JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway.
PUBLISHED: 01-01-2014
Tert-butylhydroquinone (tBHQ), an Nrf2 activator, has demonstrated neuroprotection against brain trauma and ischemic stroke in vivo. However, little work has been done with respect to its effect on early brain injury (EBI) after subarachnoid hemorrhage (SAH). At the same time, as an oral medication, it may have extensive clinical applications for the treatment of SAH-induced cognitive dysfunction. This study was undertaken to evaluate the influence of tBHQ on EBI, secondary deficits of learning and memory, and the Keap1/Nrf2/ARE pathway in a rat SAH model. SD rats were divided into four groups: (1) Control group (n=40); (2) SAH group (n=40); (3) SAH+vehicle group (n=40); and (4) SAH+tBHQ group (n=40). All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once in 20 s. In SAH+tBHQ group, tBHQ was administered via oral gavage at a dose of 12.5 mg/kg at 2 h, 12 h, 24 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated 48 h after SAH. In the second set of experiments, changes in cognition and memory were investigated in a Morris water maze. Results shows that administration of tBHQ after SAH significantly ameliorated EBI-related problems, such as brain edema, blood-brain barrier (BBB) impairment, clinical behavior deficits, cortical apoptosis, and neurodegeneration. Learning deficits induced by SAH was markedly alleviated after tBHQ therapy. Treatment with tBHQ markedly up-regulated the expression of Keap1, Nrf2, HO-1, NQO1, and GST?1 after SAH. In conclusion, the administration of tBHQ abated the development of EBI and cognitive dysfunction in this SAH model. Its action was probably mediated by activation of the Keap1/Nrf2/ARE pathway.
Authors: Rahul V. Dudhani, Michele Kyle, Christina Dedeo, Margaret Riordan, Eric M. Deshaies.
Published: 01-17-2013
Objective: To characterize and establish a reproducible model that demonstrates delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) in rats, in order to identify the initiating events, pathophysiological changes and potential targets for treatment. Methods: Twenty-eight male Sprague-Dawley rats (250 - 300 g) were arbitrarily assigned to one of two groups - SAH or saline control. Rat subarachnoid hemorrhage in the SAH group (n=15) was induced by double injection of autologous blood, 48 hr apart, into the cisterna magna. Similarly, normal saline (n=13) was injected into the cisterna magna of the saline control group. Rats were sacrificed on day five after the second blood injection and the brains were preserved for histological analysis. The degree of vasospasm was measured using sections of the basilar artery, by measuring the internal luminal cross sectional area using NIH Image-J software. The significance was tested using Tukey/Kramer's statistical analysis. Results: After analysis of histological sections, basilar artery luminal cross sectional area were smaller in the SAH than in the saline group, consistent with cerebral vasospasm in the former group. In the SAH group, basilar artery internal area (.056 μm ± 3) were significantly smaller from vasospasm five days after the second blood injection (seven days after the initial blood injection), compared to the saline control group with internal area (.069 ± 3; p=0.004). There were no mortalities from cerebral vasospasm. Conclusion: The rat double SAH model induces a mild, survivable, basilar artery vasospasm that can be used to study the pathophysiological mechanisms of cerebral vasospasm in a small animal model. A low and acceptable mortality rate is a significant criterion to be satisfied for an ideal SAH animal model so that the mechanisms of vasospasm can be elucidated 7, 8. Further modifications of the model can be made to adjust for increased severity of vasospasm and neurological exams.
18 Related JoVE Articles!
Play Button
The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects
Authors: Lukas Andereggen, Volker Neuschmelting, Michael von Gunten, Hans Rudolf Widmer, Jukka Takala, Stephan M. Jakob, Javier Fandino, Serge Marbacher.
Institutions: University and Bern University Hospital (Inselspital), Kantonsspital Aarau, Boston Children's Hospital, Boston Children's Hospital, University and Bern University Hospital (Inselspital), University Hospital Cologne, Länggasse Bern.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Medicine, Issue 92, Subarachnoid hemorrhage, animal models, rabbit, extracorporeal blood shunt, early brain injury, delayed cerebral vasospasm, microsurgery.
