug. Understanding the mechanisms employed by resistant variants not only helps in developing the next generation inhibitors but also gives impetus to clinical management using personalized medicine. We reported a retroviral vector based screening strategy to identify the spectrum of resistance conferring mutations in BCR/ABL, which has helped in developing the next generation BCR/ABL inhibitors. Using Ruxolitinib and JAK2 as a drug target pair, here we describe in vitro screening methods that utilizes the mouse BAF3 cells expressing the random mutation library of JAK2 kinase.
Genetics, Issue 94, JAK2, BCR/ABL, TKI, random mutagenesis, drug resistance, kinase inhibitors, in-vivo resistance,
Play Button
Measuring Local Anaphylaxis in Mice
Authors: Holly Evans, Kristin E. Killoran, Edward Mitre.
Institutions: Uniformed Services University of the Health Sciences.
Allergic responses are the result of the activation of mast cells and basophils, and the subsequent release of vasoactive and proinflammatory mediators. Exposure to an allergen in a sensitized individual can result in clinical symptoms that vary from minor erythema to life threatening anaphylaxis. In the laboratory, various animal models have been developed to understand the mechanisms driving allergic responses. Herein, we describe a detailed method for measuring changes in vascular permeability to quantify localized allergic responses. The local anaphylaxis assay was first reported in the 1920s, and has been adapted from the technique published by Kojima et al. in 20071. In this assay, mice sensitized to OVA are challenged in the left ear with vehicle and in the right ear with OVA. This is followed by an intravenous injection of Evans Blue dye. Ten min after injecting Evans Blue, the animal is euthanized and the dye that has extravasated into the ears is extracted overnight in formamide. The absorbance of the extracted dye is then quantified with a spectrophotometer. This method reliably results in a visual and quantifiable manifestation of a local allergic response.
Immunology, Issue 92, Allergy, sensitization, hypersensitivity, anaphylaxis, mouse, IgE, mast cell, activation, vascular permeability
Play Button
Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia
Authors: Sandra Christoph, Alisa B. Lee-Sherick, Susan Sather, Deborah DeRyckere, Douglas K. Graham.
Institutions: University of Colorado Anschutz Medical Campus, University Hospital of Essen.
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds.
Medicine, Issue 79, Leukemia, Receptor Protein-Tyrosine Kinases, Molecular Targeted Therapy, Therapeutics, novel small molecule inhibitor, receptor tyrosine kinase, leukemia
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Pharmacologic Induction of Epidermal Melanin and Protection Against Sunburn in a Humanized Mouse Model
Authors: Alexandra Amaro-Ortiz, Jillian C. Vanover, Timothy L. Scott, John A. D'Orazio.
Institutions: University of Kentucky College of Medicine, University of Kentucky College of Medicine, University of Kentucky College of Medicine, University of Kentucky College of Medicine.
Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection 1. Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.
Medicine, Issue 79, Skin, Inflammation, Photometry, Ultraviolet Rays, Skin Pigmentation, melanocortin 1 receptor, Mc1r, forskolin, cAMP, mean erythematous dose, skin pigmentation, melanocyte, melanin, sunburn, UV, inflammation
Play Button
Visualization of the Interstitial Cells of Cajal (ICC) Network in Mice
Authors: Yu Chen, Tambudzai Shamu, Hui Chen, Peter Besmer, Charles L. Sawyers, Ping Chi.
Institutions: Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Medical Institute, The Rockefeller University.
The interstitial cells of Cajal (ICC) are mesenchymal derived "pacemaker cells" of the gastrointestinal (GI) tract that generate spontaneous slow waves required for peristalsis and mediate neuronal input from the enteric nervous system1. Different subtypes of ICC form distinct networks in the muscularis of the GI tract 2,3. Loss or injury to these networks is associated with a number of motility disorders4. ICC cells express the KIT receptor tyrosine kinase on the plasma membrane and KIT immunostaining has been used for the past 15 years to label the ICC network5,6. Importantly, normal KIT activity is required for ICC development5,6. Neoplastic transformation of ICC cells results in gastrointestinal stromal tumor (GIST), that frequently harbor gain-of-function KIT mutations7,8. We recently showed that ETV1 is a lineage-specific survival factor expressed in the ICC/GIST lineage and is a master transcriptional regulator required for both normal ICC network formation and for of GIST tumorigenesis9. We further demonstrate that it cooperates with activating KIT mutations in tumorigenesis. Here, we describe methods for visualization of ICC networks in mice, largely based on previously published protocols10,11. More recently, the chloride channel anoctamin 1 (ANO1) has also been characterized as a specific membrane marker of ICC11,12. Because of their plasma membrane localization, immunofluorescence of both proteins can be used to visualize the ICC networks. Here, we describe visualization of the ICC networks by fixed-frozen cyrosections and whole mount preparations.
