JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Results from the first 12 months of the national surveillance of healthcare associated outbreaks in Germany, 2011/2012.
PLoS ONE
PUBLISHED: 01-01-2014
In August 2011, the German Protection against Infection Act was amended, mandating the reporting of healthcare associated infection (HAI) outbreak notifications by all healthcare workers in Germany via local public health authorities and federal states to the Robert Koch Institute (RKI).
ABSTRACT
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
28 Related JoVE Articles!
Play Button
IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation
Authors: Diana Pauly, Pablo A. Chacana, Esteban G. Calzado, Björn Brembs, Rüdiger Schade.
Institutions: Robert Koch-Institute, Instituto de Virología, Ciudad de la Habana, Cuba, Free University of Berlin, Charité-University Medicine of Berlin.
Hens can be immunized by means of i.m. vaccination (Musculus pectoralis, left and right, injection volume 0.5-1.0 ml) or by means of Gene-Gun plasmid-immunization. Dependent on the immunogenicity of the antigen, high antibody-titres (up to 1:100,000 - 1:1,000,000) can be achieved after only one or 3 - 4 boost immunizations. Normally, a hen lays eggs continuously for about 72 weeks, thereafter the laying capacity decreases. This protocol describes the extraction of total IgY from egg yolk by means of a precipitation procedure (PEG. Polson et al. 1980). The method involves two important steps. The first one is the removal of lipids and the second is the precipitation of total IgY from the supernatant of step one. After dialysis against a buffer (normally PBS) the IgY-extract can be stored at -20°C for more than a year. The purity of the extract is around 80 %, the total IgY per egg varies from 40-80 mg, dependent on the age of the laying hen. The total IgY content increases with the age of the hen from around 40 mg/egg up to 80 mg/egg (concerning PEG precipitation). The laying capacity of a hen per year is around 325 eggs. That means a total potential harvest of 20 g total IgY/year based on a mean IgY content of 60 mg total IgY/egg (see Table 1).
Immunology, Issue 51, Immunization, Chicken, Antibodies, Polyethylene Glycol
3084
Play Button
Subcutaneous Infection of Methicillin Resistant Staphylococcus Aureus (MRSA)
Authors: Ching Wen Tseng, Marisel Sanchez-Martinez, Andrea Arruda, George Y. Liu.
Institutions: Cedars-Sinai Medical Center.
MRSA is a worldwide threat to public health, and MRSA skin and soft-tissue infections now account for more than half of all soft-tissue infections in the United States. Among soft-tissue infections, myositis, pyomyositis, and necrotizing fasciitis have been increasingly reported in association with MRSA arising from the community. To understand the interplay between MRSA and host immunity leading to more severe infection, the availability of animal models is critical, permitting the study of host and bacterial factors. Several infection models have been introduced to assess the pathogenesis of S. aureus during superficial skin infection. Here, we describe a subcutaneous infection model that examines the skin, subcutaneous, and muscle pathologies.
Infection, Issue 48, Subcutaneous infection, Staphylococcus aureus, MRSA
2528
Play Button
Chromosomics: Detection of Numerical and Structural Alterations in All 24 Human Chromosomes Simultaneously Using a Novel OctoChrome FISH Assay
Authors: Zhiying Ji, Luoping Zhang.
Institutions: University of California, Berkeley .
