JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats.
PLoS ONE
PUBLISHED: 01-01-2014
We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Lepr(fa/fa) rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Lepr(fa/fa) rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Lepr(fa/fa) rats that received probiotics than in rats fed the placebo. Zucker-Lepr(fa/fa) rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Lepr(fa/fa) rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-? levels decreased in the Zucker-Lepr(fa/fa) rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Lepr(fa/fa) rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.
Authors: Grace Fergusson, Mélanie Ethier, Bader Zarrouki, Ghislaine Fontés, Vincent Poitout.
Published: 08-14-2013
ABSTRACT
Chronic exposure to excessive levels of nutrients is postulated to affect the function of several organs and tissues and to contribute to the development of the many complications associated with obesity and the metabolic syndrome, including type 2 diabetes. To study the mechanisms by which excessive levels of glucose and fatty acids affect the pancreatic beta-cell and the secretion of insulin, we have established a chronic nutrient infusion model in the rat. The procedure consists of catheterizing the right jugular vein and left carotid artery under general anesthesia; allowing a 7-day recuperation period; connecting the catheters to the pumps using a swivel and counterweight system that enables the animal to move freely in the cage; and infusing glucose and/or Intralipid (a soybean oil emulsion which generates a mixture of approximately 80% unsaturated/20% saturated fatty acids when infused with heparin) for 72 hr. This model offers several advantages, including the possibility to finely modulate the target levels of circulating glucose and fatty acids; the option to co-infuse pharmacological compounds; and the relatively short time frame as opposed to dietary models. It can be used to examine the mechanisms of nutrient-induced dysfunction in a variety of organs and to test the effectiveness of drugs in this context.
26 Related JoVE Articles!
Play Button
Multi-modal Imaging of Angiogenesis in a Nude Rat Model of Breast Cancer Bone Metastasis Using Magnetic Resonance Imaging, Volumetric Computed Tomography and Ultrasound
Authors: Tobias Bäuerle, Dorde Komljenovic, Martin R. Berger, Wolfhard Semmler.
Institutions: German Cancer Research Center, Heidelberg, Germany, German Cancer Research Center, Heidelberg, Germany.
Angiogenesis is an essential feature of cancer growth and metastasis formation. In bone metastasis, angiogenic factors are pivotal for tumor cell proliferation in the bone marrow cavity as well as for interaction of tumor and bone cells resulting in local bone destruction. Our aim was to develop a model of experimental bone metastasis that allows in vivo assessment of angiogenesis in skeletal lesions using non-invasive imaging techniques. For this purpose, we injected 105 MDA-MB-231 human breast cancer cells into the superficial epigastric artery, which precludes the growth of metastases in body areas other than the respective hind leg1. Following 25-30 days after tumor cell inoculation, site-specific bone metastases develop, restricted to the distal femur, proximal tibia and proximal fibula1. Morphological and functional aspects of angiogenesis can be investigated longitudinally in bone metastases using magnetic resonance imaging (MRI), volumetric computed tomography (VCT) and ultrasound (US). MRI displays morphologic information on the soft tissue part of bone metastases that is initially confined to the bone marrow cavity and subsequently exceeds cortical bone while progressing. Using dynamic contrast-enhanced MRI (DCE-MRI) functional data including regional blood volume, perfusion and vessel permeability can be obtained and quantified2-4. Bone destruction is captured in high resolution using morphological VCT imaging. Complementary to MRI findings, osteolytic lesions can be located adjacent to sites of intramedullary tumor growth. After contrast agent application, VCT angiography reveals the macrovessel architecture in bone metastases in high resolution, and DCE-VCT enables insight in the microcirculation of these lesions5,6. US is applicable to assess morphological and functional features from skeletal lesions due to local osteolysis of cortical bone. Using B-mode and Doppler techniques, structure and perfusion of the soft tissue metastases can be evaluated, respectively. DCE-US allows for real-time imaging of vascularization in bone metastases after injection of microbubbles7. In conclusion, in a model of site-specific breast cancer bone metastases multi-modal imaging techniques including MRI, VCT and US offer complementary information on morphology and functional parameters of angiogenesis in these skeletal lesions.
Cancer Biology, Issue 66, Medicine, Physiology, Physics, bone metastases, animal model, angiogenesis, imaging, magnetic resonance imaging, MRI, volumetric computed tomography, ultrasound
4178
Play Button
A Novel Method for the Culture and Polarized Stimulation of Human Intestinal Mucosa Explants
Authors: Katerina Tsilingiri, Angelica Sonzogni, Flavio Caprioli, Maria Rescigno.
Institutions: European Institute of Oncology, European Institute of Oncology, Ospedale Policlinico di Milano.
