JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Comprehensive multiple molecular profile of epithelial mesenchymal transition in intrahepatic cholangiocarcinoma patients.
PUBLISHED: 01-01-2014
The aim of this study is to investigate the expression profile of multiple epithelial mesenchymal transition (EMT)-related molecules in intrahepatic cholangiocarcinoma (ICC) and the related prognostic significance.
Authors: Huilin Huang, Yilin Xu, Chonghui Cheng.
Published: 10-09-2014
Alternative splicing plays a critical role in the epithelial-mesenchymal transition (EMT), an essential cellular program that occurs in various physiological and pathological processes. Here we describe a strategy to detect alternative splicing during EMT using an inducible EMT model by expressing the transcription repressor Twist. EMT is monitored by changes in cell morphology, loss of E-cadherin localization at cell-cell junctions, and the switched expression of EMT markers, such as loss of epithelial markers E-cadherin and γ-catenin and gain of mesenchymal markers N-cadherin and vimentin. Using isoform-specific primer sets, the alternative splicing of interested mRNAs are analyzed by quantitative RT-PCR. The production of corresponding protein isoforms is validated by immunoblotting assays. The method of detecting splice isoforms described here is also suitable for the study of alternative splicing in other biological processes.
18 Related JoVE Articles!
Play Button
Heterogeneity Mapping of Protein Expression in Tumors using Quantitative Immunofluorescence
Authors: Dana Faratian, Jason Christiansen, Mark Gustavson, Christine Jones, Christopher Scott, InHwa Um, David J. Harrison.
Institutions: University of Edinburgh, HistoRx Inc..
Morphologic heterogeneity within an individual tumor is well-recognized by histopathologists in surgical practice. While this often takes the form of areas of distinct differentiation into recognized histological subtypes, or different pathological grade, often there are more subtle differences in phenotype which defy accurate classification (Figure 1). Ultimately, since morphology is dictated by the underlying molecular phenotype, areas with visible differences are likely to be accompanied by differences in the expression of proteins which orchestrate cellular function and behavior, and therefore, appearance. The significance of visible and invisible (molecular) heterogeneity for prognosis is unknown, but recent evidence suggests that, at least at the genetic level, heterogeneity exists in the primary tumor1,2, and some of these sub-clones give rise to metastatic (and therefore lethal) disease. Moreover, some proteins are measured as biomarkers because they are the targets of therapy (for instance ER and HER2 for tamoxifen and trastuzumab (Herceptin), respectively). If these proteins show variable expression within a tumor then therapeutic responses may also be variable. The widely used histopathologic scoring schemes for immunohistochemistry either ignore, or numerically homogenize the quantification of protein expression. Similarly, in destructive techniques, where the tumor samples are homogenized (such as gene expression profiling), quantitative information can be elucidated, but spatial information is lost. Genetic heterogeneity mapping approaches in pancreatic cancer have relied either on generation of a single cell suspension3, or on macrodissection4. A recent study has used quantum dots in order to map morphologic and molecular heterogeneity in prostate cancer tissue5, providing proof of principle that morphology and molecular mapping is feasible, but falling short of quantifying the heterogeneity. Since immunohistochemistry is, at best, only semi-quantitative and subject to intra- and inter-observer bias, more sensitive and quantitative methodologies are required in order to accurately map and quantify tissue heterogeneity in situ. We have developed and applied an experimental and statistical methodology in order to systematically quantify the heterogeneity of protein expression in whole tissue sections of tumors, based on the Automated QUantitative Analysis (AQUA) system6. Tissue sections are labeled with specific antibodies directed against cytokeratins and targets of interest, coupled to fluorophore-labeled secondary antibodies. Slides are imaged using a whole-slide fluorescence scanner. Images are subdivided into hundreds to thousands of tiles, and each tile is then assigned an AQUA score which is a measure of protein concentration within the epithelial (tumor) component of the tissue. Heatmaps are generated to represent tissue expression of the proteins and a heterogeneity score assigned, using a statistical measure of heterogeneity originally used in ecology, based on the Simpson's biodiversity index7. To date there have been no attempts to systematically map and quantify this variability in tandem with protein expression, in histological preparations. Here, we illustrate the first use of the method applied to ER and HER2 biomarker expression in ovarian cancer. Using this method paves the way for analyzing heterogeneity as an independent variable in studies of biomarker expression in translational studies, in order to establish the significance of heterogeneity in prognosis and prediction of responses to therapy.
