JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Effect of currently approved carriers and adjuvants on the pre-clinical efficacy of a conjugate vaccine against oxycodone in mice and rats.
PUBLISHED: 01-01-2014
Vaccination against the highly abused prescription opioid oxycodone has shown pre-clinical efficacy for blocking oxycodone effects. The current study further evaluated a candidate vaccine composed of oxycodone derivatized at the C6 position (6OXY) conjugated to the native keyhole limpet hemocyanin (nKLH) carrier protein. To provide an oxycodone vaccine formulation suitable for human studies, we studied the effect of alternative carriers and adjuvants on the generation of oxycodone-specific serum antibody and B cell responses, and the effect of immunization on oxycodone distribution and oxycodone-induced antinociception in mice and rats. 6OXY conjugated to tetanus toxoid (TT) or a GMP grade KLH dimer (dKLH) was as effective as 6OXY conjugated to the nKLH decamer in mice and rats, while the 6OXY hapten conjugated to a TT-derived peptide was not effective in preventing oxycodone-induced antinociception in mice. Immunization with 6OXY-TT s.c. absorbed on alum adjuvant provided similar protection to 6OXY-TT administered i.p. with Freund's adjuvant in rats. The toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) adjuvant, alone or in combination with alum, offered no advantage over alum alone for generating oxycodone-specific serum antibodies or 6OXY-specific antibody secreting B cells in mice vaccinated with 6OXY-nKLH or 6OXY-TT. The immunogenicity of oxycodone vaccines may be modulated by TLR4 signaling since responses to 6OXY-nKLH in alum were decreased in TLR4-deficient mice. These data suggest that TT, nKLH and dKLH carriers provide consistent 6OXY conjugate vaccine immunogenicity across species, strains and via different routes of administration, while adjuvant formulations may need to be tailored to individual immunogens or patient populations.
Authors: Pål Johansen, Thomas M. Kündig.
Published: 02-02-2014
Vaccines are typically injected subcutaneously or intramuscularly for stimulation of immune responses. The success of this requires efficient drainage of vaccine to lymph nodes where antigen presenting cells can interact with lymphocytes for generation of the wanted immune responses. The strength and the type of immune responses induced also depend on the density or frequency of interactions as well as the microenvironment, especially the content of cytokines. As only a minute fraction of peripherally injected vaccines reaches the lymph nodes, vaccinations of mice and humans were performed by direct injection of vaccine into inguinal lymph nodes, i.e. intralymphatic injection. In man, the procedure is guided by ultrasound. In mice, a small (5-10 mm) incision is made in the inguinal region of anesthetized animals, the lymph node is localized and immobilized with forceps, and a volume of 10-20 μl of the vaccine is injected under visual control. The incision is closed with a single stitch using surgical sutures. Mice were vaccinated with plasmid DNA, RNA, peptide, protein, particles, and bacteria as well as adjuvants, and strong improvement of immune responses against all type of vaccines was observed. The intralymphatic method of vaccination is especially appropriate in situations where conventional vaccination produces insufficient immunity or where the amount of available vaccine is limited.
21 Related JoVE Articles!
Play Button
Induction and Clinical Scoring of Chronic-Relapsing Experimental Autoimmune Encephalomyelitis
Authors: Christine Beeton, Adriana Garcia, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that commonly affects young adults. It is characterized by demyelination and glial scaring in areas disseminated in the brain and spinal cord. These lesions alter nerve conduction and induce the disabling neurological deficits that vary with the location of the demyelinated plaques in the CNS (e.g. paraparesis, paralysis, blindness, incontinence). Experimental autoimmune encephalomyelitis (EAE) is a model for MS. EAE was first induced accidentally in humans during vaccination against rabies, using viruses grown on rabbit spinal cords. Residues of spinal injected with the inactivated virus induced the CNS disease. Following these observations, a first model of EAE was described in non-human primates immunized with a CNS homogenate by Rivers and Schwenther in 1935. EAE has since been generated in a variety of species and can follow different courses depending on the species/strain and immunizing antigen used. For example, immunizing Lewis rats with myelin basic protein in emulsion with adjuvant induces an acute model of EAE, while the same antigen induces a chronic disease in guinea pigs. The EAE model described here is induced by immunizing DA rats against DA rat spinal cord in emulsion in complete Freund's adjuvant. Rats develop an ascending flaccid paralysis within 7-14 days post-immunization. Clinical signs follow a relapsing-remitting course over several weeks. Pathology shows large immune infiltrates in the CNS and demyelination plaques. Special considerations for taking care for animals with EAE are described at the end of the video.