Few models currently exist to realistically simulate the complex human intestine's micro-environment, where a variety of interactions take place. Proper homeostasis directly depends on these interactions, as they shape an entire immunological response inducing tolerance against food antigens while at the same time mounting effective immune responses against pathogenic microbes accidentally ingested with food. Intestinal homeostasis is preserved also through various complex interactions between the microbiota (including food-associated beneficial bacterial strains) and the host, that regulate the attachment/degradation of mucus, the production of antimicrobial peptides by the epithelial barrier, and the "education" of epithelial cells' that controls the tolerogenic or immunogenic phenotype of unique, gut-resident lymphoid cells' populations. These interactions have been so far very difficult to reproduce with in vitro assays using either cultured cell lines or peripheral blood mononuclear cells. In addition, mouse models differ substantially in components of the intestinal mucosa (mucus layer organization, commensal bacteria community) with respect to the human gut. Thus, studies of a variety of treatments to be brought in the clinics for important stress-related or pathological conditions such as irritable bowel syndrome, inflammatory bowel disease or colorectal cancer have been difficult to carry out. To address these issues, we developed a novel system that enables us to stimulate explants of human intestinal mucosa that retain their in situ conditioning by the host microbiota and immune response, in a polarized fashion. Polarized apical stimulation is of great importance for the outcome of the elicited immune response. It has been repeatedly shown that the same stimuli can produce completely different responses when they bypass the apical face of the intestinal epithelium, stimulating epithelial cells basolaterally or coming into direct contact with lamina propria components, switching the phenotype from tolerogenic to immunogenic and causing unnecessary and excessive inflammation in the area. We achieved polarized stimulation by gluing a cave cylinder which delimited the area of stimulation on the apical face of the mucosa as will be described in the protocol. We used this model to examine, among others, differential effects of three different Lactobacilli strains. We show that this model system is very powerful to assess the immunomodulatory properties of probiotics in healthy and disease conditions.
Microbiology, Issue 75, Cellular Biology, Medicine, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Bacteria, Tissue Engineering, Tissue culture, intestinal mucosa, polarized stimulation, probiotics, explants, Lactobacilli, microbiota, cell culture
4368
Play Button
Investigating the Effects of Probiotics on Pneumococcal Colonization Using an In Vitro Adherence Assay
Authors: Eileen M. Dunne, Zheng Q. Toh, Mary John, Jayne Manning, Catherine Satzke, Paul Licciardi.
Institutions: Murdoch Childrens Research Institute, Murdoch Childrens Research Institute, The University of Melbourne, The University of Melbourne.
Adherence of Streptococcus pneumoniae (the pneumococcus) to the epithelial lining of the nasopharynx can result in colonization and is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. In vitro adherence assays can be used to study the attachment of pneumococci to epithelial cell monolayers and to investigate potential interventions, such as the use of probiotics, to inhibit pneumococcal colonization. The protocol described here is used to investigate the effects of the probiotic Streptococcus salivarius on the adherence of pneumococci to the human epithelial cell line CCL-23 (sometimes referred to as HEp-2 cells). The assay involves three main steps: 1) preparation of epithelial and bacterial cells, 2) addition of bacteria to epithelial cell monolayers, and 3) detection of adherent pneumococci by viable counts (serial dilution and plating) or quantitative real-time PCR (qPCR). This technique is relatively straightforward and does not require specialized equipment other than a tissue culture setup. The assay can be used to test other probiotic species and/or potential inhibitors of pneumococcal colonization and can be easily modified to address other scientific questions regarding pneumococcal adherence and invasion.
Immunology, Issue 86, Gram-Positive Bacterial Infections, Pneumonia, Bacterial, Lung Diseases, Respiratory Tract Infections, Streptococcus pneumoniae, adherence, colonization, probiotics, Streptococcus salivarius, In Vitro assays
51069
Play Button
Assessing Hepatic Metabolic Changes During Progressive Colonization of Germ-free Mouse by 1H NMR Spectroscopy
Authors: Peter Heath, Sandrine Paule Claus.
Institutions: The University of Reading, The University of Reading .
It is well known that gut bacteria contribute significantly to the host homeostasis, providing a range of benefits such as immune protection and vitamin synthesis. They also supply the host with a considerable amount of nutrients, making this ecosystem an essential metabolic organ. In the context of increasing evidence of the link between the gut flora and the metabolic syndrome, understanding the metabolic interaction between the host and its gut microbiota is becoming an important challenge of modern biology.1-4 Colonization (also referred to as normalization process) designates the establishment of micro-organisms in a former germ-free animal. While it is a natural process occurring at birth, it is also used in adult germ-free animals to control the gut floral ecosystem and further determine its impact on the host metabolism. A common procedure to control the colonization process is to use the gavage method with a single or a mixture of micro-organisms. This method results in a very quick colonization and presents the disadvantage of being extremely stressful5. It is therefore useful to minimize the stress and to obtain a slower colonization process to observe gradually the impact of bacterial establishment on the host metabolism. In this manuscript, we describe a procedure to assess the modification of hepatic metabolism during a gradual colonization process using a non-destructive metabolic profiling technique. We propose to monitor gut microbial colonization by assessing the gut microbial metabolic activity reflected by the urinary excretion of microbial co-metabolites by 1H NMR-based metabolic profiling. This allows an appreciation of the stability of gut microbial activity beyond the stable establishment of the gut microbial ecosystem usually assessed by monitoring fecal bacteria by DGGE (denaturing gradient gel electrophoresis).6 The colonization takes place in a conventional open environment and is initiated by a dirty litter soiled by conventional animals, which will serve as controls. Rodents being coprophagous animals, this ensures a homogenous colonization as previously described.7 Hepatic metabolic profiling is measured directly from an intact liver biopsy using 1H High Resolution Magic Angle Spinning NMR spectroscopy. This semi-quantitative technique offers a quick way to assess, without damaging the cell structure, the major metabolites such as triglycerides, glucose and glycogen in order to further estimate the complex interaction between the colonization process and the hepatic metabolism7-10. This method can also be applied to any tissue biopsy11,12.