Medicine, Issue 56, quantitative immunofluorescence, heterogeneity, cancer, biomarker, targeted therapy, immunohistochemistry, proteomics, histopathology
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
Play Button
Isolation of Neonatal Extrahepatic Cholangiocytes
Authors: Sara Karjoo, Rebecca G. Wells.
Institutions: The Children's Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania.
The intra and extrahepatic bile ducts of the liver are developmentally distinct, and may be differentially affected by certain diseases. However, differences between intra and extrahepatic cholangiocytes, and between neonatal and adult cells, are not well understood. Methods for the isolation of cholangiocytes from intrahepatic bile ducts are well established1-4. Isolation of extrahepatic ductal cells, especially from the neonate, has not yet been described, although this would be of great benefit in understanding the differences between distinct cholangiocyte populations and in studying diseases such as biliary atresia that appear to target the extrahepatic ducts. Described here is an optimized technique to isolate both neonatal and adult mouse extrahepatic bile duct cells. This technique yields a pure cell population with minimal contamination from mesenchymal cells like fibroblasts. This method is based on the removal of the extrahepatic ducts and gallbladder, followed by meticulous dissection and scraping to remove fat and fibroblast layers. Structures are embedded in thick layers of collagen and cultured for approximately 3 weeks to allow outgrowth of cholangiocytes in monolayers, which can then be trypsinized and re plated for experimental use.
Medicine, Issue 88, Bile Ducts, Bile Ducts, Extrahepatic, Common Bile Duct, Bile Duct Diseases, Cell culture, bile duct, biliary atresia, Liver, gallbladder, fibrosis
Play Button
Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology
Authors: Dustin P. Jones, William Hanna, Hamid El-Hamidi, Jonathan P. Celli.
Institutions: University of Massachusetts Boston.
The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic screening assays or molecular imaging to gain new insights into impact of treatments or biochemical stimuli on the mechanical microenvironment.
Bioengineering, Issue 88, viscoelasticity, mechanobiology, extracellular matrix (ECM), matrix remodeling, 3D tumor models, tumor microenvironment, stroma, matrix metalloprotease (MMP), epithelial-mesenchymal transition (EMT)
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Cell Surface Marker Mediated Purification of iPS Cell Intermediates from a Reprogrammable Mouse Model
Authors: Christian M. Nefzger, Sara Alaei, Anja S. Knaupp, Melissa L. Holmes, Jose M. Polo.
Institutions: Monash University, Monash University.
Mature cells can be reprogrammed to a pluripotent state. These so called induced pluripotent stem (iPS) cells are able to give rise to all cell types of the body and consequently have vast potential for regenerative medicine applications. Traditionally iPS cells are generated by viral introduction of transcription factors Oct-4, Klf-4, Sox-2, and c-Myc (OKSM) into fibroblasts. However, reprogramming is an inefficient process with only 0.1-1% of cells reverting towards a pluripotent state, making it difficult to study the reprogramming mechanism. A proven methodology that has allowed the study of the reprogramming process is to separate the rare intermediates of the reaction from the refractory bulk population. In the case of mouse embryonic fibroblasts (MEFs), we and others have previously shown that reprogramming cells undergo a distinct series of changes in the expression profile of cell surface markers which can be used for the separation of these cells. During the early stages of OKSM expression successfully reprogramming cells lose fibroblast identity marker Thy-1.2 and up-regulate pluripotency associated marker Ssea-1. The final transition of a subset of Ssea-1 positive cells towards the pluripotent state is marked by the expression of Epcam during the late stages of reprogramming. Here we provide a detailed description of the methodology used to isolate reprogramming intermediates from cultures of reprogramming MEFs. In order to increase experimental reproducibility we use a reprogrammable mouse strain that has been engineered to express a transcriptional transactivator (m2rtTA) under control of the Rosa26 locus and OKSM under control of a doxycycline responsive promoter. Cells isolated from these mice are isogenic and express OKSM homogenously upon addition of doxycycline. We describe in detail the establishment of the reprogrammable mice, the derivation of MEFs, and the subsequent isolation of intermediates during reprogramming into iPS cells via fluorescent activated cells sorting (FACS).