Developmental Biology, Issue 53, mice, fluorescence microscopy, gastrointestinal track, motility, interstital cells of cajal, kit, ano1, pgp9.5
Play Button
Isolation of Functional Cardiac Immune Cells
Authors: Jennifer L. McLarty, Giselle C. Meléndez, William J. Spencer, Scott P. Levick, Gregory L. Brower, Joseph S. Janicki.
Institutions: University of South Carolina- School of Medicine.
Cardiac immune cells are gaining interest for the roles they play in the pathological remodeling in many cardiac diseases.1-5 These immune cells, which include mast cells, T-cells and macrophages; store and release a variety of biologically active mediators including cytokines and proteases such as tryptase.6-8 These mediators have been shown to be key players in extracellular matrix metabolism by activating matrix metalloproteinases or causing collagen accumulation by modulating the cardiac fibroblasts' function.9-11 However, available techniques for isolating cardiac immune cells have been problematic because they use bacterial collagenase to digest the myocardial tissue. This technique causes activation of the immune cells and thus a loss of function. For example, cardiac mast cells become significantly less responsive to compounds that cause degranulation.12 Therefore, we developed a technique that allows for the isolation of functional cardiac immune cells which would lead to a better understanding of the role of these cells in cardiac disease.13, 14 This method requires a familiarity with the anatomical location of the rat's xiphoid process, axilla and falciform ligament, and pericardium of the heart. These landmarks are important to increase success of the procedure and to ensure a higher yield of cardiac immune cells. These isolated cardiac immune cells can then be used for characterization of functionality, phenotype, maturity, and co-culture experiments with other cardiac cells to gain a better understanding of their interactions.
Immunology, Issue 58, Heart, Cardiac, Immune Cells, Isolation, Functional
Play Button
Rat Mesentery Angiogenesis Assay
Authors: Klas C. Norrby.
Institutions: University of Gothenburg.
The adult rat mesentery window angiogenesis assay is biologically appropriate and is exceptionally well suited to the study of sprouting angiogenesis in vivo [see review papers], which is the dominating form of angiogenesis in human tumors and non-tumor tissues, as discussed in invited review papers1,2. Angiogenesis induced in the membranous mesenteric parts by intraperitoneal (i.p.) injection of a pro-angiogenic factor can be modulated by subcutaneous (s.c.), intravenous (i.v.) or oral (p.o.) treatment with modifying agents of choice. Each membranous part of the mesentery is translucent and framed by fatty tissue, giving it a window-like appearance. The assay has the following advantageous features: (i) the test tissue is natively vascularized, albeit sparsely, and since it is extremely thin, the microvessel network is virtually two-dimensional, which allows the entire network to be assessed microscopically in situ; (ii) in adult rats the test tissue lacks significant physiologic angiogenesis, which characterizes most normal adult mammalian tissues; the degree of native vascularization is, however, correlated with age, as discussed in1; (iii) the negligible level of trauma-induced angiogenesis ensures high sensitivity; (iv) the assay replicates the clinical situation, as the angiogenesis-modulating test drugs are administered systemically and the responses observed reflect the net effect of all the metabolic, cellular, and molecular alterations induced by the treatment; (v) the assay allows assessments of objective, quantitative, unbiased variables of microvascular spatial extension, density, and network pattern formation, as well as of capillary sprouting, thereby enabling robust statistical analyses of the dose-effect and molecular structure-activity relationships; and (vi) the assay reveals with high sensitivity the toxic or harmful effects of treatments in terms of decreased rate of physiologic body-weight gain, as adult rats grow robustly. Mast-cell-mediated angiogenesis was first demonstrated using this assay3,4. The model demonstrates a high level of discrimination regarding dosage-effect relationships and the measured effects of systemically administered chemically or functionally closely related drugs and proteins, including: (i) low-dosage, metronomically administered standard chemotherapeutics that yield diverse, drug-specific effects (i.e., angiogenesis-suppressive, neutral or angiogenesis-stimulating activities5); (ii) natural iron-unsaturated human lactoferrin, which stimulates VEGF-A-mediated angiogenesis6, and natural iron-unsaturated bovine lactoferrin, which inhibits VEGF-A-mediated angiogenesis7; and (iii) low-molecular-weight heparin fractions produced by various means8,9. Moreover, the assay is highly suited to studies of the combined effects on angiogenesis of agents that are administered systemically in a concurrent or sequential fashion. The idea of making this video originated from the late Dr. Judah Folkman when he visited our laboratory and witnessed the methodology being demonstrated. Review papers (invited) discussing and appraising the assay Norrby, K. In vivo models of angiogenesis. J. Cell. Mol. Med. 10, 588-612 (2006). Norrby, K. Drug testing with angiogenesis models. Expert Opin. Drug. Discov. 3, 533-549 (2008).