Immunology, Issue 58, Germ-free animal, colonization, NMR, HR MAS NMR, metabonomics
3642
Play Button
Surgical Procedures for a Rat Model of Partial Orthotopic Liver Transplantation with Hepatic Arterial Reconstruction
Authors: Kazuyuki Nagai, Shintaro Yagi, Shinji Uemoto, Rene H. Tolba.
Institutions: RWTH-Aachen University, Kyoto University .
Orthotopic liver transplantation (OLT) in rats using a whole or partial graft is an indispensable experimental model for transplantation research, such as studies on graft preservation and ischemia-reperfusion injury 1,2, immunological responses 3,4, hemodynamics 5,6, and small-for-size syndrome 7. The rat OLT is among the most difficult animal models in experimental surgery and demands advanced microsurgical skills that take a long time to learn. Consequently, the use of this model has been limited. Since the reliability and reproducibility of results are key components of the experiments in which such complex animal models are used, it is essential for surgeons who are involved in rat OLT to be trained in well-standardized and sophisticated procedures for this model. While various techniques and modifications of OLT in rats have been reported 8 since the first model was described by Lee et al. 9 in 1973, the elimination of the hepatic arterial reconstruction 10 and the introduction of the cuff anastomosis technique by Kamada et al. 11 were a major advancement in this model, because they simplified the reconstruction procedures to a great degree. In the model by Kamada et al., the hepatic rearterialization was also eliminated. Since rats could survive without hepatic arterial flow after liver transplantation, there was considerable controversy over the value of hepatic arterialization. However, the physiological superiority of the arterialized model has been increasingly acknowledged, especially in terms of preserving the bile duct system 8,12 and the liver integrity 8,13,14. In this article, we present detailed surgical procedures for a rat model of OLT with hepatic arterial reconstruction using a 50% partial graft after ex vivo liver resection. The reconstruction procedures for each vessel and the bile duct are performed by the following methods: a 7-0 polypropylene continuous suture for the supra- and infrahepatic vena cava; a cuff technique for the portal vein; and a stent technique for the hepatic artery and the bile duct.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Immunology, Surgery, liver transplantation, liver, hepatic, partial, orthotopic, split, rat, graft, transplantation, microsurgery, procedure, clinical, technique, artery, arterialization, arterialized, anastomosis, reperfusion, rat, animal model
4376
Play Button
Monitoring of Systemic and Hepatic Hemodynamic Parameters in Mice
Authors: Chichi Xie, Weiwei Wei, Tao Zhang, Olaf Dirsch, Uta Dahmen.
Institutions: Jena University Hospital, Jena University Hospital, The First Affiliated Hospital of Wenzhou Medical University.
The use of mouse models in experimental research is of enormous importance for the study of hepatic physiology and pathophysiological disturbances. However, due to the small size of the mouse, technical details of the intraoperative monitoring procedure suitable for the mouse were rarely described. Previously we have reported a monitoring procedure to obtain hemodynamic parameters for rats. Now, we adapted the procedure to acquire systemic and hepatic hemodynamic parameters in mice, a species ten-fold smaller than rats. This film demonstrates the instrumentation of the animals as well as the data acquisition process needed to assess systemic and hepatic hemodynamics in mice. Vital parameters, including body temperature, respiratory rate and heart rate were recorded throughout the whole procedure. Systemic hemodynamic parameters consist of carotid artery pressure (CAP) and central venous pressure (CVP). Hepatic perfusion parameters include portal vein pressure (PVP), portal flow rate as well as the flow rate of the common hepatic artery (table 1). Instrumentation and data acquisition to record the normal values was completed within 1.5 h. Systemic and hepatic hemodynamic parameters remained within normal ranges during this procedure. This procedure is challenging but feasible. We have already applied this procedure to assess hepatic hemodynamics in normal mice as well as during 70% partial hepatectomy and in liver lobe clamping experiments. Mean PVP after resection (n= 20), was 11.41±2.94 cmH2O which was significantly higher (P<0.05) than before resection (6.87±2.39 cmH2O). The results of liver lobe clamping experiment indicated that this monitoring procedure is sensitive and suitable for detecting small changes in portal pressure and portal flow rate. In conclusion, this procedure is reliable in the hands of an experienced micro-surgeon but should be limited to experiments where mice are absolutely needed.
Medicine, Issue 92, mice, hemodynamics, hepatic perfusion, CAP, CVP, surgery, intraoperative monitoring, portal vein pressure, blood flow
51955
Play Button
Technique of Subnormothermic Ex Vivo Liver Perfusion for the Storage, Assessment, and Repair of Marginal Liver Grafts
Authors: Jan M. Knaak, Vinzent N. Spetzler, Nicolas Goldaracena, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital, Toronto General Hospital, Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation. These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past. In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved. This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.