Stem Cell Biology, Issue 91, Induced pluripotent stem cells; reprogramming; intermediates; fluorescent activated cells sorting; cell surface marker; reprogrammable mouse model; derivation of mouse embryonic fibroblasts
Play Button
Generation of Subcutaneous and Intrahepatic Human Hepatocellular Carcinoma Xenografts in Immunodeficient Mice
Authors: Sharif U. Ahmed, Murtuza Zair, Kui Chen, Matthew Iu, Feng He, Oyedele Adeyi, Sean P. Cleary, Anand Ghanekar.
Institutions: University Health Network, University Health Network, University Health Network.
In vivo experimental models of hepatocellular carcinoma (HCC) that recapitulate the human disease provide a valuable platform for research into disease pathophysiology and for the preclinical evaluation of novel therapies. We present a variety of methods to generate subcutaneous or orthotopic human HCC xenografts in immunodeficient mice that could be utilized in a variety of research applications. With a focus on the use of primary tumor tissue from patients undergoing surgical resection as a starting point, we describe the preparation of cell suspensions or tumor fragments for xenografting. We describe specific techniques to xenograft these tissues i) subcutaneously; or ii) intrahepatically, either by direct implantation of tumor cells or fragments into the liver, or indirectly by injection of cells into the mouse spleen. We also describe the use of partial resection of the native mouse liver at the time of xenografting as a strategy to induce a state of active liver regeneration in the recipient mouse that may facilitate the intrahepatic engraftment of primary human tumor cells. The expected results of these techniques are illustrated. The protocols described have been validated using primary human HCC samples and xenografts, which typically perform less robustly than the well-established human HCC cell lines that are widely used and frequently cited in the literature. In comparison with cell lines, we discuss factors which may contribute to the relatively low chance of primary HCC engraftment in xenotransplantation models and comment on technical issues that may influence the kinetics of xenograft growth. We also suggest methods that should be applied to ensure that xenografts obtained accurately resemble parent HCC tissues.
Medicine, Issue 79, Liver Neoplasms, Hepatectomy, animal models, hepatocellular carcinoma, xenograft, cancer, liver, subcutaneous, intrahepatic, orthotopic, mouse, human, immunodeficient
Play Button
A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies
Authors: Mukti R. Parikh, Andrew R. Belch, Linda M Pilarski, Julia Kirshner.
Institutions: Purdue University, University of Alberta, Cross Cancer Institute.
Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions.
Medicine, Issue 85, extracellular matrix, 3D culture, bone marrow, hematological malignancies, primary cell culture, tumor microenvironment
Play Button
Time-lapse Imaging of Primary Preneoplastic Mammary Epithelial Cells Derived from Genetically Engineered Mouse Models of Breast Cancer
Authors: Rebecca E. Nakles, Sarah L. Millman, M. Carla Cabrera, Peter Johnson, Susette Mueller, Philipp S. Hoppe, Timm Schroeder, Priscilla A. Furth.
Institutions: Georgetown University, Georgetown University, Helmholtz Zentrum München - German Research Center for Environmental Health, Georgetown University, Dankook University.
Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without palpable tumor. Glands are carefully resected with clear separation from adjacent muscle, lymph nodes are removed, and single-cell suspensions of enriched mammary epithelial cells are generated by mincing mammary tissue followed by enzymatic dissociation and filtration. Single-cell suspensions are plated and placed directly under a microscope within an incubator chamber for live-cell imaging. Sixteen 650 μm x 700 μm fields in a 4x4 configuration from each well of a 6-well plate are imaged every 15 min for 5 days. Time-lapse images are examined directly to measure cellular behaviors that can include mechanism and frequency of cell colony formation within the first 24 hr of plating the cells (aggregation versus cell proliferation), incidence of apoptosis, and phasing of morphological changes. Single-cell tracking is used to generate cell fate maps for measurement of individual cell lifetimes and investigation of cell division patterns. Quantitative data are statistically analyzed to assess for significant differences in behavior correlated with specific genetic lesions.