Immunology, Issue 5, Autoimmune Disease, Animal Model, EAE, Experimental Allergic Encephalomyelitis, Multiple Sclerosis, Immunology, Clinical Scoring, Disease Model, Inflammation, Central Nervous System
Play Button
Skin Tattooing As A Novel Approach For DNA Vaccine Delivery
Authors: Yung-Nung Chiu, Jared M. Sampson, Xunqing Jiang, Susan B. Zolla-Pazner, Xiang-Peng Kong.
Institutions: New York University School of Medicine, New York University School of Medicine, Veterans Affairs New York Harbor.
Nucleic acid-based vaccination is a topic of growing interest, especially plasmid DNA (pDNA) encoding immunologically important antigens. After the engineered pDNA is administered to the vaccines, it is transcribed and translated into immunogen proteins that can elicit responses from the immune system. Many ways of delivering DNA vaccines have been investigated; however each delivery route has its own advantages and pitfalls. Skin tattooing is a novel technique that is safe, cost-effective, and convenient. In addition, the punctures inflicted by the needle could also serve as a potent adjuvant. Here, we a) demonstrate the intradermal delivery of plasmid DNA encoding enhanced green fluorescent protein (pCX-EGFP) in a mouse model using a tattooing device and b) confirm the effective expression of EGFP in the skin cells using confocal microscopy.
Bioengineering, Issue 68, Biomedical Engineering, Genetics, Medicine, DNA, vaccine, immunization method, skin tattooing, intradermal delivery, GFP
Play Button
Protocol for Recombinant RBD-based SARS Vaccines: Protein Preparation, Animal Vaccination and Neutralization Detection
Authors: Lanying Du, Xiujuan Zhang, Jixiang Liu, Shibo Jiang.
Institutions: New York Blood Center.
Based on their safety profile and ability to induce potent immune responses against infections, subunit vaccines have been used as candidates for a wide variety of pathogens 1-3. Since the mammalian cell system is capable of post-translational modification, thus forming properly folded and glycosylated proteins, recombinant proteins expressed in mammalian cells have shown the greatest potential to maintain high antigenicity and immunogenicity 4-6. Although no new cases of SARS have been reported since 2004, future outbreaks are a constant threat; therefore, the development of vaccines against SARS-CoV is a prudent preventive step and should be carried out. The RBD of SARS-CoV S protein plays important roles in receptor binding and induction of specific neutralizing antibodies against virus infection 7-9. Therefore, in this protocol, we describe novel methods for developing a RBD-based subunit vaccine against SARS. Briefly, the recombinant RBD protein (rRBD) was expressed in culture supernatant of mammalian 293T cells to obtain a correctly folded protein with proper conformation and high immunogenicity 6. The transfection of the recombinant plasmid encoding RBD to the cells was then performed using a calcium phosphate transfection method 6,10 with some modifications. Compared with the lipid transfection method 11,12, this modified calcium phosphate transfection method is cheaper, easier to handle, and has the potential to reach high efficacy once a transfection complex with suitable size and shape is formed 13,14. Finally, a SARS pseudovirus neutralization assay was introduced in the protocol and used to detect the neutralizing activity of sera of mice vaccinated with rRBD protein. This assay is relatively safe, does not involve an infectious SARS-CoV, and can be performed without the requirement of a biosafety-3 laboratory 15. The protocol described here can also be used to design and study recombinant subunit vaccines against other viruses with class I fusion proteins, for example, HIV, respiratory syncytial virus (RSV), Ebola virus, influenza virus, as well as Nipah and Handra viruses. In addition, the methods for generating a pseudovirus and subsequently establishing a pseudovirus neutralization assay can be applied to all these viruses.