Medicine, Issue 90, ex vivo liver perfusion, marginal grafts, DCD
51419
Play Button
Heterotopic Auxiliary Rat Liver Transplantation With Flow-regulated Portal Vein Arterialization in Acute Hepatic Failure
Authors: Karina Schleimer, Johannes Kalder, Jochen Grommes, Houman Jalaie, Samir Tawadros, Andreas Greiner, Michael Jacobs, Maria Kokozidou.
Institutions: University Hospital RWTH Aachen.
In acute hepatic failure auxiliary liver transplantation is an interesting alternative approach. The aim is to provide a temporary support until the failing native liver has regenerated.1-3 The APOLT-method, the orthotopic implantation of auxiliary segments- averts most of the technical problems. However this method necessitates extensive resections of both the native liver and the graft.4 In 1998, Erhard developed the heterotopic auxiliary liver transplantation (HALT) utilizing portal vein arterialization (PVA) (Figure 1). This technique showed promising initial clinical results.5-6 We developed a HALT-technique with flow-regulated PVA in the rat to examine the influence of flow-regulated PVA on graft morphology and function (Figure 2). A liver graft reduced to 30 % of its original size, was heterotopically implanted in the right renal region of the recipient after explantation of the right kidney.  The infra-hepatic caval vein of the graft was anastomosed with the infrahepatic caval vein of the recipient. The arterialization of the donor’s portal vein was carried out via the recipient’s right renal artery with the stent technique. The blood-flow regulation of the arterialized portal vein was achieved with the use of a stent with an internal diameter of 0.3 mm. The celiac trunk of the graft was end-to-side anastomosed with the recipient’s aorta and the bile duct was implanted into the duodenum. A subtotal resection of the native liver was performed to induce acute hepatic failure. 7 In this manner 112 transplantations were performed. The perioperative survival rate was 90% and the 6-week survival rate was 80%. Six weeks after operation, the native liver regenerated, showing an increase in weight from 2.3±0.8 g to 9.8±1 g. At this time, the graft’s weight decreased from 3.3±0.8 g to 2.3±0.8 g. We were able to obtain promising long-term results in terms of graft morphology and function. HALT with flow-regulated PVA reliably bridges acute hepatic failure until the native liver regenerates.
Medicine, Issue 91, auxiliary liver transplantation, rat, portal vein arterialization, flow-regulation, acute hepatic failure
51115
Play Button
An Orthotopic Bladder Cancer Model for Gene Delivery Studies
Authors: Laura Kasman, Christina Voelkel-Johnson.
Institutions: Medical University of South Carolina.
Bladder cancer is the second most common cancer of the urogenital tract and novel therapeutic approaches that can reduce recurrence and progression are needed. The tumor microenvironment can significantly influence tumor development and therapy response. It is therefore often desirable to grow tumor cells in the organ from which they originated. This protocol describes an orthotopic model of bladder cancer, in which MB49 murine bladder carcinoma cells are instilled into the bladder via catheterization. Successful tumor cell implantation in this model requires disruption of the protective glycosaminoglycan layer, which can be accomplished by physical or chemical means. In our protocol the bladder is treated with trypsin prior to cell instillation. Catheterization of the bladder can also be used to deliver therapeutics once the tumors are established. This protocol describes the delivery of an adenoviral construct that expresses a luciferase reporter gene. While our protocol has been optimized for short-term studies and focuses on gene delivery, the methodology of mouse bladder catheterization has broad applications.
Medicine, Issue 82, Bladder cancer, gene delivery, adenovirus, orthotopic model, catheterization
50181
Play Button
In situ Transverse Rectus Abdominis Myocutaneous Flap: A Rat Model of Myocutaneous Ischemia Reperfusion Injury
Authors: Marie-Claire Edmunds, Stephen Wigmore, David Kluth.
Institutions: Royal Infirmary of Edinburgh, Royal Infirmary of Edinburgh.
Free tissue transfer is the gold standard of reconstructive surgery to repair complex defects not amenable to local options or those requiring composite tissue. Ischemia reperfusion injury (IRI) is a known cause of partial free flap failure and has no effective treatment. Establishing a laboratory model of this injury can prove costly both financially as larger mammals are conventionally used and in the expertise required by the technical difficulty of these procedures typically requires employing an experienced microsurgeon. This publication and video demonstrate the effective use of a model of IRI in rats which does not require microsurgical expertise. This procedure is an in situ model of a transverse abdominis myocutaneous (TRAM) flap where atraumatic clamps are utilized to reproduce the ischemia-reperfusion injury associated with this surgery. A laser Doppler Imaging (LDI) scanner is employed to assess flap perfusion and the image processing software, Image J to assess percentage area skin survival as a primary outcome measure of injury.
Medicine, Issue 76, Biomedical Engineering, Immunology, Anatomy, Physiology, Cellular Biology, Hematology, Surgery, Microsurgery, Reconstructive Surgical Procedures, Surgical Procedures, Operative, Myocutaneous flap, preconditioning, ischemia reperfusion injury, rat, animal model
50473
Play Button
Ovariectomy and 17β-estradiol Replacement in Rats and Mice: A Visual Demonstration
Authors: Jakob O. Ström, Annette Theodorsson, Edvin Ingberg, Ida-Maria Isaksson, Elvar Theodorsson.