Play Button
A Murine Model of Subarachnoid Hemorrhage
Authors: Kathrin Schüller, Dominik Bühler, Nikolaus Plesnila.
Institutions: University of Munich Medical Center.
In this video publication a standardized mouse model of subarachnoid hemorrhage (SAH) is presented. Bleeding is induced by endovascular Circle of Willis perforation (CWp) and proven by intracranial pressure (ICP) monitoring. Thereby a homogenous blood distribution in subarachnoid spaces surrounding the arterial circulation and cerebellar fissures is achieved. Animal physiology is maintained by intubation, mechanical ventilation, and continuous on-line monitoring of various physiological and cardiovascular parameters: body temperature, systemic blood pressure, heart rate, and hemoglobin saturation. Thereby the cerebral perfusion pressure can be tightly monitored resulting in a less variable volume of extravasated blood. This allows a better standardization of endovascular filament perforation in mice and makes the whole model highly reproducible. Thus it is readily available for pharmacological and pathophysiological studies in wild type and genetically altered mice.
Medicine, Issue 81, Nervous System Diseases, Subarachnoid hemorrhage (SAH), mouse model, filament perforation, intracranial pressure monitoring, blood distribution, surgical technique
Play Button
The Dig Task: A Simple Scent Discrimination Reveals Deficits Following Frontal Brain Damage
Authors: Kris M. Martens, Cole Vonder Haar, Blake A. Hutsell, Michael R. Hoane.
Institutions: Southern Illinois University at Carbondale.
Cognitive impairment is the most frequent cause of disability in humans following brain damage, yet the behavioral tasks used to assess cognition in rodent models of brain injury is lacking. Borrowing from the operant literature our laboratory utilized a basic scent discrimination paradigm1-4 in order to assess deficits in frontally-injured rats. Previously we have briefly described the Dig task and demonstrated that rats with frontal brain damage show severe deficits across multiple tests within the task5. Here we present a more detailed protocol for this task. Rats are placed into a chamber and allowed to discriminate between two scented sands, one of which contains a reinforcer. The trial ends after the rat either correctly discriminates (defined as digging in the correct scented sand), incorrectly discriminates, or 30 sec elapses. Rats that correctly discriminate are allowed to recover and consume the reinforcer. Rats that discriminate incorrectly are immediately removed from the chamber. This can continue through a variety of reversals and novel scents. The primary analysis is the accuracy for each scent pairing (cumulative proportion correct for each scent). The general findings from the Dig task suggest that it is a simple experimental preparation that can assess deficits in rats with bilateral frontal cortical damage compared to rats with unilateral parietal damage. The Dig task can also be easily incorporated into an existing cognitive test battery. The use of more tasks such as this one can lead to more accurate testing of frontal function following injury, which may lead to therapeutic options for treatment. All animal use was conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee.
Neuroscience, Issue 71, Medicine, Neurobiology, Anatomy, Physiology, Psychology, Behavior, cognitive assessment, dig task, scent discrimination, olfactory, brain injury, traumatic brain injury, TBI, brain damage, rats, animal model
Play Button
Morris Water Maze Test for Learning and Memory Deficits in Alzheimer's Disease Model Mice
Authors: Kelley Bromley-Brits, Yu Deng, Weihong Song.
Institutions: University of British Columbia.
The Morris Water Maze (MWM) was first established by neuroscientist Richard G. Morris in 1981 in order to test hippocampal-dependent learning, including acquisition of spatial memoryand long-term spatial memory 1. The MWM is a relatively simple procedure typically consisting of six day trials, the main advantage being the differentiation between the spatial (hidden-platform) and non-spatial (visible platform) conditions 2-4. In addition, the MWM testing environment reduces odor trail interference 5. This has led the task to be used extensively in the study of the neurobiology and neuropharmacology of spatial learning and memory. The MWM plays an important role in the validation of rodent models for neurocognitive disorders such as Alzheimer’s Disease 6, 7. In this protocol we discussed the typical procedure of MWM for testing learning and memory and data analysis commonly used in Alzheimer’s disease transgenic model mice.