Immunology, Issue 51, SARS, receptor-binding domain, subunit vaccines, immunization, neutralization detection
Play Button
Induction of Experimental Autoimmune Hypophysitis in SJL Mice
Authors: Melissa A. Landek-Salgado, Shey-Cherng Tzou, Hiroaki Kimura, Patrizio Caturegli.
Institutions: The Johns Hopkins University.
Autoimmune hypophysitis can be reproduced experimentally by the injection of pituitary proteins mixed with an adjuvant into susceptible mice1. Mouse models allow us to study how diseases unfold, often providing a good replica of the same processes occurring in humans. For some autoimmune diseases, like type 1A diabetes, there are models (the NOD mouse) that spontaneously develop a disease similar to the human counterpart. For many other autoimmune diseases, however, the model needs to be induced experimentally. A common approach in this regard is to inject the mouse with a dominant antigen derived from the organ being studied. For example, investigators interested in autoimmune thyroiditis inject mice with thyroglobulin2, and those interested in myasthenia gravis inject them with the acetylcholine receptor3. If the autoantigen for a particular autoimmune disease is not known, investigators inject a crude protein extract from the organ targeted by the autoimmune reaction. For autoimmune hypophysitis, the pathogenic autoantigen(s) remain to be identified4, and thus a crude pituitary protein preparation is used. In this video article we demonstrate how to induce experimental autoimmune hypophysitis in SJL mice.
Immunology, Issue 46, autoimmunity, hypophysitis, immunization, SJL mice, Freund's adjuvant
Play Button
Experimental Human Pneumococcal Carriage
Authors: Jenna F. Gritzfeld, Angie D. Wright, Andrea M. Collins, Shaun H. Pennington, Adam K.A. Wright, Aras Kadioglu, Daniela M. Ferreira, Stephen B. Gordon.
Institutions: Liverpool School of Tropical Medicine, University Hospital Trust, Comprehensive Local Research Network, Royal Liverpool and Broadgreen University Hospitals NHS Trust, University Hospitals of Leicester NHS Trust & University of Leicester, University of Liverpool .
Experimental human pneumococcal carriage (EHPC) is scientifically important because nasopharyngeal carriage of Streptococcus pneumoniae is both the major source of transmission and the prerequisite of invasive disease. A model of carriage will allow accurate determination of the immunological correlates of protection, the immunizing effect of carriage and the effect of host pressure on the pathogen in the nasopharyngeal niche. Further, methods of carriage detection useful in epidemiologic studies, including vaccine studies, can be compared. Aim We aim to develop an EHPC platform that is a safe and useful reproducible method that could be used to down-select candidate novel pneumococcal vaccines with prevention of carriage as a surrogate of vaccine induced immunity. It will work towards testing of candidate vaccines and descriptions of the mechanisms underlying EHPC and vaccine protection from carriage1. Current conjugate vaccines against pneumococcus protect children from invasive disease although new vaccines are urgently needed as the current vaccine does not confer optimal protection against non-bacteraemic pneumonia and there has been evidence of serotype replacement with non-vaccine serotypes2-4. Method We inoculate with S. pneumoniae suspended in 100 μl of saline. Safety is a major factor in the development of the EHPC model and is achieved through intensive volunteer screening and monitoring. A safety committee consisting of clinicians and scientists that are independent from the study provides objective feedback on a weekly basis. The bacterial inoculum is standardized and requires that no animal products are inoculated into volunteers (vegetable-based media and saline). The doses required for colonization (104-105) are much lower than those used in animal models (107)5. Detecting pneumococcal carriage is enhanced by a high volume (ideally >10 ml) nasal wash that is relatively mucus free. This protocol will deal with the most important parts of the protocol in turn. These are (a) volunteer selection, (b) pneumococcal inoculum preparation, (c) inoculation, (d) follow-up and (e) carriage detection. Results Our current protocol has been safe in over 100 volunteers at a range of doses using two different bacterial serotypes6. A dose ranging study using S. pneumoniae 6B and 23F is currently being conducted to determine the optimal inoculation dose for 50% carriage. A predicted 50% rate of carriage will allow the EHPC model to have high sensitivity for vaccine efficacy with small study numbers.