Institutions: Linköping University.
Estrogens are a family of female sexual hormones with an exceptionally wide spectrum of effects. When rats and mice are used in estrogen research they are commonly ovariectomized in order to ablate the rapidly cycling hormone production, replacing the 17β-estradiol exogenously. There is, however, lack of consensus regarding how the hormone should be administered to obtain physiological serum concentrations. This is crucial since the 17β-estradiol level/administration method profoundly influences the experimental results1-3. We have in a series of studies characterized the different modes of 17β-estradiol administration, finding that subcutaneous silastic capsules and per-oral nut-cream Nutella are superior to commercially available slow-release pellets (produced by the company Innovative Research of America) and daily injections in terms of producing physiological serum concentrations of 17β-estradiol4-6. Amongst the advantages of the nut-cream method, that previously has been used for buprenorphine administration7, is that when used for estrogen administration it resembles peroral hormone replacement therapy and is non-invasive. The subcutaneous silastic capsules are convenient and produce the most stable serum concentrations. This video article contains step-by-step demonstrations of ovariectomy and 17β-estradiol hormone replacement by silastic capsules and peroral Nutella in rats and mice, followed by a discussion of important aspects of the administration procedures.
Medicine, Issue 64, Physiology, Oophorectomy, Rat, Mouse, 17β-estradiol, Administration, Silastic capsules, Nutella
4013
Play Button
4D Multimodality Imaging of Citrobacter rodentium Infections in Mice
Authors: James William Collins, Jeffrey A Meganck, Chaincy Kuo, Kevin P Francis, Gad Frankel.
Institutions: Imperial College London, Caliper- A PerkinElmer Company.
This protocol outlines the steps required to longitudinally monitor a bioluminescent bacterial infection using composite 3D diffuse light imaging tomography with integrated μCT (DLIT-μCT) and the subsequent use of this data to generate a four dimensional (4D) movie of the infection cycle. To develop the 4D infection movies and to validate the DLIT-μCT imaging for bacterial infection studies using an IVIS Spectrum CT, we used infection with bioluminescent C. rodentium, which causes self-limiting colitis in mice. In this protocol, we outline the infection of mice with bioluminescent C. rodentium and non-invasive monitoring of colonization by daily DLIT-μCT imaging and bacterial enumeration from feces for 8 days. The use of the IVIS Spectrum CT facilitates seamless co-registration of optical and μCT scans using a single imaging platform. The low dose μCT modality enables the imaging of mice at multiple time points during infection, providing detailed anatomical localization of bioluminescent bacterial foci in 3D without causing artifacts from the cumulative radiation. Importantly, the 4D movies of infected mice provide a powerful analytical tool to monitor bacterial colonization dynamics in vivo.
Infection, Issue 78, Immunology, Cellular Biology, Molecular Biology, Microbiology, Genetics, Biophysics, Biomedical Engineering, Medicine, Anatomy, Physiology, Infectious Diseases, Bacterial Infections, Bioluminescence, DLIT-μCT, C. rodentium, 4D imaging, in vivo imaging, multi-modality imaging, CT, imaging, tomography, animal model
50450
Play Button
A Method for Ovarian Follicle Encapsulation and Culture in a Proteolytically Degradable 3 Dimensional System
Authors: Ariella Shikanov, Min Xu, Teresa K. Woodruff, Lonnie D. Shea.
Institutions: Northwestern University, Northwestern University, Feinberg School of Medicine, Northwestern University, Northwestern University, Northwestern University.
The ovarian follicle is the functional unit of the ovary that secretes sex hormones and supports oocyte maturation. In vitro follicle techniques provide a tool to model follicle development in order to investigate basic biology, and are further being developed as a technique to preserve fertility in the clinic1-4. Our in vitro culture system employs hydrogels in order to mimic the native ovarian environment by maintaining the 3D follicular architecture, cell-cell interactions and paracrine signaling that direct follicle development 5. Previously, follicles were successfully cultured in alginate, an inert algae-derived polysaccharide that undergoes gelation with calcium ions6-8. Alginate hydrogels formed at a concentration of 0.25% w/v were the most permissive for follicle culture, and retained the highest developmental competence 9. Alginate hydrogels are not degradable, thus an increase in the follicle diameter results in a compressive force on the follicle that can impact follicle growth10. We subsequently developed a culture system based on a fibrin-alginate interpenetrating network (FA-IPN), in which a mixture of fibrin and alginate are gelled simultaneously. This combination provides a dynamic mechanical environment because both components contribute to matrix rigidity initially; however, proteases secreted by the growing follicle degrade fibrin in the matrix leaving only alginate to provide support. With the IPN, the alginate content can be reduced below 0.25%, which is not possible with alginate alone 5. Thus, as the follicle expands, it will experience a reduced compressive force due to the reduced solids content. Herein, we describe an encapsulation method and an in vitro culture system for ovarian follicles within a FA-IPN. The dynamic mechanical environment mimics the natural ovarian environment in which small follicles reside in a rigid cortex and move to a more permissive medulla as they increase in size11. The degradable component may be particularly critical for clinical translation in order to support the greater than 106-fold increase in volume that human follicles normally undergo in vivo .