Neuroscience, Issue 53, Morris Water Maze, spatial memory testing, hippocampal dependent learning, Alzheimer's Disease
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
Play Button
Intrastriatal Injection of Autologous Blood or Clostridial Collagenase as Murine Models of Intracerebral Hemorrhage
Authors: Beilei Lei, Huaxin Sheng, Haichen Wang, Christopher D. Lascola, David S. Warner, Daniel T. Laskowitz, Michael L. James.
Institutions: Duke University, Duke University, Duke University, Duke University.
Intracerebral hemorrhage (ICH) is a common form of cerebrovascular disease and is associated with significant morbidity and mortality. Lack of effective treatment and failure of large clinical trials aimed at hemostasis and clot removal demonstrate the need for further mechanism-driven investigation of ICH. This research may be performed through the framework provided by preclinical models. Two murine models in popular use include intrastriatal (basal ganglia) injection of either autologous whole blood or clostridial collagenase. Since, each model represents distinctly different pathophysiological features related to ICH, use of a particular model may be selected based on what aspect of the disease is to be studied. For example, autologous blood injection most accurately represents the brain's response to the presence of intraparenchymal blood, and may most closely replicate lobar hemorrhage. Clostridial collagenase injection most accurately represents the small vessel rupture and hematoma evolution characteristic of deep hemorrhages. Thus, each model results in different hematoma formation, neuroinflammatory response, cerebral edema development, and neurobehavioral outcomes. Robustness of a purported therapeutic intervention can be best assessed using both models. In this protocol, induction of ICH using both models, immediate post-operative demonstration of injury, and early post-operative care techniques are demonstrated. Both models result in reproducible injuries, hematoma volumes, and neurobehavioral deficits. Because of the heterogeneity of human ICH, multiple preclinical models are needed to thoroughly explore pathophysiologic mechanisms and test potential therapeutic strategies.
Medicine, Issue 89, intracerebral hemorrhage, mouse, preclinical, autologous blood, collagenase, neuroscience, stroke, brain injury, basal ganglia
Play Button
Permanent Cerebral Vessel Occlusion via Double Ligature and Transection
Authors: Melissa F. Davis, Christopher Lay, Ron D. Frostig.
Institutions: University of California, Irvine, University of California, Irvine, University of California, Irvine, University of California, Irvine.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA. Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Neurobiology, Neuroscience, Behavior, Surgery, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Animal models, Stroke, ischemia, imaging, middle cerebral artery, vessel occlusion, rodent model, surgical techniques, animal model
Play Button
Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery
Authors: Gemma Llovera, Stefan Roth, Nikolaus Plesnila, Roland Veltkamp, Arthur Liesz.
Institutions: University Hospital Munich, Munich Cluster for Systems Neurology (SyNergy), University Heidelberg, Charing Cross Hospital.
Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools.
Medicine, Issue 89, stroke, brain ischemia, animal model, middle cerebral artery, electrocoagulation
Play Button
Modeling Intracerebral Hemorrhage in Mice: Injection of Autologous Blood or Bacterial Collagenase
Authors: Paul R. Krafft, William B. Rolland, Kamil Duris, Tim Lekic, Aaron Campbell, Jiping Tang, John H. Zhang.
Institutions: Loma Linda University School of Medicine, University of California, Riverside , Loma Linda University School of Medicine, Loma Linda University School of Medicine.