Physiology, Issue 52, angiogenesis, mesentery, objective variables, morphometry, rat, local effects, systemic effects
Play Button
Assessing Somatic Hypermutation in Ramos B Cells after Overexpression or Knockdown of Specific Genes
Authors: Dana C. Upton, Shyam Unniraman.
Institutions: Duke University .
B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies1,2. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination1-3. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η)4-10. However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development11-14. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes15-18. Ramos – a Burkitt lymphoma cell line that constitutively undergoes SHM – has been a popular cell-line model to study SHM18-24. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence-activated cell scanning (FACS) provides a quick read-out for the level of SHM. A more quantitative measurement of SHM can be obtained by directly sequencing the antibody genes. Since Ramos cells are difficult to transfect, we produce stable derivatives that have increased or lowered expression of an individual gene by infecting cells with retroviral or lentiviral constructs that contain either an overexpression cassette or a short hairpin RNA (shRNA), respectively. Here, we describe how we infect Ramos cells and then use these cells to investigate the role of specific genes on SHM (Figure 1).
Immunology, Issue 57, activation-induced cytidine deaminase, lentiviral infection, retroviral infection, Ramos, shRNA, somatic hypermutation
Play Button
Assessment of Mitochondrial Functions and Cell Viability in Renal Cells Overexpressing Protein Kinase C Isozymes
Authors: Grażyna Nowak, Diana Bakajsova.
Institutions: University of Arkansas for Medical Sciences .
The protein kinase C (PKC) family of isozymes is involved in numerous physiological and pathological processes. Our recent data demonstrate that PKC regulates mitochondrial function and cellular energy status. Numerous reports demonstrated that the activation of PKC-a and PKC-ε improves mitochondrial function in the ischemic heart and mediates cardioprotection. In contrast, we have demonstrated that PKC-α and PKC-ε are involved in nephrotoxicant-induced mitochondrial dysfunction and cell death in kidney cells. Therefore, the goal of this study was to develop an in vitro model of renal cells maintaining active mitochondrial functions in which PKC isozymes could be selectively activated or inhibited to determine their role in regulation of oxidative phosphorylation and cell survival. Primary cultures of renal proximal tubular cells (RPTC) were cultured in improved conditions resulting in mitochondrial respiration and activity of mitochondrial enzymes similar to those in RPTC in vivo. Because traditional transfection techniques (Lipofectamine, electroporation) are inefficient in primary cultures and have adverse effects on mitochondrial function, PKC-ε mutant cDNAs were delivered to RPTC through adenoviral vectors. This approach results in transfection of over 90% cultured RPTC. Here, we present methods for assessing the role of PKC-ε in: 1. regulation of mitochondrial morphology and functions associated with ATP synthesis, and 2. survival of RPTC in primary culture. PKC-ε is activated by overexpressing the constitutively active PKC-ε mutant. PKC-ε is inhibited by overexpressing the inactive mutant of PKC-ε. Mitochondrial function is assessed by examining respiration, integrity of the respiratory chain, activities of respiratory complexes and F0F1-ATPase, ATP production rate, and ATP content. Respiration is assessed in digitonin-permeabilized RPTC as state 3 (maximum respiration in the presence of excess substrates and ADP) and uncoupled respirations. Integrity of the respiratory chain is assessed by measuring activities of all four complexes of the respiratory chain in isolated mitochondria. Capacity of oxidative phosphorylation is evaluated by measuring the mitochondrial membrane potential, ATP production rate, and activity of F0F1-ATPase. Energy status of RPTC is assessed by determining the intracellular ATP content. Mitochondrial morphology in live cells is visualized using MitoTracker Red 580, a fluorescent dye that specifically accumulates in mitochondria, and live monolayers are examined under a fluorescent microscope. RPTC viability is assessed using annexin V/propidium iodide staining followed by flow cytometry to determine apoptosis and oncosis. These methods allow for a selective activation/inhibition of individual PKC isozymes to assess their role in cellular functions in a variety of physiological and pathological conditions that can be reproduced in in vitro.
