JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The impact of using alternative forages on the nutrient value within slurry and its implications for forage productivity in agricultural systems.
PUBLISHED: 01-01-2014
Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha?¹) with 100 kg N ha?¹ inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha?¹ year-1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha?¹ yr?¹). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P?=?0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks.
Authors: Benjamin G. Wherley, Richard H. White, Kevin J. McInnes, Charles H. Fontanier, James C. Thomas, Jacqueline A. Aitkenhead-Peterson, Steven T. Kelly.
Published: 08-08-2014
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems.
20 Related JoVE Articles!
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation
Authors: Karthik Pillai, Fernando Navarro Arzate, Wei Zhang, Scott Renneckar.
Institutions: Virginia Tech, Virginia Tech, Illinois Institute of Technology- Moffett Campus, University of Guadalajara, Virginia Tech, Virginia Tech.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.
Plant Biology, Issue 88, nanocellulose, thin films, quartz crystal microbalance, layer-by-layer, LbL
Play Button
Thin-layer Chromatographic (TLC) Separations and Bioassays of Plant Extracts to Identify Antimicrobial Compounds
Authors: Isabelle A. Kagan, Michael D. Flythe.
Institutions: United States Department of Agriculture.
A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species.
Chemistry, Issue 85, Thin-layer chromatography, bioautography, anaerobic bacteria, tetrazolium red, phenolic compounds, plant
Play Button
Catheterization of Intestinal Loops in Ruminants
Authors: Richard R. E. Uwiera, John P. Kastelic, G. Douglas Inglis.
Institutions: University of Alberta, Lethbridge Research Centre, Lethbridge.
The intestine is a complex structure that is involved not only in absorption of nutrients, but also acts as a barrier between the individual and the outside world. As such, the intestine plays a pivotal role in immunosurveillance and protection from enteric pathogens. Investigating intestinal physiology and immunology commonly employs 'intestinal loops' as an experimental model. The majority of these loop models are non-recovery surgical procedures that study short-term (<24 hr) changes in the intestine (1-3). We previously created a recovery intestinal loop model to specifically measure long-term (<6 mo) immunological changes in the intestine of sheep following exposure to vaccines, adjuvants, and viruses (4). This procedure localized treatments to a specific 'loop', allowing us to sample this area of the intestine. A significant drawback of this method is the single window of opportunity to administer treatments (i.e. at the time of surgery). Furthermore, samples of both the intestinal mucosa and luminal contents can only be taken at the termination of the project. Other salient limitations of the above model are that the surgical manipulation and requisite post-operative measures (e.g. administration of antibiotics and analgesics) can directly affect the treatment itself and/or alter immune function, thereby confounding results. Therefore, we modified our intestinal loop model by inserting long-term catheters into the loops. Sheep recover fully from the procedure, and are unaffected by the exteriorized catheters. Notably, the establishment of catheters in loops allows us to introduce multiple treatments over an extended interval, following recovery from surgery and clearance of drugs administered during surgery and the post-operative period.
Medicine, Issue 28, Intestinal loop, catheters, ileum, ruminants, sheep
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
Play Button
Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production
Authors: M. Toufiq Reza, Maja Werner, Marcel Pohl, Jan Mumme.
Institutions: Leibniz Institute for Agricultural Engineering.
Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.
Environmental Sciences, Issue 88, Biomethane, Hydrothermal Carbonization (HTC), Calorific Value, Lignocellulosic Biomass, UASS, Anaerobic Digestion
Play Button
Integrated Field Lysimetry and Porewater Sampling for Evaluation of Chemical Mobility in Soils and Established Vegetation
Authors: Audrey R. Matteson, Denis J. Mahoney, Travis W. Gannon, Matthew L. Polizzotto.
Institutions: North Carolina State University, North Carolina State University.
Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment.
Environmental Sciences, Issue 89, Lysimetry, porewater, soil, chemical leaching, pesticides, turfgrass, waste
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling
Authors: Jennifer L Soong, Dan Reuss, Colin Pinney, Ty Boyack, Michelle L Haddix, Catherine E Stewart, M. Francesca Cotrufo.
Institutions: Colorado State University, USDA-ARS, Colorado State University.
Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components, respectively). Challenges lie in maintaining proper temperature, humidity, CO2 concentration, and light levels in an airtight 13C-CO2 atmosphere for successful plant production. This chamber description represents a useful research tool to effectively produce uniformly or differentially multi-isotope labeled plant material for use in experiments on ecosystem biogeochemical cycling.