Spontaneous intracerebral hemorrhage (ICH) defines a potentially life-threatening neurological malady that accounts for 10-15% of all stroke-related hospitalizations and for which no effective treatments are available to date1,2. Because of the heterogeneity of ICH in humans, various preclinical models are needed to thoroughly explore prospective therapeutic strategies3. Experimental ICH is commonly induced in rodents by intraparenchymal injection of either autologous blood or bacterial collagenase4. The appropriate model is selected based on the pathophysiology of hemorrhage induction and injury progression. The blood injection model mimics a rapidly progressing hemorrhage. Alternatively, bacterial collagenase enzymatically disrupts the basal lamina of brain capillaries, causing an active bleed that generally evolves over several hours5. Resultant perihematomal edema and neurofunctional deficits can be quantified from both models. In this study, we described and evaluated a modified double injection model of autologous whole blood6 as well as an ICH injection model of bacterial collagenase7, both of which target the basal ganglia (corpus striatum) of male CD-1 mice. We assessed neurofunctional deficits and brain edema at 24 and 72 hr after ICH induction. Intrastriatal injection of autologous blood (30 μl) or bacterial collagenase (0.075U) caused reproducible neurofunctional deficits in mice and significantly increased brain edema at 24 and 72 hr after surgery (p<0.05). In conclusion, both models yield consistent hemorrhagic infarcts and represent basic methods for preclinical ICH research.
Medicine, Issue 67, Physiology, Neuroscience, Immunology, experimental stroke, animal model, autologous blood, collagenase, intracerebral hemorrhage, basal ganglia, brain injury, edema, behavior, mouse
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
Play Button
Bridging the Bio-Electronic Interface with Biofabrication
Authors: Tanya Gordonov, Benjamin Liba, Jessica L. Terrell, Yi Cheng, Xiaolong Luo, Gregory F. Payne, William E. Bentley.
Institutions: University of Maryland , University of Maryland , University of Maryland .
Advancements in lab-on-a-chip technology promise to revolutionize both research and medicine through lower costs, better sensitivity, portability, and higher throughput. The incorporation of biological components onto biological microelectromechanical systems (bioMEMS) has shown great potential for achieving these goals. Microfabricated electronic chips allow for micrometer-scale features as well as an electrical connection for sensing and actuation. Functional biological components give the system the capacity for specific detection of analytes, enzymatic functions, and whole-cell capabilities. Standard microfabrication processes and bio-analytical techniques have been successfully utilized for decades in the computer and biological industries, respectively. Their combination and interfacing in a lab-on-a-chip environment, however, brings forth new challenges. There is a call for techniques that can build an interface between the electrode and biological component that is mild and is easy to fabricate and pattern. Biofabrication, described here, is one such approach that has shown great promise for its easy-to-assemble incorporation of biological components with versatility in the on-chip functions that are enabled. Biofabrication uses biological materials and biological mechanisms (self-assembly, enzymatic assembly) for bottom-up hierarchical assembly. While our labs have demonstrated these concepts in many formats 1,2,3, here we demonstrate the assembly process based on electrodeposition followed by multiple applications of signal-based interactions. The assembly process consists of the electrodeposition of biocompatible stimuli-responsive polymer films on electrodes and their subsequent functionalization with biological components such as DNA, enzymes, or live cells 4,5. Electrodeposition takes advantage of the pH gradient created at the surface of a biased electrode from the electrolysis of water 6,7,. Chitosan and alginate are stimuli-responsive biological polymers that can be triggered to self-assemble into hydrogel films in response to imposed electrical signals 8. The thickness of these hydrogels is determined by the extent to which the pH gradient extends from the electrode. This can be modified using varying current densities and deposition times 6,7. This protocol will describe how chitosan films are deposited and functionalized by covalently attaching biological components to the abundant primary amine groups present on the film through either enzymatic or electrochemical methods 9,10. Alginate films and their entrapment of live cells will also be addressed 11. Finally, the utility of biofabrication is demonstrated through examples of signal-based interaction, including chemical-to-electrical, cell-to-cell, and also enzyme-to-cell signal transmission. Both the electrodeposition and functionalization can be performed under near-physiological conditions without the need for reagents and thus spare labile biological components from harsh conditions. Additionally, both chitosan and alginate have long been used for biologically-relevant purposes 12,13. Overall, biofabrication, a rapid technique that can be simply performed on a benchtop, can be used for creating micron scale patterns of functional biological components on electrodes and can be used for a variety of lab-on-a-chip applications.