Bioengineering, Issue 49, Ovarian follicle, fibrin-alginate, 3D culture system, dynamic environment
2695
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
51807
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
51827
Play Button
DNBS/TNBS Colitis Models: Providing Insights Into Inflammatory Bowel Disease and Effects of Dietary Fat
Authors: Vijay Morampudi, Ganive Bhinder, Xiujuan Wu, Chuanbin Dai, Ho Pan Sham, Bruce A. Vallance, Kevan Jacobson.
Institutions: BC Children's Hospital.
Inflammatory Bowel Diseases (IBD), including Crohn's Disease and Ulcerative Colitis, have long been associated with a genetic basis, and more recently host immune responses to microbial and environmental agents. Dinitrobenzene sulfonic acid (DNBS)-induced colitis allows one to study the pathogenesis of IBD associated environmental triggers such as stress and diet, the effects of potential therapies, and the mechanisms underlying intestinal inflammation and mucosal injury. In this paper, we investigated the effects of dietary n-3 and n-6 fatty acids on the colonic mucosal inflammatory response to DNBS-induced colitis in rats. All rats were fed identical diets with the exception of different types of fatty acids [safflower oil (SO), canola oil (CO), or fish oil (FO)] for three weeks prior to exposure to intrarectal DNBS. Control rats given intrarectal ethanol continued gaining weight over the 5 day study, whereas, DNBS-treated rats fed lipid diets all lost weight with FO and CO fed rats demonstrating significant weight loss by 48 hr and rats fed SO by 72 hr. Weight gain resumed after 72 hr post DNBS, and by 5 days post DNBS, the FO group had a higher body weight than SO or CO groups. Colonic sections collected 5 days post DNBS-treatment showed focal ulceration, crypt destruction, goblet cell depletion, and mucosal infiltration of both acute and chronic inflammatory cells that differed in severity among diet groups. The SO fed group showed the most severe damage followed by the CO, and FO fed groups that showed the mildest degree of tissue injury. Similarly, colonic myeloperoxidase (MPO) activity, a marker of neutrophil activity was significantly higher in SO followed by CO fed rats, with FO fed rats having significantly lower MPO activity. These results demonstrate the use of DNBS-induced colitis, as outlined in this protocol, to determine the impact of diet in the pathogenesis of IBD.
Medicine, Issue 84, Chemical colitis, Inflammatory Bowel Disease, intra rectal administration, intestinal inflammation, transmural inflammation, myeloperoxidase activity
51297
Play Button
Preparation of Acute Hippocampal Slices from Rats and Transgenic Mice for the Study of Synaptic Alterations during Aging and Amyloid Pathology
Authors: Diana M. Mathis, Jennifer L. Furman, Christopher M. Norris.
Institutions: University of Kentucky College of Public Health, University of Kentucky College of Medicine, University of Kentucky College of Medicine.
The rodent hippocampal slice preparation is perhaps the most broadly used tool for investigating mammalian synaptic function and plasticity. The hippocampus can be extracted quickly and easily from rats and mice and slices remain viable for hours in oxygenated artificial cerebrospinal fluid. Moreover, basic electrophysisologic techniques are easily applied to the investigation of synaptic function in hippocampal slices and have provided some of the best biomarkers for cognitive impairments. The hippocampal slice is especially popular for the study of synaptic plasticity mechanisms involved in learning and memory. Changes in the induction of long-term potentiation and depression (LTP and LTD) of synaptic efficacy in hippocampal slices (or lack thereof) are frequently used to describe the neurologic phenotype of cognitively-impaired animals and/or to evaluate the mechanism of action of nootropic compounds. This article outlines the procedures we use for preparing hippocampal slices from rats and transgenic mice for the study of synaptic alterations associated with brain aging and Alzheimer's disease (AD)1-3. Use of aged rats and AD model mice can present a unique set of challenges to researchers accustomed to using younger rats and/or mice in their research. Aged rats have thicker skulls and tougher connective tissue than younger rats and mice, which can delay brain extraction and/or dissection and consequently negate or exaggerate real age-differences in synaptic function and plasticity. Aging and amyloid pathology may also exacerbate hippocampal damage sustained during the dissection procedure, again complicating any inferences drawn from physiologic assessment. Here, we discuss the steps taken during the dissection procedure to minimize these problems. Examples of synaptic responses acquired in "healthy" and "unhealthy" slices from rats and mice are provided, as well as representative synaptic plasticity experiments. The possible impact of other methodological factors on synaptic function in these animal models (e.g. recording solution components, stimulation parameters) are also discussed. While the focus of this article is on the use of aged rats and transgenic mice, novices to slice physiology should find enough detail here to get started on their own studies, using a variety of rodent models.
Neuroscience, Issue 49, aging, amyloid, hippocampal slice, synaptic plasticity, Ca2+, CA1, electrophysiology
2330
Play Button
A New Approach for the Comparative Analysis of Multiprotein Complexes Based on 15N Metabolic Labeling and Quantitative Mass Spectrometry
Authors: Kerstin Trompelt, Janina Steinbeck, Mia Terashima, Michael Hippler.