Cancer Biology, Issue 72, Medicine, Cellular Biology, Molecular Biology, Anatomy, Physiology, Oncology, Mammary Glands, Animal, Epithelial Cells, Mice, Genetically Modified, Primary Cell Culture, Time-Lapse Imaging, Early Detection of Cancer, Models, Genetic, primary cell culture, preneoplastic mammary epithelial cells, genetically engineered mice, time-lapse imaging, BRCA1, animal model
Play Button
Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples
Authors: Chen Lu, Joshua L. Wonsidler, Jianwei Li, Yanming Du, Timothy Block, Brian Haab, Songming Chen.
Institutions: Institute for Hepatitis and Virus Research, Thomas Jefferson University , Drexel University College of Medicine, Van Andel Research Institute, Serome Biosciences Inc..
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies the physical, chemical, and biological properties of a protein, and plays a fundamental role in various biological processes1-6. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases 7-12. In fact, most current cancer biomarkers, such as the L3 fraction of α-1 fetoprotein (AFP) for hepatocellular carcinoma 13-15, and CA199 for pancreatic cancer 16, 17 are all aberrant glycan moieties on glycoproteins. However, methods to study protein glycosylation have been complicated, and not suitable for routine laboratory and clinical settings. Chen et al. has recently invented a chemically blocked antibody microarray with a glycan-binding protein (GBP) detection method for high-throughput and multiplexed profile glycosylation of native glycoproteins in a complex sample 18. In this affinity based microarray method, multiple immobilized glycoprotein-specific antibodies capture and isolate glycoproteins from the complex mixture directly on the microarray slide, and the glycans on each individual captured protein are measured by GBPs. Because all normal antibodies contain N-glycans which could be recognized by most GBPs, the critical step of this method is to chemically block the glycans on the antibodies from binding to GBP. In the procedure, the cis-diol groups of the glycans on the antibodies were first oxidized to aldehyde groups by using NaIO4 in sodium acetate buffer avoiding light. The aldehyde groups were then conjugated to the hydrazide group of a cross-linker, 4-(4-N-MaleimidoPhenyl)butyric acid Hydrazide HCl (MPBH), followed by the conjugation of a dipeptide, Cys-Gly, to the maleimide group of the MPBH. Thus, the cis-diol groups on glycans of antibodies were converted into bulky none hydroxyl groups, which hindered the lectins and other GBPs bindings to the capture antibodies. This blocking procedure makes the GBPs and lectins bind only to the glycans of captured proteins. After this chemically blocking, serum samples were incubated with the antibody microarray, followed by the glycans detection by using different biotinylated lectins and GBPs, and visualized with Cy3-streptavidin. The parallel use of an antibody panel and multiple lectin probing provides discrete glycosylation profiles of multiple proteins in a given sample 18-20. This method has been used successfully in multiple different labs 1, 7, 13, 19-31. However, stability of MPBH and Cys-Gly, complicated and extended procedure in this method affect the reproducibility, effectiveness and efficiency of the method. In this new protocol, we replaced both MPBH and Cys-Gly with one much more stable reagent glutamic acid hydrazide (Glu-hydrazide), which significantly improved the reproducibility of the method, simplified and shorten the whole procedure so that the it can be completed within one working day. In this new protocol, we describe the detailed procedure of the protocol which can be readily adopted by normal labs for routine protein glycosylation study and techniques which are necessary to obtain reproducible and repeatable results.
Molecular Biology, Issue 63, Glycoproteins, glycan-binding protein, specific protein glycosylation, multiplexed high-throughput glycan blocked antibody microarray
Play Button
Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing
Authors: Jerry Zhou, Larissa Belov, Michael J. Solomon, Charles Chan, Stephen J. Clarke, Richard I. Christopherson.
Institutions: University of Sydney, Royal Prince Alfred Hospital, Department of Anatomical Pathology, Concord Repatriation General Hospital.