Fluorescence in situ hybridization (FISH) is a technique that allows specific DNA sequences to be detected on metaphase or interphase chromosomes in cell nuclei1. The technique uses DNA probes with unique sequences that hybridize to whole chromosomes or specific chromosomal regions, and serves as a powerful adjunct to classic cytogenetics. For instance, many earlier studies reported the frequent detection of increased chromosome aberrations in leukemia patients related with benzene exposure, benzene-poisoning patients, and healthy workers exposed to benzene, using classic cytogenetic analysis2. Using FISH, leukemia-specific chromosomal alterations have been observed to be elevated in apparently healthy workers exposed to benzene3-6, indicating the critical roles of cytogentic changes in benzene-induced leukemogenesis. Generally, a single FISH assay examines only one or a few whole chromosomes or specific loci per slide, so multiple hybridizations need to be conducted on multiple slides to cover all of the human chromosomes. Spectral karyotyping (SKY) allows visualization of the whole genome simultaneously, but the requirement for special software and equipment limits its application7. Here, we describe a novel FISH assay, OctoChrome-FISH, which can be applied for Chromosomics, which we define here as the simultaneous analysis of all 24 human chromosomes on one slide in human studies, such as chromosome-wide aneuploidy study (CWAS)8. The basis of the method, marketed by Cytocell as the Chromoprobe Multiprobe System, is an OctoChrome device that is divided into 8 squares, each of which carries three different whole chromosome painting probes (Figure 1). Each of the three probes is directly labeled with a different colored fluorophore, green (FITC), red (Texas Red), and blue (Coumarin). The arrangement of chromosome combinations on the OctoChrome device has been designed to facilitate the identification of the non-random structural chromosome alterations (translocations) found in the most common leukemias and lymphomas, for instance t(9;22), t(15;17), t(8;21), t(14;18)9. Moreover, numerical changes (aneuploidy) in chromosomes can be detected concurrently. The corresponding template slide is also divided into 8 squares onto which metaphase spreads are bound (Figure 2), and is positioned over the OctoChrome device. The probes and target DNA are denatured at high-temperature and hybridized in a humid chamber, and then all 24 human chromosomes can be visualized simultaneously. OctoChrome FISH is a promising technique for the clinical diagnosis of leukemia and lymphoma and for detection of aneuploidies in all chromosomes. We have applied this new Chromosomic approach in a CWAS study of benzene-exposed Chinese workers8,10.
Genetics, Issue 60, Chromosomics, OctoChrome-FISH, fluorescence in situ hybridization (FISH), Chromosome-wide aneuploidy study (CWAS), aneuploidy, chromosomal translocations, leukemia, lymphoma
3619
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
51242
Play Button
Discovery of New Intracellular Pathogens by Amoebal Coculture and Amoebal Enrichment Approaches
Authors: Nicolas Jacquier, Sébastien Aeby, Julia Lienard, Gilbert Greub.
Institutions: University Hospital Center and University of Lausanne.
Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes.
Immunology, Issue 80, Environmental Microbiology, Soil Microbiology, Water Microbiology, Amoebae, microorganisms, coculture, obligate intracellular bacteria
51055
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
51963
Play Button
Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays
Authors: F. Mark Dunning, Timothy M. Piazza, Füsûn N. Zeytin, Ward C. Tucker.
Institutions: BioSentinel Inc., Madison, WI.
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Neuroscience, Issue 85, Botulinum, food testing, detection, quantification, complex matrices, BoTest Matrix, Clostridium, potency testing
51170
Play Button
Monitoring Intraspecies Competition in a Bacterial Cell Population by Cocultivation of Fluorescently Labelled Strains
Authors: Lorena Stannek, Richard Egelkamp, Katrin Gunka, Fabian M. Commichau.
Institutions: Georg-August University.
Many microorganisms such as bacteria proliferate extremely fast and the populations may reach high cell densities. Small fractions of cells in a population always have accumulated mutations that are either detrimental or beneficial for the cell. If the fitness effect of a mutation provides the subpopulation with a strong selective growth advantage, the individuals of this subpopulation may rapidly outcompete and even completely eliminate their immediate fellows. Thus, small genetic changes and selection-driven accumulation of cells that have acquired beneficial mutations may lead to a complete shift of the genotype of a cell population. Here we present a procedure to monitor the rapid clonal expansion and elimination of beneficial and detrimental mutations, respectively, in a bacterial cell population over time by cocultivation of fluorescently labeled individuals of the Gram-positive model bacterium Bacillus subtilis. The method is easy to perform and very illustrative to display intraspecies competition among the individuals in a bacterial cell population.
Cellular Biology, Issue 83, Bacillus subtilis, evolution, adaptation, selective pressure, beneficial mutation, intraspecies competition, fluorophore-labelling, Fluorescence Microscopy
51196
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
51274
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Avian Influenza Surveillance with FTA Cards: Field Methods, Biosafety, and Transportation Issues Solved
Authors: Robert H.S. Kraus, Pim van Hooft, Jonas Waldenström, Neus Latorre-Margalef, Ronald C. Ydenberg, Herbert H.T. Prins.
Institutions: Wageningen University, Linnaeus University, Simon Fraser University .