Cellular Biology, Issue 71, Biochemistry, Molecular Biology, Genetics, Pharmacology, Physiology, Medicine, Protein, Mitochondrial dysfunction, mitochondria, protein kinase C, renal proximal tubular cells, reactive oxygen species, oxygen consumption, electron transport chain, respiratory complexes, ATP, adenovirus, primary culture, ischemia, cells, flow cytometry
Play Button
Preparation and Use of Samarium Diiodide (SmI2) in Organic Synthesis: The Mechanistic Role of HMPA and Ni(II) Salts in the Samarium Barbier Reaction
Authors: Dhandapani V. Sadasivam, Kimberly A. Choquette, Robert A. Flowers II.
Institutions: Lehigh University .
Although initially considered an esoteric reagent, SmI2 has become a common tool for synthetic organic chemists. SmI2 is generated through the addition of molecular iodine to samarium metal in THF.1,2-3 It is a mild and selective single electron reductant and its versatility is a result of its ability to initiate a wide range of reductions including C-C bond-forming and cascade or sequential reactions. SmI2 can reduce a variety of functional groups including sulfoxides and sulfones, phosphine oxides, epoxides, alkyl and aryl halides, carbonyls, and conjugated double bonds.2-12 One of the fascinating features of SmI-2-mediated reactions is the ability to manipulate the outcome of reactions through the selective use of cosolvents or additives. In most instances, additives are essential in controlling the rate of reduction and the chemo- or stereoselectivity of reactions.13-14 Additives commonly utilized to fine tune the reactivity of SmI2 can be classified into three major groups: (1) Lewis bases (HMPA, other electron-donor ligands, chelating ethers, etc.), (2) proton sources (alcohols, water etc.), and (3) inorganic additives (Ni(acac)2, FeCl3, etc).3 Understanding the mechanism of SmI2 reactions and the role of the additives enables utilization of the full potential of the reagent in organic synthesis. The Sm-Barbier reaction is chosen to illustrate the synthetic importance and mechanistic role of two common additives: HMPA and Ni(II) in this reaction. The Sm-Barbier reaction is similar to the traditional Grignard reaction with the only difference being that the alkyl halide, carbonyl, and Sm reductant are mixed simultaneously in one pot.1,15 Examples of Sm-mediated Barbier reactions with a range of coupling partners have been reported,1,3,7,10,12 and have been utilized in key steps of the synthesis of large natural products.16,17 Previous studies on the effect of additives on SmI2 reactions have shown that HMPA enhances the reduction potential of SmI2 by coordinating to the samarium metal center, producing a more powerful,13-14,18 sterically encumbered reductant19-21 and in some cases playing an integral role in post electron-transfer steps facilitating subsequent bond-forming events.22 In the Sm-Barbier reaction, HMPA has been shown to additionally activate the alkyl halide by forming a complex in a pre-equilibrium step.23 Ni(II) salts are a catalytic additive used frequently in Sm-mediated transformations.24-27 Though critical for success, the mechanistic role of Ni(II) was not known in these reactions. Recently it has been shown that SmI2 reduces Ni(II) to Ni(0), and the reaction is then carried out through organometallic Ni(0) chemistry.28 These mechanistic studies highlight that although the same Barbier product is obtained, the use of different additives in the SmI2 reaction drastically alters the mechanistic pathway of the reaction. The protocol for running these SmI2-initiated reactions is described.
Chemistry, Issue 72, Organic Chemistry, Chemical Engineering, Biochemistry, Samarium diiodide, Sml2, Samarium-Barbier Reaction, HMPA, hexamethylphosphoramide, Ni(II), Nickel(II) acetylacetonate, nickel, samarium, iodine, additives, synthesis, catalyst, reaction, synthetic organic chemistry
Play Button
Selective Capture of 5-hydroxymethylcytosine from Genomic DNA
Authors: Yujing Li, Chun-Xiao Song, Chuan He, Peng Jin.
Institutions: Emory University School of Medicine, The University of Chicago.