The current prognosis and classification of CRC relies on staging systems that integrate histopathologic and clinical findings. However, in the majority of CRC cases, cell dysfunction is the result of numerous mutations that modify protein expression and post-translational modification1. A number of cell surface antigens, including cluster of differentiation (CD) antigens, have been identified as potential prognostic or metastatic biomarkers in CRC. These antigens make ideal biomarkers as their expression often changes with tumour progression or interactions with other cell types, such as tumour-infiltrating lymphocytes (TILs) and tumour-associated macrophages (TAMs). The use of immunohistochemistry (IHC) for cancer sub-classification and prognostication is well established for some tumour types2,3. However, no single ‘marker’ has shown prognostic significance greater than clinico-pathological staging or gained wide acceptance for use in routine pathology reporting of all CRC cases. A more recent approach to prognostic stratification of disease phenotypes relies on surface protein profiles using multiple 'markers'. While expression profiling of tumours using proteomic techniques such as iTRAQ is a powerful tool for the discovery of biomarkers4, it is not optimal for routine use in diagnostic laboratories and cannot distinguish different cell types in a mixed population. In addition, large amounts of tumour tissue are required for the profiling of purified plasma membrane glycoproteins by these methods. In this video we described a simple method for surface proteome profiling of viable cells from disaggregated CRC samples using a DotScan CRC antibody microarray. The 122-antibody microarray consists of a standard 82-antibody region recognizing a range of lineage-specific leukocyte markers, adhesion molecules, receptors and markers of inflammation and immune response5, together with a satellite region for detection of 40 potentially prognostic markers for CRC. Cells are captured only on antibodies for which they express the corresponding antigen. The cell density per dot, determined by optical scanning, reflects the proportion of cells expressing that antigen, the level of expression of the antigen and affinity of the antibody6. For CRC tissue or normal intestinal mucosa, optical scans reflect the immunophenotype of mixed populations of cells. Fluorescence multiplexing can then be used to profile selected sub-populations of cells of interest captured on the array. For example, Alexa 647-anti-epithelial cell adhesion molecule (EpCAM; CD326), is a pan-epithelial differentiation antigen that was used to detect CRC cells and also epithelial cells of normal intestinal mucosa, while Phycoerythrin-anti-CD3, was used to detect infiltrating T-cells7. The DotScan CRC microarray should be the prototype for a diagnostic alternative to the anatomically-based CRC staging system.
Immunology, Issue 55, colorectal cancer, leukocytes, antibody microarray, multiplexing, fluorescence, CD antigens
Play Button
Isolation of CD133+ Liver Stem Cells for Clonal Expansion
Authors: C. Bart Rountree, Wei Ding, Hein Dang, Colleen VanKirk, Gay M. Crooks.
Institutions: Pennsylvania State College of Medicine, Pennsylvania State College of Medicine, University of California Los Angeles, School of Medicine.
Liver stem cell, or oval cells, proliferate during chronic liver injury, and are proposed to differentiate into both hepatocytes and cholangiocytes. In addition, liver stem cells are hypothesized to be the precursors for a subset of liver cancer, Hepatocellular carcinoma. One of the primary challenges to stem cell work in any solid organ like the liver is the isolation of a rare population of cells for detailed analysis. For example, the vast majority of cells in the liver are hepatocytes (parenchymal fraction), which are significantly larger than non-parenchymal cells. By enriching the specific cellular compartments of the liver (i.e. parenchymal and non-parenchymal fractions), and selecting for CD45 negative cells, we are able to enrich the starting population of stem cells by over 600-fold.The proceduresdetailed in this report allow for a relatively rare population of cells from a solid organ to be sorted efficiently. This process can be utilized to isolateliver stem cells from normal murine liver as well as chronic liver injury models, which demonstrate increased liver stem cell proliferation. This method has clear advantages over standard immunohistochemistry of frozen or formalin fixed liver as functional studies using live cells can be performed after initial co-localization experiments. To accomplish the procedure outlined in this report, a working relationship with a research based flow-cytometry core is strongly encouraged as the details of FACS isolation are highly dependent on specialized instrumentation and a strong working knowledge of basic flow-cytometry procedures. The specific goal of this process is to isolate a population of liver stem cells that can be clonally expanded in vitro.
Developmental Biology, Issue 56, CD133, liver stem cell, oval cell, liver cancer stem cell, stem cell, cell isolation, non-parenchymal fraction of liver, flow cytometry
Play Button
Laser Ablation of the Zebrafish Pronephros to Study Renal Epithelial Regeneration
Authors: Corbin S. Johnson, Nicholas F. Holzemer, Rebecca A. Wingert.
Institutions: University of Notre Dame .