Avian Influenza Viruses (AIVs) infect many mammals, including humans1. These AIVs are diverse in their natural hosts, harboring almost all possible viral subtypes2. Human pandemics of flu originally stem from AIVs3. Many fatal human cases during the H5N1 outbreaks in recent years were reported. Lately, a new AIV related strain swept through the human population, causing the 'swine flu epidemic'4. Although human trading and transportation activity seems to be responsible for the spread of highly pathogenic strains5, dispersal can also partly be attributed to wild birds6, 7. However, the actual reservoir of all AIV strains is wild birds. In reaction to this and in face of severe commercial losses in the poultry industry, large surveillance programs have been implemented globally to collect information on the ecology of AIVs, and to install early warning systems to detect certain highly pathogenic strains8-12. Traditional virological methods require viruses to be intact and cultivated before analysis. This necessitates strict cold chains with deep freezers and heavy biosafety procedures to be in place during transport. Long-term surveillance is therefore usually restricted to a few field stations close to well equipped laboratories. Remote areas cannot be sampled unless logistically cumbersome procedures are implemented. These problems have been recognised13, 14 and the use of alternative storage and transport strategies investigated (alcohols or guanidine)15-17. Recently, Kraus et al.18 introduced a method to collect, store and transport AIV samples, based on a special filter paper. FTA cards19 preserve RNA on a dry storage basis20 and render pathogens inactive upon contact21. This study showed that FTA cards can be used to detect AIV RNA in reverse-transcription PCR and that the resulting cDNA could be sequenced and virus genes and determined. In the study of Kraus et al.18 a laboratory isolate of AIV was used, and samples were handled individually. In the extension presented here, faecal samples from wild birds from the duck trap at the Ottenby Bird Observatory (SE Sweden) were tested directly to illustrate the usefulness of the methods under field conditions. Catching of ducks and sample collection by cloacal swabs is demonstrated. The current protocol includes up-scaling of the work flow from single tube handling to a 96-well design. Although less sensitive than the traditional methods, the method of FTA cards provides an excellent supplement to large surveillance schemes. It allows collection and analysis of samples from anywhere in the world, without the need to maintaining a cool chain or safety regulations with respect to shipping of hazardous reagents, such as alcohol or guanidine.
Immunology, Issue 54, AI, Influenza A Virus, zoonoses, reverse transcription PCR, viral RNA, surveillance, duck trap, RNA preservation and storage, infection, mallard
2832
Play Button
Isolation of Lymphocytes from Mouse Genital Tract Mucosa
Authors: Janina Jiang, Kathleen A. Kelly.
Institutions: University of California, Los Angeles , California NanoSystems.
Mucosal surfaces, including in the gastrointestinal, urogenital, and respiratory tracts, provide portals of entry for pathogens, such as viruses and bacteria 1. Mucosae are also inductive sites in the host to generate immunity against pathogens, such as the Peyers patches in the intestinal tract and the nasal-associated lymphoreticular tissue in the respiratory tract. This unique feature brings mucosal immunity as a crucial player of the host defense system. Many studies have been focused on gastrointestinal and respiratory mucosal sites. However, there has been little investigation of reproductive mucosal sites. The genital tract mucosa is the primary infection site for sexually transmitted diseases (STD), including bacterial and viral infections. STDs are one of the most critical health challenges facing the world today. Centers for Disease Control and Prevention estimates that there are 19 million new infectious every year in the United States. STDs cost the U.S. health care system $17 billion every year 2, and cost individuals even more in immediate and life-long health consequences. In order to confront this challenge, a greater understanding of reproductive mucosal immunity is needed and isolating lymphocytes is an essential component of these studies. Here, we present a method to reproducibly isolate lymphocytes from murine female genital tracts for immunological studies that can be modified for adaption to other species. The method described below is based on one mouse. 
Immunology, Issue 67, Mucosal immunity, sexually transmitted diseases, genital tract lymphocytes, lymphocyte isolation, flow cytometry, FACS
4391
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Following in Real Time the Impact of Pneumococcal Virulence Factors in an Acute Mouse Pneumonia Model Using Bioluminescent Bacteria
Authors: Malek Saleh, Mohammed R. Abdullah, Christian Schulz, Thomas Kohler, Thomas Pribyl, Inga Jensch, Sven Hammerschmidt.
Institutions: University of Greifswald.