Environmental Sciences, Issue 83, 13C, 15N, plant, stable isotope labeling, Andropogon gerardii, metabolic compounds, structural compounds, hot water extraction
Play Button
High-Throughput Measurement and Classification of Organic P in Environmental Samples
Authors: Nicholas R. Johnson, Jane E. Hill.
Institutions: University of Vermont.
Many types of organic phosphorus (P) molecules exist in environmental samples1. Traditional P measurements do not detect these organic P compounds since they do not react with colorimetric reagents2,3. Enzymatic hydrolysis (EH) is an emerging method for accurately characterizing organic P forms in environmental samples4,5. This method is only trumped in accuracy by Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy (31P-NMR) -a method that is expensive and requires specialized technical training6. We have adapted an enzymatic hydrolysis method capable of measuring three classes of phosphorus (monoester P, diester P and inorganic P) to a microplate reader system7. This method provides researchers with a fast, accurate, affordable and user-friendly means to measure P species in soils, sediments, manures and, if concentrated, aquatic samples. This is the only high-throughput method for measuring the forms and enzyme-lability of organic P that can be performed in a standard laboratory. The resulting data provides insight to scientists studying system nutrient content and eutrophication potential.
Microbiology, Issue 52, phosphorus, enzymatic-hydrolysis, soil, manure, phosphatase, phytic acid, NaOH-EDTA, organophosphates, molybdate, organic P
Play Button
GENPLAT: an Automated Platform for Biomass Enzyme Discovery and Cocktail Optimization
Authors: Jonathan Walton, Goutami Banerjee, Suzana Car.
Institutions: Michigan State University, Michigan State University.
The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (, NZYTech (, and PROZOMIX ( Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase).
Bioengineering, Issue 56, cellulase, cellobiohydrolase, glucanase, xylanase, hemicellulase, experimental design, biomass, bioenergy, corn stover, glycosyl hydrolase
Play Button
Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture
Authors: Graham Bailes, Margaret Lind, Andrew Ely, Marianne Powell, Jennifer Moore-Kucera, Carol Miles, Debra Inglis, Marion Brodhagen.
Institutions: Western Washington University, Washington State University Northwestern Research and Extension Center, Texas Tech University.
Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.
Microbiology, Issue 75, Plant Biology, Environmental Sciences, Agricultural Sciences, Soil Science, Molecular Biology, Cellular Biology, Genetics, Mycology, Fungi, Bacteria, Microorganisms, Biodegradable plastic, biodegradable mulch, compostable plastic, compostable mulch, plastic degradation, composting, breakdown, soil, 18S ribosomal DNA, isolation, culture
Play Button
Determination of Microbial Extracellular Enzyme Activity in Waters, Soils, and Sediments using High Throughput Microplate Assays
Authors: Colin R. Jackson, Heather L. Tyler, Justin J. Millar.
Institutions: The University of Mississippi.
Much of the nutrient cycling and carbon processing in natural environments occurs through the activity of extracellular enzymes released by microorganisms. Thus, measurement of the activity of these extracellular enzymes can give insights into the rates of ecosystem level processes, such as organic matter decomposition or nitrogen and phosphorus mineralization. Assays of extracellular enzyme activity in environmental samples typically involve exposing the samples to artificial colorimetric or fluorometric substrates and tracking the rate of substrate hydrolysis. Here we describe microplate based methods for these procedures that allow the analysis of large numbers of samples within a short time frame. Samples are allowed to react with artificial substrates within 96-well microplates or deep well microplate blocks, and enzyme activity is subsequently determined by absorption or fluorescence of the resulting end product using a typical microplate reader or fluorometer. Such high throughput procedures not only facilitate comparisons between spatially separate sites or ecosystems, but also substantially reduce the cost of such assays by reducing overall reagent volumes needed per sample.
Environmental Sciences, Issue 80, Environmental Monitoring, Ecological and Environmental Processes, Environmental Microbiology, Ecology, extracellular enzymes, freshwater microbiology, soil microbiology, microbial activity, enzyme activity
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
Play Button
Single-plant, Sterile Microcosms for Nodulation and Growth of the Legume Plant Medicago truncatula with the Rhizobial Symbiont Sinorhizobium meliloti
Authors: Kathryn M. Jones, Hajeewaka C. Mendis, Clothilde Queiroux.
Institutions: Florida State University.
Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructive to either plants or bacteria. The symbiotic phenotypes of some plant and bacterial mutants become apparent after relatively short periods of growth, and do not require long-term observation of the host/symbiont interaction. However, subtle differences in symbiotic efficiency and nodule senescence phenotypes that are not apparent in the early stages of the nodulation process require relatively long growth periods before they can be scored. Several methods have been developed for long-term growth and observation of this host/symbiont pair. However, many of these methods require repeated watering, which increases the possibility of contamination by other microbes. Other methods require a relatively large space for growth of large numbers of plants. The method described here, symbiotic growth of M. truncatula/S. meliloti in sterile, single-plant microcosms, has several advantages. Plants in these microcosms have sufficient moisture and nutrients to ensure that watering is not required for up to 9 weeks, preventing cross-contamination during watering. This allows phenotypes to be quantified that might be missed in short-term growth systems, such as subtle delays in nodule development and early nodule senescence. Also, the roots and nodules in the microcosm are easily viewed through the plate lid, so up-rooting of the plants for observation is not required.
Environmental Sciences, Issue 80, Plant Roots, Medicago, Gram-Negative Bacteria, Nitrogen, Microbiological Techniques, Bacterial Processes, Symbiosis, botany, microbiology, Medicago truncatula, Sinorhizobium meliloti, nodule, nitrogen fixation, legume, rhizobia, bacteria
Play Button
In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries
Authors: William R. Brant, Siegbert Schmid, Guodong Du, Helen E. A. Brand, Wei Kong Pang, Vanessa K. Peterson, Zaiping Guo, Neeraj Sharma.
Institutions: University of Sydney, University of Wollongong, Australian Synchrotron, Australian Nuclear Science and Technology Organisation, University of Wollongong, University of New South Wales.
Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles.1,2 However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications.3 This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the ‘roll-over’ cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data.
Physics, Issue 93, In operando, structure-property relationships, electrochemical cycling, electrochemical cells, crystallography, battery performance
Play Button
Biocontained Carcass Composting for Control of Infectious Disease Outbreak in Livestock
Authors: Tim Reuter, Weiping Xu, Trevor W. Alexander, Brandon H. Gilroyed, G. Douglas Inglis, Francis J. Larney, Kim Stanford, Tim A. McAllister.
Institutions: Lethbridge Research Centre, Dalian University of Technology, Alberta Agriculture and Rural Development.
Intensive livestock production systems are particularly vulnerable to natural or intentional (bioterrorist) infectious disease outbreaks. Large numbers of animals housed within a confined area enables rapid dissemination of most infectious agents throughout a herd. Rapid containment is key to controlling any infectious disease outbreak, thus depopulation is often undertaken to prevent spread of a pathogen to the larger livestock population. In that circumstance, a large number of livestock carcasses and contaminated manure are generated that require rapid disposal. Composting lends itself as a rapid-response disposal method for infected carcasses as well as manure and soil that may harbor infectious agents. We designed a bio-contained mortality composting procedure and tested its efficacy for bovine tissue degradation and microbial deactivation. We used materials available on-farm or purchasable from local farm supply stores in order that the system can be implemented at the site of a disease outbreak. In this study, temperatures exceeded 55°C for more than one month and infectious agents implanted in beef cattle carcasses and manure were inactivated within 14 days of composting. After 147 days, carcasses were almost completely degraded. The few long bones remaining were further degraded with an additional composting cycle in open windrows and the final mature compost was suitable for land application. Duplicate compost structures (final dimensions 25 m x 5 m x 2.4 m; L x W x H) were constructed using barley straw bales and lined with heavy black silage plastic sheeting. Each was loaded with loose straw, carcasses and manure totaling ~95,000 kg. A 40-cm base layer of loose barley straw was placed in each bunker, onto which were placed 16 feedlot cattle mortalities (average weight 343 kg) aligned transversely at a spacing of approximately 0.5 m. For passive aeration, lengths of flexible, perforated plastic drainage tubing (15 cm diameter) were placed between adjacent carcasses, extending vertically along both inside walls, and with the ends passed though the plastic to the exterior. The carcasses were overlaid with moist aerated feedlot manure (~1.6 m deep) to the top of the bunker. Plastic was folded over the top and sealed with tape to establish a containment barrier and eight aeration vents (50 x 50 x 15 cm) were placed on the top of each structure to promote passive aeration. After 147 days, losses of volume and mass of composted materials averaged 39.8% and 23.7%, respectively, in each structure.
JoVE Infectious Diseases, Issue 39, compost, livestock, infectious disease, biocontainment
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.