Institutions: University of Münster, Carnegie Institution for Science.
The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling (14N/15N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions.
Microbiology, Issue 85, Sucrose density gradients, Chlamydomonas, multiprotein complexes, 15N metabolic labeling, thylakoids
51103
Play Button
Profiling of Methyltransferases and Other S-adenosyl-L-homocysteine-binding Proteins by Capture Compound Mass Spectrometry (CCMS)
Authors: Thomas Lenz, Peter Poot, Olivia Gräbner, Mirko Glinski, Elmar Weinhold, Mathias Dreger, Hubert Köster.
Institutions: caprotec bioanalytics GmbH, RWTH Aachen University.
There is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions such as affinity chromatography 1 or Activity Based Protein Profiling 2. Trifunctional Capture Compounds (CCs, Figure 1A) 3 are the basis for a generic approach, in which the initial equilibrium-driven interaction between a small molecule probe (the selectivity function, here S-adenosyl-L-homocysteine, SAH, Figure 1A) and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function (here a phenylazide) of the CC and the surface of the target proteins. The sorting function (here biotin) serves to isolate the CC - protein conjugates from complex biological mixtures with the help of a solid phase (here streptavidin magnetic beads). Two configurations of the experiments are possible: "off-bead" 4 or the presently described "on-bead" configuration (Figure 1B). The selectivity function may be virtually any small molecule of interest (substrates, inhibitors, drug molecules). S-Adenosyl-L-methionine (SAM, Figure 1A) is probably, second to ATP, the most widely used cofactor in nature 5, 6. It is used as the major methyl group donor in all living organisms with the chemical reaction being catalyzed by SAM-dependent methyltransferases (MTases), which methylate DNA 7, RNA 8, proteins 9, or small molecules 10. Given the crucial role of methylation reactions in diverse physiological scenarios (gene regulation, epigenetics, metabolism), the profiling of MTases can be expected to become of similar importance in functional proteomics as the profiling of kinases. Analytical tools for their profiling, however, have not been available. We recently introduced a CC with SAH as selectivity group to fill this technological gap (Figure 1A). SAH, the product of SAM after methyl transfer, is a known general MTase product inhibitor 11. For this reason and because the natural cofactor SAM is used by further enzymes transferring other parts of the cofactor or initiating radical reactions as well as because of its chemical instability 12, SAH is an ideal selectivity function for a CC to target MTases. Here, we report the utility of the SAH-CC and CCMS by profiling MTases and other SAH-binding proteins from the strain DH5α of Escherichia coli (E. coli), one of the best-characterized prokaryotes, which has served as the preferred model organism in countless biochemical, biological, and biotechnological studies. Photo-activated crosslinking enhances yield and sensitivity of the experiment, and the specificity can be readily tested for in competition experiments using an excess of free SAH.
Biochemistry, Issue 46, Capture Compound, photo-crosslink, small molecule-protein interaction, methyltransferase, S-adenosyl-l-homocysteine, SAH, S-adenosyl-l-methionine, SAM, functional proteomics, LC-MS/MS
2264
Play Button
Bottom-up and Shotgun Proteomics to Identify a Comprehensive Cochlear Proteome
Authors: Lancia N.F. Darville, Bernd H.A. Sokolowski.
Institutions: University of South Florida.
Proteomics is a commonly used approach that can provide insights into complex biological systems. The cochlear sensory epithelium contains receptors that transduce the mechanical energy of sound into an electro-chemical energy processed by the peripheral and central nervous systems. Several proteomic techniques have been developed to study the cochlear inner ear, such as two-dimensional difference gel electrophoresis (2D-DIGE), antibody microarray, and mass spectrometry (MS). MS is the most comprehensive and versatile tool in proteomics and in conjunction with separation methods can provide an in-depth proteome of biological samples. Separation methods combined with MS has the ability to enrich protein samples, detect low molecular weight and hydrophobic proteins, and identify low abundant proteins by reducing the proteome dynamic range. Different digestion strategies can be applied to whole lysate or to fractionated protein lysate to enhance peptide and protein sequence coverage. Utilization of different separation techniques, including strong cation exchange (SCX), reversed-phase (RP), and gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) can be applied to reduce sample complexity prior to MS analysis for protein identification.
Biochemistry, Issue 85, Cochlear, chromatography, LC-MS/MS, mass spectrometry, Proteomics, sensory epithelium
51186
Play Button
Induction and Monitoring of Active Delayed Type Hypersensitivity (DTH) in Rats
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Delayed type hypersensitivity (DTH) is an inflammatory reaction mediated by CCR7- effector memory T lymphocytes that infiltrate the site of injection of an antigen against which the immune system has been primed. The inflammatory reaction is characterized by redness and swelling of the site of antigenic challenge. It is a convenient model to determine the in vivo efficacy of immunosuppressants. Cutaneous DTH can be induced either by adoptive transfer of antigen-specific T lymphocytes or by active immunization with an antigen, and subsequent intradermal challenge with the antigen to induce the inflammatory reaction in a given skin area. DTH responses can be induced to various antigens, for example ovalbumin, tuberculin, tetanus toxoid, or keyhole limpet hemocyanin (KLH). Here we demonstrate how to induce an active DTH reaction in Lewis rats. We will first prepare a water-in-oil emulsion of KLH, our antigen of interest, in complete Freund's adjuvant and inject this emulsion subcutaneously to rats. This will prime the immune system to develop memory T cells directed to KLH. Seven days later we will challenge the rats intradermally on the back with KLH on one side and with ovalbumin, an irrelevant antigen, on the other side. The inflammatory reaction will be visible 16-72 hours later and the red and swollen area will be measured as an indication of DTH severity.