Infection, Issue 72, Medicine, Immmunology, Microbiology, Infectious Diseases, Anatomy, Physiology, Biomedical Engineering, Streptococcus pneumoniae, carriage, nasal wash, inoculation, human, vaccine studies, pneumonia, volunteer selection, clinical
Play Button
Following in Real Time the Impact of Pneumococcal Virulence Factors in an Acute Mouse Pneumonia Model Using Bioluminescent Bacteria
Authors: Malek Saleh, Mohammed R. Abdullah, Christian Schulz, Thomas Kohler, Thomas Pribyl, Inga Jensch, Sven Hammerschmidt.
Institutions: University of Greifswald.
Pneumonia is one of the major health care problems in developing and industrialized countries and is associated with considerable morbidity and mortality. Despite advances in knowledge of this illness, the availability of intensive care units (ICU), and the use of potent antimicrobial agents and effective vaccines, the mortality rates remain high1. Streptococcus pneumoniae is the leading pathogen of community-acquired pneumonia (CAP) and one of the most common causes of bacteremia in humans. This pathogen is equipped with an armamentarium of surface-exposed adhesins and virulence factors contributing to pneumonia and invasive pneumococcal disease (IPD). The assessment of the in vivo role of bacterial fitness or virulence factors is of utmost importance to unravel S. pneumoniae pathogenicity mechanisms. Murine models of pneumonia, bacteremia, and meningitis are being used to determine the impact of pneumococcal factors at different stages of the infection. Here we describe a protocol to monitor in real-time pneumococcal dissemination in mice after intranasal or intraperitoneal infections with bioluminescent bacteria. The results show the multiplication and dissemination of pneumococci in the lower respiratory tract and blood, which can be visualized and evaluated using an imaging system and the accompanying analysis software.
Infection, Issue 84, Gram-Positive Bacteria, Streptococcus pneumoniae, Pneumonia, Bacterial, Respiratory Tract Infections, animal models, community-acquired pneumonia, invasive pneumococcal diseases, Pneumococci, bioimaging, virulence factor, dissemination, bioluminescence, IVIS Spectrum
Play Button
Handling of the Cotton Rat in Studies for the Pre-clinical Evaluation of Oncolytic Viruses
Authors: Breanne Cuddington, Meghan Verschoor, Karen Mossman.
Institutions: McMaster University.
Oncolytic viruses are a novel anticancer therapy with the ability to target tumor cells, while leaving healthy cells intact. For this strategy to be successful, recent studies have shown that involvement of the host immune system is essential. Therefore, oncolytic virotherapy should be evaluated within the context of an immunocompetent model. Furthermore, the study of antitumor therapies in tolerized animal models may better recapitulate results seen in clinical trials. Cotton rats, commonly used to study respiratory viruses, are an attractive model to study oncolytic virotherapy as syngeneic models of mammary carcinoma and osteosarcoma are well established. However, there is a lack of published information on the proper handling procedure for these highly excitable rodents. The handling and capture approach outlined minimizes animal stress to facilitate experimentation. This technique hinges upon the ability of the researcher to keep calm during handling and perform procedures in a timely fashion. Finally, we describe how to prepare cotton rat mammary tumor cells for consistent subcutaneous tumor formation, and how to perform intratumoral and intraperitoneal injections. These methods can be applied to a wide range of studies furthering the development of the cotton rat as a relevant pre-clinical model to study antitumor therapy.
Virology, Issue 93, cotton rat, oncolytic virus, animal handling, bovine herpesvirus type 1
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
Play Button
Assessment of Morphine-induced Hyperalgesia and Analgesic Tolerance in Mice Using Thermal and Mechanical Nociceptive Modalities
Authors: Khadija Elhabazi, Safia Ayachi, Brigitte Ilien, Frédéric Simonin.
Institutions: Université de Strasbourg.
Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a methodological approach for inducing, recording and quantifying morphine-induced hyperalgesia as well as for evidencing analgesic tolerance, using the tail-immersion and tail pressure tests in wild-type mice. As shown in the video, the protocol is divided into five sequential steps. Handling and habituation phases allow a safe determination of the basal nociceptive response of the animals. Chronic morphine administration induces significant hyperalgesia as shown by an increase in both thermal and mechanical sensitivity, whereas the comparison of analgesia time-courses after acute or repeated morphine treatment clearly indicates the development of tolerance manifested by a decline in analgesic response amplitude. This protocol may be similarly adapted to genetically modified mice in order to evaluate the role of individual genes in the modulation of nociception and morphine analgesia. It also provides a model system to investigate the effectiveness of potential therapeutic agents to improve opiate analgesic efficacy.
Neuroscience, Issue 89, mice, nociception, tail immersion test, tail pressure test, morphine, analgesia, opioid-induced hyperalgesia, tolerance
Play Button
Examining the Role of Nasopharyngeal-associated Lymphoreticular Tissue (NALT) in Mouse Responses to Vaccines
Authors: Emily D. Cisney, Stefan Fernandez, Shannan I. Hall, Gale A. Krietz, Robert G. Ulrich.
Institutions: U.S. Army Medical Research Institute of Infectious Diseases.
The nasopharyngeal-associated lymphoreticular tissues (NALT) found in humans, rodents, and other mammals, contribute to immunity in the nasal sinuses1-3. The NALT are two parallel bell-shaped structures located in the nasal passages above the hard palate, and are usually considered to be secondary components of the mucosal-associated lymphoid system4-6. Located within the NALT are discrete compartments of B and T lymphocytes interspersed with antigen-presenting dendritic cells4,7,8. These cells are surrounded by an epithelial cell layer intercalated with M-cells that are responsible for antigen retrieval from the mucosal surfaces of the air passages9,10. Naive lymphocytes circulating through the NALT are poised to respond to first encounters with respiratory pathogens7. While NALT disappear in humans by the age of two years, the Waldeyer's Ring and similarly structured lymphatic organs continue to persist throughout life6. In contrast to humans, mice retain NALT throughout life, thus providing a convenient animal model for the study of immune responses originating within the nasal sinuses11. Cultures of single-cell suspensions of NALT are not practical due to low yields of mononuclear cells. However, NALT biology can be examined by ex vivo culturing of the intact organ, and this method has the additional advantage of maintaining the natural tissue structure. For in vivo studies, genetic knockout models presenting defects limited to NALT are not currently available due to a poor understanding of the developmental pathway. For example, while lymphotoxin-α knockout mice have atrophied NALT, the Peyer's patches, peripheral lymph nodes, follicular dendritic cells and other lymphoid tissues are also altered in these genetically manipulated mice12,13. As an alternative to gene knockout mice, surgical ablation permanently eliminates NALT from the nasal passage without affecting other tissues. The resulting mouse model has been used to establish relationships between NALT and immune responses to vaccines1,3. Serial collection of serum, saliva, nasal washes and vaginal secretions is necessary for establishing the basis of host responses to vaccination, while immune responses originating directly from NALT can be confirmed by tissue culture. The following procedures outline the surgeries, tissue culture and sample collection necessary to examine local and systemic humoral immune responses to intranasal (IN) vaccination.
Infectious Diseases, Issue 66, Immunology, nasal vaccination, nasopharyngeal-associated lymphoreticular tissue, mouse, antibody, mucosal immunity, NALT ablation, NALT culture, NALT-deficient mice
Play Button
The Use of Fluorescent Target Arrays for Assessment of T Cell Responses In vivo
Authors: Benjamin J. C. Quah, Danushka K. Wijesundara, Charani Ranasinghe, Christopher R. Parish.
Institutions: Australian National University.