5-methylcytosine (5-mC) constitutes ~2-8% of the total cytosines in human genomic DNA and impacts a broad range of biological functions, including gene expression, maintenance of genome integrity, parental imprinting, X-chromosome inactivation, regulation of development, aging, and cancer1. Recently, the presence of an oxidized 5-mC, 5-hydroxymethylcytosine (5-hmC), was discovered in mammalian cells, in particular in embryonic stem (ES) cells and neuronal cells2-4. 5-hmC is generated by oxidation of 5-mC catalyzed by TET family iron (II)/α-ketoglutarate-dependent dioxygenases2, 3. 5-hmC is proposed to be involved in the maintenance of embryonic stem (mES) cell, normal hematopoiesis and malignancies, and zygote development2, 5-10. To better understand the function of 5-hmC, a reliable and straightforward sequencing system is essential. Traditional bisulfite sequencing cannot distinguish 5-hmC from 5-mC11. To unravel the biology of 5-hmC, we have developed a highly efficient and selective chemical approach to label and capture 5-hmC, taking advantage of a bacteriophage enzyme that adds a glucose moiety to 5-hmC specifically12. Here we describe a straightforward two-step procedure for selective chemical labeling of 5-hmC. In the first labeling step, 5-hmC in genomic DNA is labeled with a 6-azide-glucose catalyzed by β-GT, a glucosyltransferase from T4 bacteriophage, in a way that transfers the 6-azide-glucose to 5-hmC from the modified cofactor, UDP-6-N3-Glc (6-N3UDPG). In the second step, biotinylation, a disulfide biotin linker is attached to the azide group by click chemistry. Both steps are highly specific and efficient, leading to complete labeling regardless of the abundance of 5-hmC in genomic regions and giving extremely low background. Following biotinylation of 5-hmC, the 5-hmC-containing DNA fragments are then selectively captured using streptavidin beads in a density-independent manner. The resulting 5-hmC-enriched DNA fragments could be used for downstream analyses, including next-generation sequencing. Our selective labeling and capture protocol confers high sensitivity, applicable to any source of genomic DNA with variable/diverse 5-hmC abundances. Although the main purpose of this protocol is its downstream application (i.e., next-generation sequencing to map out the 5-hmC distribution in genome), it is compatible with single-molecule, real-time SMRT (DNA) sequencing, which is capable of delivering single-base resolution sequencing of 5-hmC.
Genetics, Issue 68, Chemistry, Biophysics, 5-Hydroxymethylcytosine, chemical labeling, genomic DNA, high-throughput sequencing
Play Button
A Method for Mouse Pancreatic Islet Isolation and Intracellular cAMP Determination
Authors: Joshua C. Neuman, Nathan A. Truchan, Jamie W. Joseph, Michelle E. Kimple.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Waterloo.
Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The β-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the β-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on β-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased β-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3H]-thymidine incorporation, protein abundance, and mRNA expression.
Physiology, Issue 88, islet, isolation, insulin secretion, β-cell, diabetes, cAMP production, mouse
Play Button
Setting Limits on Supersymmetry Using Simplified Models
Authors: Christian Gütschow, Zachary Marshall.
Institutions: University College London, CERN, Lawrence Berkeley National Laboratories.
Experimental limits on supersymmetry and similar theories are difficult to set because of the enormous available parameter space and difficult to generalize because of the complexity of single points. Therefore, more phenomenological, simplified models are becoming popular for setting experimental limits, as they have clearer physical interpretations. The use of these simplified model limits to set a real limit on a concrete theory has not, however, been demonstrated. This paper recasts simplified model limits into limits on a specific and complete supersymmetry model, minimal supergravity. Limits obtained under various physical assumptions are comparable to those produced by directed searches. A prescription is provided for calculating conservative and aggressive limits on additional theories. Using acceptance and efficiency tables along with the expected and observed numbers of events in various signal regions, LHC experimental results can be recast in this manner into almost any theoretical framework, including nonsupersymmetric theories with supersymmetry-like signatures.
Physics, Issue 81, high energy physics, particle physics, Supersymmetry, LHC, ATLAS, CMS, New Physics Limits, Simplified Models
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
Play Button
The Preparation of Primary Hematopoietic Cell Cultures From Murine Bone Marrow for Electroporation
Authors: Kelly Kroeger, Michelle Collins, Luis Ugozzoli.
Institutions: Bio-Rad Laboratories, Inc.
It is becoming increasingly apparent that electroporation is the most effective way to introduce plasmid DNA or siRNA into primary cells. The Gene Pulser MXcell electroporation system and Gene Pulser electroporation buffer were specifically developed to transfect nucleic acids into mammalian cells and difficult-to-transfect cells, such as primary and stem cells.This video demonstrates how to establish primary hematopoietic cell cultures from murine bone marrow, and then prepare them for electroporation in the MXcell system. We begin by isolating femur and tibia. Bone marrow from both femur and tibia are then harvested and cultures are established. Cultured bone marrow cells are then transfected and analyzed.
Immunology, Issue 23, Primary Hematopoietic Cell Culture, Bone Marrow, Transfection, Electroporation, BioRad, IL-3
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.