Bioengineering, Issue 64, Biomedical Engineering, electrodeposition, biofabrication, chitosan, alginate, lab-on-a-chip, microfluidic, DTRA
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
Assessing Neurodegenerative Phenotypes in Drosophila Dopaminergic Neurons by Climbing Assays and Whole Brain Immunostaining
Authors: Maria Cecilia Barone, Dirk Bohmann.
Institutions: University of Rochester Medical Center .
Drosophila melanogaster is a valuable model organism to study aging and pathological degenerative processes in the nervous system. The advantages of the fly as an experimental system include its genetic tractability, short life span and the possibility to observe and quantitatively analyze complex behaviors. The expression of disease-linked genes in specific neuronal populations of the Drosophila brain, can be used to model human neurodegenerative diseases such as Parkinson's and Alzheimer's 5. Dopaminergic (DA) neurons are among the most vulnerable neuronal populations in the aging human brain. In Parkinson's disease (PD), the most common neurodegenerative movement disorder, the accelerated loss of DA neurons leads to a progressive and irreversible decline in locomotor function. In addition to age and exposure to environmental toxins, loss of DA neurons is exacerbated by specific mutations in the coding or promoter regions of several genes. The identification of such PD-associated alleles provides the experimental basis for the use of Drosophila as a model to study neurodegeneration of DA neurons in vivo. For example, the expression of the PD-linked human α-synuclein gene in Drosophila DA neurons recapitulates some features of the human disease, e.g. progressive loss of DA neurons and declining locomotor function 2. Accordingly, this model has been successfully used to identify potential therapeutic targets in PD 8. Here we describe two assays that have commonly been used to study age-dependent neurodegeneration of DA neurons in Drosophila: a climbing assay based on the startle-induced negative geotaxis response and tyrosine hydroxylase immunostaining of whole adult brain mounts to monitor the number of DA neurons at different ages. In both cases, in vivo expression of UAS transgenes specifically in DA neurons can be achieved by using a tyrosine hydroxylase (TH) promoter-Gal4 driver line 3, 10.
Neuroscience, Issue 74, Genetics, Neurobiology, Molecular Biology, Cellular Biology, Biomedical Engineering, Medicine, Developmental Biology, Drosophila melanogaster, neurodegenerative diseases, negative geotaxis, tyrosine hydroxylase, dopaminergic neuron, α-synuclein, neurons, immunostaining, animal model
Play Button
Use of an Eight-arm Radial Water Maze to Assess Working and Reference Memory Following Neonatal Brain Injury
Authors: Stephanie C. Penley, Cynthia M. Gaudet, Steven W. Threlkeld.
Institutions: Rhode Island College, Rhode Island College.
Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.
Behavior, Issue 82, working memory, reference memory, hypoxia-ischemia, radial arm maze, water maze
Play Button
Profiling of Methyltransferases and Other S-adenosyl-L-homocysteine-binding Proteins by Capture Compound Mass Spectrometry (CCMS)
Authors: Thomas Lenz, Peter Poot, Olivia Gräbner, Mirko Glinski, Elmar Weinhold, Mathias Dreger, Hubert Köster.
Institutions: caprotec bioanalytics GmbH, RWTH Aachen University.