The ability to monitor T cell responses in vivo is important for the development of our understanding of the immune response and the design of immunotherapies. Here we describe the use of fluorescent target array (FTA) technology, which utilizes vital dyes such as carboxyfluorescein succinimidyl ester (CFSE), violet laser excitable dyes (CellTrace Violet: CTV) and red laser excitable dyes (Cell Proliferation Dye eFluor 670: CPD) to combinatorially label mouse lymphocytes into >250 discernable fluorescent cell clusters. Cell clusters within these FTAs can be pulsed with major histocompatibility (MHC) class-I and MHC class-II binding peptides and thereby act as target cells for CD8+ and CD4+ T cells, respectively. These FTA cells remain viable and fully functional, and can therefore be administered into mice to allow assessment of CD8+ T cell-mediated killing of FTA target cells and CD4+ T cell-meditated help of FTA B cell target cells in real time in vivo by flow cytometry. Since >250 target cells can be assessed at once, the technique allows the monitoring of T cell responses against several antigen epitopes at several concentrations and in multiple replicates. As such, the technique can measure T cell responses at both a quantitative (e.g. the cumulative magnitude of the response) and a qualitative (e.g. functional avidity and epitope-cross reactivity of the response) level. Herein, we describe how these FTAs are constructed and give an example of how they can be applied to assess T cell responses induced by a recombinant pox virus vaccine.
Immunology, Issue 88, Investigative Techniques, T cell response, Flow Cytometry, Multiparameter, CTL assay in vivo, carboxyfluorescein succinimidyl ester (CFSE), CellTrace Violet (CTV), Cell Proliferation Dye eFluor 670 (CPD)
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
Play Button
Generation of a Novel Dendritic-cell Vaccine Using Melanoma and Squamous Cancer Stem Cells
Authors: Qiao Li, Lin Lu, Huimin Tao, Carolyn Xue, Seagal Teitz-Tennenbaum, John H. Owen, Jeffrey S Moyer, Mark E.P. Prince, Alfred E. Chang, Max S. Wicha.
Institutions: University of Michigan, University of Michigan, University of Michigan.
We identified cancer stem cell (CSC)-enriched populations from murine melanoma D5 syngeneic to C57BL/6 mice and the squamous cancer SCC7 syngeneic to C3H mice using ALDEFLUOR/ALDH as a marker, and tested their immunogenicity using the cell lysate as a source of antigens to pulse dendritic cells (DCs). DCs pulsed with ALDHhigh CSC lysates induced significantly higher protective antitumor immunity than DCs pulsed with the lysates of unsorted whole tumor cell lysates in both models and in a lung metastasis setting and a s.c. tumor growth setting, respectively. This phenomenon was due to CSC vaccine-induced humoral as well as cellular anti-CSC responses. In particular, splenocytes isolated from the host subjected to CSC-DC vaccine produced significantly higher amount of IFNγ and GM-CSF than splenocytes isolated from the host subjected to unsorted tumor cell lysate pulsed-DC vaccine. These results support the efforts to develop an autologous CSC-based therapeutic vaccine for clinical use in an adjuvant setting.
Cancer Biology, Issue 83, Cancer stem cell (CSC), Dendritic cells (DC), Vaccine, Cancer immunotherapy, antitumor immunity, aldehyde dehydrogenase
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
Play Button
Trans-vivo Delayed Type Hypersensitivity Assay for Antigen Specific Regulation
Authors: Ewa Jankowska-Gan, Subramanya Hegde, William J. Burlingham.
Institutions: University of Wisconsin-Madison, School of Medicine and Public Health.
Delayed-type hypersensitivity response (DTH) is a rapid in vivo manifestation of T cell-dependent immune response to a foreign antigen (Ag) that the host immune system has experienced in the recent past. DTH reactions are often divided into a sensitization phase, referring to the initial antigen experience, and a challenge phase, which usually follows several days after sensitization. The lack of a delayed-type hypersensitivity response to a recall Ag demonstrated by skin testing is often regarded as an evidence of anergy. The traditional DTH assay has been effectively used in diagnosing many microbial infections. Despite sharing similar immune features such as lymphocyte infiltration, edema, and tissue necrosis, the direct DTH is not a feasible diagnostic technique in transplant patients because of the possibility of direct injection resulting in sensitization to donor antigens and graft loss. To avoid this problem, the human-to-mouse "trans-vivo" DTH assay was developed 1,2. This test is essentially a transfer DTH assay, in which human peripheral blood mononuclear cells (PBMCs) and specific antigens were injected subcutaneously into the pinnae or footpad of a naïve mouse and DTH-like swelling is measured after 18-24 hr 3. The antigen presentation by human antigen presenting cells such as macrophages or DCs to T cells in highly vascular mouse tissue triggers the inflammatory cascade and attracts mouse immune cells resulting in swelling responses. The response is antigen-specific and requires prior antigen sensitization. A positive donor-reactive DTH response in the Tv-DTH assay reflects that the transplant patient has developed a pro-inflammatory immune disposition toward graft alloantigens. The most important feature of this assay is that it can also be used to detect regulatory T cells, which cause bystander suppression. Bystander suppression of a DTH recall response in the presence of donor antigen is characteristic of transplant recipients with accepted allografts 2,4-14. The monitoring of transplant recipients for alloreactivity and regulation by Tv-DTH may identify a subset of patients who could benefit from reduction of immunosuppression without elevated risk of rejection or deteriorating renal function. A promising area is the application of the Tv-DTH assay in monitoring of autoimmunity15,16 and also in tumor immunology 17.