Acute kidney injury (AKI) is characterized by high mortality rates from deterioration of renal function over a period of hours or days that culminates in renal failure1. AKI can be caused by a number of factors including ischemia, drug-based toxicity, or obstructive injury1. This results in an inability to maintain fluid and electrolyte homeostasis. While AKI has been observed for decades, effective clinical therapies have yet to be developed. Intriguingly, some patients with AKI recover renal functions over time, a mysterious phenomenon that has been only rudimentally characterized1,2. Research using mammalian models of AKI has shown that ischemic or nephrotoxin-injured kidneys experience epithelial cell death in nephron tubules1,2, the functional units of the kidney that are made up of a series of specialized regions (segments) of epithelial cell types3. Within nephrons, epithelial cell death is highest in proximal tubule cells. There is evidence that suggests cell destruction is followed by dedifferentiation, proliferation, and migration of surrounding epithelial cells, which can regenerate the nephron entirely1,2. However, there are many unanswered questions about the mechanisms of renal epithelial regeneration, ranging from the signals that modulate these events to reasons for the wide variation of abilities among humans to regenerate injured kidneys. The larval zebrafish provides an excellent model to study kidney epithelial regeneration as its pronephric kidney is comprised of nephrons that are conserved with higher vertebrates including mammals4,5. The nephrons of zebrafish larvae can be visualized with fluorescence techniques because of the relative transparency of the young zebrafish6. This provides a unique opportunity to image cell and molecular changes in real-time, in contrast to mammalian models where nephrons are inaccessible because the kidneys are structurally complex systems internalized within the animal. Recent studies have employed the aminoglycoside gentamicin as a toxic causative agent for study of AKI and subsequent renal failure: gentamicin and other antibiotics have been shown to cause AKI in humans, and researchers have formulated methods to use this agent to trigger kidney damage in zebrafish7,8. However, the effects of aminoglycoside toxicity in zebrafish larvae are catastrophic and lethal, which presents a difficulty when studying epithelial regeneration and function over time. Our method presents the use of targeted cell ablation as a novel tool for the study of epithelial injury in zebrafish. Laser ablation gives researchers the ability to induce cell death in a limited population of cells. Varying areas of cells can be targeted based on morphological location, function, or even expression of a particular cellular phenotype. Thus, laser ablation will increase the specificity of what researchers can study, and can be a powerful new approach to shed light on the mechanisms of renal epithelial regeneration. This protocol can be broadly applied to target cell populations in other organs in the zebrafish embryo to study injury and regeneration in any number of contexts of interest.
Developmental Biology, Issue 54, kidney, zebrafish, regeneration, epithelium, acute kidney injury, ablation
Play Button
Visualization of the Interstitial Cells of Cajal (ICC) Network in Mice
Authors: Yu Chen, Tambudzai Shamu, Hui Chen, Peter Besmer, Charles L. Sawyers, Ping Chi.
Institutions: Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Medical Institute, The Rockefeller University.
The interstitial cells of Cajal (ICC) are mesenchymal derived "pacemaker cells" of the gastrointestinal (GI) tract that generate spontaneous slow waves required for peristalsis and mediate neuronal input from the enteric nervous system1. Different subtypes of ICC form distinct networks in the muscularis of the GI tract 2,3. Loss or injury to these networks is associated with a number of motility disorders4. ICC cells express the KIT receptor tyrosine kinase on the plasma membrane and KIT immunostaining has been used for the past 15 years to label the ICC network5,6. Importantly, normal KIT activity is required for ICC development5,6. Neoplastic transformation of ICC cells results in gastrointestinal stromal tumor (GIST), that frequently harbor gain-of-function KIT mutations7,8. We recently showed that ETV1 is a lineage-specific survival factor expressed in the ICC/GIST lineage and is a master transcriptional regulator required for both normal ICC network formation and for of GIST tumorigenesis9. We further demonstrate that it cooperates with activating KIT mutations in tumorigenesis. Here, we describe methods for visualization of ICC networks in mice, largely based on previously published protocols10,11. More recently, the chloride channel anoctamin 1 (ANO1) has also been characterized as a specific membrane marker of ICC11,12. Because of their plasma membrane localization, immunofluorescence of both proteins can be used to visualize the ICC networks. Here, we describe visualization of the ICC networks by fixed-frozen cyrosections and whole mount preparations.