Pneumonia is one of the major health care problems in developing and industrialized countries and is associated with considerable morbidity and mortality. Despite advances in knowledge of this illness, the availability of intensive care units (ICU), and the use of potent antimicrobial agents and effective vaccines, the mortality rates remain high1. Streptococcus pneumoniae is the leading pathogen of community-acquired pneumonia (CAP) and one of the most common causes of bacteremia in humans. This pathogen is equipped with an armamentarium of surface-exposed adhesins and virulence factors contributing to pneumonia and invasive pneumococcal disease (IPD). The assessment of the in vivo role of bacterial fitness or virulence factors is of utmost importance to unravel S. pneumoniae pathogenicity mechanisms. Murine models of pneumonia, bacteremia, and meningitis are being used to determine the impact of pneumococcal factors at different stages of the infection. Here we describe a protocol to monitor in real-time pneumococcal dissemination in mice after intranasal or intraperitoneal infections with bioluminescent bacteria. The results show the multiplication and dissemination of pneumococci in the lower respiratory tract and blood, which can be visualized and evaluated using an imaging system and the accompanying analysis software.
Infection, Issue 84, Gram-Positive Bacteria, Streptococcus pneumoniae, Pneumonia, Bacterial, Respiratory Tract Infections, animal models, community-acquired pneumonia, invasive pneumococcal diseases, Pneumococci, bioimaging, virulence factor, dissemination, bioluminescence, IVIS Spectrum
51174
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
52183
Play Button
Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Institutions: University of Manitoba, University of Manitoba.
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Medicine, Issue 89, mucosal, immunology, FGT, lavage, cervical, CMC
51906
Play Button
A Technique to Screen American Beech for Resistance to the Beech Scale Insect (Cryptococcus fagisuga Lind.)
Authors: Jennifer L. Koch, David W. Carey.
Institutions: US Forest Service.
Beech bark disease (BBD) results in high levels of initial mortality, leaving behind survivor trees that are greatly weakened and deformed. The disease is initiated by feeding activities of the invasive beech scale insect, Cryptococcus fagisuga, which creates entry points for infection by one of the Neonectria species of fungus. Without scale infestation, there is little opportunity for fungal infection. Using scale eggs to artificially infest healthy trees in heavily BBD impacted stands demonstrated that these trees were resistant to the scale insect portion of the disease complex1. Here we present a protocol that we have developed, based on the artificial infestation technique by Houston2, which can be used to screen for scale-resistant trees in the field and in smaller potted seedlings and grafts. The identification of scale-resistant trees is an important component of management of BBD through tree improvement programs and silvicultural manipulation.
Environmental Sciences, Issue 87, Forestry, Insects, Disease Resistance, American beech, Fagus grandifolia, beech scale, Cryptococcus fagisuga, resistance, screen, bioassay
51515
Play Button
The Bovine Lung in Biomedical Research: Visually Guided Bronchoscopy, Intrabronchial Inoculation and In Vivo Sampling Techniques
Authors: Annette Prohl, Carola Ostermann, Markus Lohr, Petra Reinhold.
Institutions: Friedrich-Loeffler-Institut.
There is an ongoing search for alternative animal models in research of respiratory medicine. Depending on the goal of the research, large animals as models of pulmonary disease often resemble the situation of the human lung much better than mice do. Working with large animals also offers the opportunity to sample the same animal repeatedly over a certain course of time, which allows long-term studies without sacrificing the animals. The aim was to establish in vivo sampling methods for the use in a bovine model of a respiratory Chlamydia psittaci infection. Sampling should be performed at various time points in each animal during the study, and the samples should be suitable to study the host response, as well as the pathogen under experimental conditions. Bronchoscopy is a valuable diagnostic tool in human and veterinary medicine. It is a safe and minimally invasive procedure. This article describes the intrabronchial inoculation of calves as well as sampling methods for the lower respiratory tract. Videoendoscopic, intrabronchial inoculation leads to very consistent clinical and pathological findings in all inoculated animals and is, therefore, well-suited for use in models of infectious lung disease. The sampling methods described are bronchoalveolar lavage, bronchial brushing and transbronchial lung biopsy. All of these are valuable diagnostic tools in human medicine and could be adapted for experimental purposes to calves aged 6-8 weeks. The samples obtained were suitable for both pathogen detection and characterization of the severity of lung inflammation in the host.
Medicine, Issue 89, translational medicine, respiratory models, bovine lung, bronchoscopy, transbronchial lung biopsy, bronchoalveolar lavage, bronchial brushing, cytology brush
51557
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
50829
Play Button
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Authors: Samira Samtleben, Juliane Jaepel, Caroline Fecher, Thomas Andreska, Markus Rehberg, Robert Blum.