Immunology, Issue 75, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Surgery, Trans-vivo delayed type hypersensitivity, Tv-DTH, Donor antigen, Antigen-specific regulation, peripheral blood mononuclear cells, PBMC, T regulatory cells, severe combined immunodeficient mice, SCID, T cells, lymphocytes, inflammation, injection, mouse, animal model
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Intra-lymph Node Injection of Biodegradable Polymer Particles
Authors: James I. Andorko, Lisa H. Tostanoski, Eduardo Solano, Maryam Mukhamedova, Christopher M. Jewell.
Institutions: University of Maryland, College Park.
Generation of adaptive immune response relies on efficient drainage or trafficking of antigen to lymph nodes for processing and presentation of these foreign molecules to T and B lymphocytes. Lymph nodes have thus become critical targets for new vaccines and immunotherapies. A recent strategy for targeting these tissues is direct lymph node injection of soluble vaccine components, and clinical trials involving this technique have been promising. Several biomaterial strategies have also been investigated to improve lymph node targeting, for example, tuning particle size for optimal drainage of biomaterial vaccine particles. In this paper we present a new method that combines direct lymph node injection with biodegradable polymer particles that can be laden with antigen, adjuvant, or other vaccine components. In this method polymeric microparticles or nanoparticles are synthesized by a modified double emulsion protocol incorporating lipid stabilizers. Particle properties (e.g. size, cargo loading) are confirmed by laser diffraction and fluorescent microscopy, respectively. Mouse lymph nodes are then identified by peripheral injection of a nontoxic tracer dye that allows visualization of the target injection site and subsequent deposition of polymer particles in lymph nodes. This technique allows direct control over the doses and combinations of biomaterials and vaccine components delivered to lymph nodes and could be harnessed in the development of new biomaterial-based vaccines.
Bioengineering, Issue 83, biomaterial, immunology, microparticle, nanoparticle, vaccine, adjuvant, lymph node, targeting, polymer
Play Button
Preparation of Tumor Antigen-loaded Mature Dendritic Cells for Immunotherapy
Authors: Rachel Lubong Sabado, Elizabeth Miller, Meredith Spadaccia, Isabelita Vengco, Farah Hasan, Nina Bhardwaj.
Institutions: NYU Langone Medical Center, NYU Langone Medical Center.
While clinical studies have established that antigen-loaded DC vaccines are safe and promising therapy for tumors 1, their clinical efficacy remains to be established. The method described below, prepared in accordance with Good Manufacturing Process (GMP) guidelines, is an optimization of the most common ex vivo preparation method for generating large numbers of DCs for clinical studies 2. Our method utilizes the synthetic TLR 3 agonist Polyinosinic-Polycytidylic Acid-poly-L-lysine Carboxymethylcellulose (Poly-ICLC) to stimulate the DCs. Our previous study established that Poly-ICLC is the most potent individual maturation stimulus for human DCs as assessed by an upregulation of CD83 and CD86, induction of interleukin-12 (IL-12), tumor necrosis factor (TNF), interferon gamma-induced protein 10 (IP-10), interleukmin 1 (IL-1), and type I interferons (IFN), and minimal interleukin 10 (IL-10) production. DCs are differentiated from frozen peripheral blood mononuclear cells (PBMCs) obtained by leukapheresis. PBMCs are isolated by Ficoll gradient centrifugation and frozen in aliquots. On Day 1, PBMCs are thawed and plated onto tissue culture flasks to select for monocytes which adhere to the plastic surface after 1-2 hr incubation at 37 °C in the tissue culture incubator. After incubation, the lymphocytes are washed off and the adherent monocytes are cultured for 5 days in the presence of interleukin-4 (IL-4) and granulocyte macrophage-colony stimulating factor (GM-CSF) to differentiate to immature DCs. On Day 6, immature DCs are pulsed with the keyhole limpet hemocyanin (KLH) protein which serves as a control for the quality of the vaccine and may boost the immunogenicity of the vaccine 3. The DCs are stimulated to mature, loaded with peptide antigens, and incubated overnight. On Day 7, the cells are washed, and frozen in 1 ml aliquots containing 4 - 20 x 106 cells using a controlled-rate freezer. Lot release testing for the batches of DCs is performed and must meet minimum specifications before they are injected into patients.