Developmental Biology, Issue 53, mice, fluorescence microscopy, gastrointestinal track, motility, interstital cells of cajal, kit, ano1, pgp9.5
Play Button
Isolation and Culture of Avian Embryonic Valvular Progenitor Cells
Authors: Gretchen Mahler, Russell Gould, Johnathan Butcher.
Institutions: Cornell University.
Proper formation and function of embryonic heart valves is critical for developmental progression. The early embryonic heart is a U-shaped tube of endocardium surrounded by myocardium. The myocardium secretes cardiac jelly, a hyaluronan-rich gelatinous matrix, into the atrioventricular (AV) junction and outflow tract (OFT) lumen. At stage HH14 valvulogenesis begins when a subset of endocardial cells receive signals from the myocardium, undergo endocardial to mesenchymal transformation (EMT), and invade the cardiac jelly. At stage HH25 the valvular cushions are fully mesenchymalized, and it is this mesenchyme that eventually forms the valvular and septal apparatus of the heart. Understanding the mechanisms that initiate and modulate the process of EMT and cell differentiation are important because of their connection to serious congenital heart defects. In this study we present methods to isolate pre-EMT endocardial and post-EMT mesenchymal cells, which are the two different cell phenotypes of the prevalvular cushion. Pre-EMT endocardial cells can be cultured with or without the myocardium. Post-EMT AV cushion mesenchymal cells can be cultured inside mechanically constrained or stress-free collagen gels. These 3D in vitro models mimic key valvular morphogenic events and are useful for deconstructing the mechanisms of early and late stage valvulogenesis.
Developmental Biology, Issue 44, quail, chicken, HH14-, HH25, endocardial, explant, mesenchymal, cushion, valve progenitor
Play Button
Mouse Embryonic Lung Culture, A System to Evaluate the Molecular Mechanisms of Branching
Authors: Gianni Carraro, Pierre-Marie del Moral, David Warburton.
Institutions: Childrens Hospital Los Angeles.
Lung primordial specification as well as branching morphogenesis, and the formation of various pulmonary cell lineages requires a specific interaction of the lung endoderm with its surrounding mesenchyme and mesothelium. Lung mesenchyme has been shown to be the source of inductive signals for lung branching morphogenesis. Epithelial-mesenchymal-mesothelial interactions are also critical to embryonic lung morphogenesis. Early embryonic lung organ culture is a very useful system to study epithelial-mesenchymal interactions. Both epithelial and mesenchymal morphogenesis proceeds under specific conditions that can be readily manipulated in this system (in the absence of maternal influence and blood flow). More importantly this technique can be readily done in a serumless, chemically defined culture media. Gain and loss of function can be achieved using expressed proteins, recombinant viral vectors and/or analysis of transgenic mouse strains, antisense RNA, as well as RNA interference gene knockdown.
Developmental Biology, Issue 40, lung, mice, culture
Play Button
Right Hemihepatectomy by Suprahilar Intrahepatic Transection of the Right Hemipedicle using a Vascular Stapler
Authors: Ingmar Königsrainer, Silvio Nadalin, Alfred Königsrainer.
Institutions: Tübingen University Hospital.
Successful hepatic resection requires profound anatomical knowledge and delicate surgical technique. Hemihepatectomies are mostly performed after preparing the extrahepatic hilar structures within the hepatoduodenal ligament, even in benign tumours or liver metastasis.1-5. Regional extrahepatic lymphadenectomy is an oncological standard in hilar cholangiocarcinoma, intrahepatic cholangio-cellular carcinoma and hepatocellular carcinoma, whereas lymph node metastases in the hepatic hilus in patients with liver metastasis are rarely occult. Major disadvantages of these procedures are the complex preparation of the hilus with the risk of injuring contralateral structures and the possibility of bleeding from portal vein side-branches or impaired perfusion of bile ducts. We developed a technique of right hemihepatectomy or resection of the left lateral segments with intrahepatic transection of the pedicle that leaves the hepatoduodenal ligament completely untouched. 6 However, if intraoperative visualization or palpation of the ligament is suspicious for tumor infiltration or lymph node metastasis, the hilus should be explored and a lymphadenectomy performed.
Medicine, Issue 35, Liver resection, liver tumour, intrahepatic hilus stapling, right hemipedicle
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.