Cell Biology, Issue 6, Immunology, Immune Response, Inflammation, lymphocyte, inflammatory reaction, skin test, video protocol
237
Play Button
Induction and Monitoring of Adoptive Delayed-Type Hypersensitivity in Rats
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Delayed type hypersensitivity (DTH) is an inflammatory reaction mediated by CCR7- effector memory T lymphocytes that infiltrate the site of injection of an antigen against which the immune system has been primed. The inflammatory reaction is characterized by redness and swelling of the site of antigenic challenge. It is a convenient model to determine the in vivo efficacy of immunosuppressants. Cutaneous DTH can be induced either by adoptive transfer of antigen-specific T lymphocytes or by active immunization with an antigen, and subsequent intradermal challenge with the antigen to induce the inflammatory reaction in a given skin area. DTH responses can be induced to various antigens, for example ovalbumin, tuberculin, tetanus toxoid, or keyhole limpet hemocyanin. Such reactions can also be induced against autoantigen, for example to myelin basic protein (MBP) in rats with experimental autoimmune encephalomyelitis induced with MBP, an animal model for multiple sclerosis (1). Here we demonstrate how to induce an adoptive DTH reaction in Lewis rats. We will first stimulate ovalbumin-specific T cells in vitro and inject these activated cells intraperitoneally to naive rats. After allowing the cells to equilibrate in vivo for 2 days, we will challenge the rats with ovalbumin in the pinna of one ear, while the other ear wil receive saline. The inflammatory reaction will be visible 3-72 hours later and ear thickness will be measured as an indication of DTH severity.
Immunology, Issue 8, Rodent, Hypersensitivity, Mouse, Skin, Immune Reaction, Blood Draw, Serum, Video Protocol, Vaccination, Adjuvant
325
Play Button
Plastic Embedding and Sectioning of Xenopus laevis Embryos
Authors: Souichi Ogata, Shimako Kawauchi, Anne Calof, Ken W.Y. Cho.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Developmental Biology, Issue 3, embryo, Xenopus, dissection
188
Play Button
Creation of Reversible Cholestatic Rat Model
Authors: Gokulakkrishna Subhas, Jasneet Bhullar, Vijay K. Mittal, Michael J. Jacobs.
Institutions: Providence Hospital and Medical Centers.
Cholestasis is a clinical condition commonly encountered by both surgeons and gastroenterologists. Cholestasis can cause various physiological changes and affect the nutritional status and surgical outcomes. Study of the pathophysiological changes occurring in the liver and other organs is of importance. Various studies have been done in cholestatic rat models. We used a reversible cholestatic rat model in our recent study looking at the role of methylprednisolone in the ischemia reperfusion injury. Various techniques for creation of a reversible cholestatic model have been described. Creation of a reversible cholestatic rat model can be challenging in view of the smaller size and unique hepatopancreatobiliary anatomy in rats. This video article demonstrates the creation of a reversible cholestatic model. This model can be used in various studies, such as looking at the changes in nutritional, physiological, pathological, histological and immunological changes in the gastrointestinal tract. This model can also be used to see the effects of cholestasis and various therapeutic interventions on major hepatic surgeries.
Medicine, Issue 51, Cholestasis, Rat model, Reversible cholestasis, Choledochoduodenostomy, Bile duct obstruction, Cholestasis
2692
Play Button
In Utero Intraventricular Injection and Electroporation of E16 Rat Embryos
Authors: William Walantus, Laura Elias, Arnold Kriegstein.
Institutions: University of California, San Francisco - UCSF.
In-utero in-vivo injection and electroporation of the embryonic rat neocortex provides a powerful tool for the manipulation of individual progenitors lining the walls of the lateral ventricle. This technique is now widely used to study the processes involved in corticogenesis by over-expressing or knocking down genes and observing the effects on cellular proliferation, migration, and differentiation. In comparison to traditional knockout strategies, in-utero electroporation provides a rapid means to manipulate a population of cells during a specific temporal window. In this video protocol, we outline the experimental methodology for preparing rats for surgery, exposing the uterine horns through laporatomy, injecting DNA into the lateral ventricles of the developing embryo, electroporating DNA into the progenitors lining the lateral wall, and caring for animals post-surgery. Our laboratory uses this protocol for surgeries on E15-E21 rats, however it is most commonly performed at E16 as shown in this video.
Neuroscience, Issue 6, Protocol, Stem Cells, Cerebral Cortex, Brain Development, Electroporation, Intra Uterine Injections, transfection
236
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.