There is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions such as affinity chromatography 1 or Activity Based Protein Profiling 2. Trifunctional Capture Compounds (CCs, Figure 1A) 3 are the basis for a generic approach, in which the initial equilibrium-driven interaction between a small molecule probe (the selectivity function, here S-adenosyl-L-homocysteine, SAH, Figure 1A) and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function (here a phenylazide) of the CC and the surface of the target proteins. The sorting function (here biotin) serves to isolate the CC - protein conjugates from complex biological mixtures with the help of a solid phase (here streptavidin magnetic beads). Two configurations of the experiments are possible: "off-bead" 4 or the presently described "on-bead" configuration (Figure 1B). The selectivity function may be virtually any small molecule of interest (substrates, inhibitors, drug molecules). S-Adenosyl-L-methionine (SAM, Figure 1A) is probably, second to ATP, the most widely used cofactor in nature 5, 6. It is used as the major methyl group donor in all living organisms with the chemical reaction being catalyzed by SAM-dependent methyltransferases (MTases), which methylate DNA 7, RNA 8, proteins 9, or small molecules 10. Given the crucial role of methylation reactions in diverse physiological scenarios (gene regulation, epigenetics, metabolism), the profiling of MTases can be expected to become of similar importance in functional proteomics as the profiling of kinases. Analytical tools for their profiling, however, have not been available. We recently introduced a CC with SAH as selectivity group to fill this technological gap (Figure 1A). SAH, the product of SAM after methyl transfer, is a known general MTase product inhibitor 11. For this reason and because the natural cofactor SAM is used by further enzymes transferring other parts of the cofactor or initiating radical reactions as well as because of its chemical instability 12, SAH is an ideal selectivity function for a CC to target MTases. Here, we report the utility of the SAH-CC and CCMS by profiling MTases and other SAH-binding proteins from the strain DH5α of Escherichia coli (E. coli), one of the best-characterized prokaryotes, which has served as the preferred model organism in countless biochemical, biological, and biotechnological studies. Photo-activated crosslinking enhances yield and sensitivity of the experiment, and the specificity can be readily tested for in competition experiments using an excess of free SAH.
Biochemistry, Issue 46, Capture Compound, photo-crosslink, small molecule-protein interaction, methyltransferase, S-adenosyl-l-homocysteine, SAH, S-adenosyl-l-methionine, SAM, functional proteomics, LC-MS/MS
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
Play Button
Quantifying Cognitive Decrements Caused by Cranial Radiotherapy
Authors: Lori- Ann Christie, Munjal M. Acharya, Charles L. Limoli.
Institutions: University of California Irvine .
With the exception of survival, cognitive impairment stemming from the clinical management of cancer is a major factor dictating therapeutic outcome. For many patients afflicted with CNS and non-CNS malignancies, radiotherapy and chemotherapy offer the best options for disease control. These treatments however come at a cost, and nearly all cancer survivors (~11 million in the US alone as of 2006) incur some risk for developing cognitive dysfunction, with the most severe cases found in patients subjected to cranial radiotherapy (~200,000/yr) for the control of primary and metastatic brain tumors1. Particularly problematic are pediatric cases, whose long-term survival plagued with marked cognitive decrements results in significant socioeconomic burdens2. To date, there are still no satisfactory solutions to this significant clinical problem. We have addressed this serious health concern using transplanted stem cells to combat radiation-induced cognitive decline in athymic rats subjected to cranial irradiation3. Details of the stereotaxic irradiation and the in vitro culturing and transplantation of human neural stem cells (hNSCs) can be found in our companion paper (Acharya et al., JoVE reference). Following irradiation and transplantation surgery, rats are then assessed for changes in cognition, grafted cell survival and expression of differentiation-specific markers 1 and 4-months after irradiation. To critically evaluate the success or failure of any potential intervention designed to ameliorate radiation-induced cognitive sequelae, a rigorous series of quantitative cognitive tasks must be performed. To accomplish this, we subject our animals to a suite of cognitive testing paradigms including novel place recognition, water maze, elevated plus maze and fear conditioning, in order to quantify hippocampal and non-hippocampal learning and memory. We have demonstrated the utility of these tests for quantifying specific types of cognitive decrements in irradiated animals, and used them to show that animals engrafted with hNSCs exhibit significant improvements in cognitive function3. The cognitive benefits derived from engrafted human stem cells suggest that similar strategies may one day provide much needed clinical recourse to cancer survivors suffering from impaired cognition. Accordingly, we have provided written and visual documentation of the critical steps used in our cognitive testing paradigms to facilitate the translation of our promising results into the clinic.
Medicine, Issue 56, neuroscience, radiotherapy, cognitive dysfunction, hippocampus, novel place recognition, elevated plus maze, fear conditioning, water maze
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.