Cancer Biology, Issue 78, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Dendritic Cells, Immunotherapy, dendritic cell, immunotherapy, vaccine, cell, isolation, flow cytometry, cell culture, clinical techniques
Play Button
Induction and Monitoring of Adoptive Delayed-Type Hypersensitivity in Rats
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Delayed type hypersensitivity (DTH) is an inflammatory reaction mediated by CCR7- effector memory T lymphocytes that infiltrate the site of injection of an antigen against which the immune system has been primed. The inflammatory reaction is characterized by redness and swelling of the site of antigenic challenge. It is a convenient model to determine the in vivo efficacy of immunosuppressants. Cutaneous DTH can be induced either by adoptive transfer of antigen-specific T lymphocytes or by active immunization with an antigen, and subsequent intradermal challenge with the antigen to induce the inflammatory reaction in a given skin area. DTH responses can be induced to various antigens, for example ovalbumin, tuberculin, tetanus toxoid, or keyhole limpet hemocyanin. Such reactions can also be induced against autoantigen, for example to myelin basic protein (MBP) in rats with experimental autoimmune encephalomyelitis induced with MBP, an animal model for multiple sclerosis (1). Here we demonstrate how to induce an adoptive DTH reaction in Lewis rats. We will first stimulate ovalbumin-specific T cells in vitro and inject these activated cells intraperitoneally to naive rats. After allowing the cells to equilibrate in vivo for 2 days, we will challenge the rats with ovalbumin in the pinna of one ear, while the other ear wil receive saline. The inflammatory reaction will be visible 3-72 hours later and ear thickness will be measured as an indication of DTH severity.
Immunology, Issue 8, Rodent, Hypersensitivity, Mouse, Skin, Immune Reaction, Blood Draw, Serum, Video Protocol, Vaccination, Adjuvant
Play Button
Induction and Monitoring of Active Delayed Type Hypersensitivity (DTH) in Rats
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Delayed type hypersensitivity (DTH) is an inflammatory reaction mediated by CCR7- effector memory T lymphocytes that infiltrate the site of injection of an antigen against which the immune system has been primed. The inflammatory reaction is characterized by redness and swelling of the site of antigenic challenge. It is a convenient model to determine the in vivo efficacy of immunosuppressants. Cutaneous DTH can be induced either by adoptive transfer of antigen-specific T lymphocytes or by active immunization with an antigen, and subsequent intradermal challenge with the antigen to induce the inflammatory reaction in a given skin area. DTH responses can be induced to various antigens, for example ovalbumin, tuberculin, tetanus toxoid, or keyhole limpet hemocyanin (KLH). Here we demonstrate how to induce an active DTH reaction in Lewis rats. We will first prepare a water-in-oil emulsion of KLH, our antigen of interest, in complete Freund's adjuvant and inject this emulsion subcutaneously to rats. This will prime the immune system to develop memory T cells directed to KLH. Seven days later we will challenge the rats intradermally on the back with KLH on one side and with ovalbumin, an irrelevant antigen, on the other side. The inflammatory reaction will be visible 16-72 hours later and the red and swollen area will be measured as an indication of DTH severity.
Cell Biology, Issue 6, Immunology, Immune Response, Inflammation, lymphocyte, inflammatory reaction, skin test, video protocol
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.