Institutions: University of Wuerzburg, Max Planck Institute of Neurobiology, Martinsried, Ludwig-Maximilians University of Munich.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Cellular Biology, Issue 75, Neurobiology, Neuroscience, Molecular Biology, Biochemistry, Biomedical Engineering, Bioengineering, Virology, Medicine, Anatomy, Physiology, Surgery, Endoplasmic Reticulum, ER, Calcium Signaling, calcium store, calcium imaging, calcium indicator, metabotropic signaling, Ca2+, neurons, cells, mouse, animal model, cell culture, targeted esterase induced dye loading, imaging
50317
Play Button
Prediction of HIV-1 Coreceptor Usage (Tropism) by Sequence Analysis using a Genotypic Approach
Authors: Saleta Sierra, Rolf Kaiser, Nadine Lübke, Alexander Thielen, Eugen Schuelter, Eva Heger, Martin Däumer, Stefan Reuter, Stefan Esser, Gerd Fätkenheuer, Herbert Pfister, Mark Oette, Thomas Lengauer.
Institutions: University of Cologne, Max Planck Institute for Informatics, Institute for Immune genetics, University of Duesseldorf, University of Essen, University of Cologne, Augustinerinnen Hospital.
Maraviroc (MVC) is the first licensed antiretroviral drug from the class of coreceptor antagonists. It binds to the host coreceptor CCR5, which is used by the majority of HIV strains in order to infect the human immune cells (Fig. 1). Other HIV isolates use a different coreceptor, the CXCR4. Which receptor is used, is determined in the virus by the Env protein (Fig. 2). Depending on the coreceptor used, the viruses are classified as R5 or X4, respectively. MVC binds to the CCR5 receptor inhibiting the entry of R5 viruses into the target cell. During the course of disease, X4 viruses may emerge and outgrow the R5 viruses. Determination of coreceptor usage (also called tropism) is therefore mandatory prior to administration of MVC, as demanded by EMA and FDA. The studies for MVC efficiency MOTIVATE, MERIT and 1029 have been performed with the Trofile assay from Monogram, San Francisco, U.S.A. This is a high quality assay based on sophisticated recombinant tests. The acceptance for this test for daily routine is rather low outside of the U.S.A., since the European physicians rather tend to work with decentralized expert laboratories, which also provide concomitant resistance testing. These laboratories have undergone several quality assurance evaluations, the last one being presented in 20111. For several years now, we have performed tropism determinations based on sequence analysis from the HIV env-V3 gene region (V3)2. This region carries enough information to perform a reliable prediction. The genotypic determination of coreceptor usage presents advantages such as: shorter turnover time (equivalent to resistance testing), lower costs, possibility to adapt the results to the patients' needs and possibility of analysing clinical samples with very low or even undetectable viral load (VL), particularly since the number of samples analysed with VL<1000 copies/μl roughly increased in the last years (Fig. 3). The main steps for tropism testing (Fig. 4) demonstrated in this video: 1. Collection of a blood sample 2. Isolation of the HIV RNA from the plasma and/or HIV proviral DNA from blood mononuclear cells 3. Amplification of the env region 4. Amplification of the V3 region 5. Sequence reaction of the V3 amplicon 6. Purification of the sequencing samples 7. Sequencing the purified samples 8. Sequence editing 9. Sequencing data interpretation and tropism prediction
Immunology, Issue 58, HIV-1, coreceptor, coreceptor antagonist, prediction of coreceptor usage, tropism, R5, X4, maraviroc, MVC
3264
Play Button
Assays for the Identification of Novel Antivirals against Bluetongue Virus
Authors: Linlin Gu, Stewart W. Schneller, Qianjun Li.
Institutions: University of Alabama at Birmingham, Auburn University.
To identify potential antivirals against BTV, we have developed, optimized and validated three assays presented here. The CPE-based assay was the first assay developed to evaluate whether a compound showed any antiviral efficacy and have been used to screen large compound library. Meanwhile, cytotoxicity of antivirals could also be evaluated using the CPE-based assay. The dose-response assay was designed to determine the range of efficacy for the selected antiviral, i.e. 50% inhibitory concentration (IC50) or effective concentration (EC50), as well as its range of cytotoxicity (CC50). The ToA assay was employed for the initial MoA study to determine the underlying mechanism of the novel antivirals during BTV viral lifecycle or the possible effect on host cellular machinery. These assays are vital for the evaluation of antiviral efficacy in cell culture system, and have been used for our recent researches leading to the identification of a number of novel antivirals against BTV.
Immunology, Issue 80, Drug Discovery, Drug Evaluation, Preclinical, Evaluation Studies as Topic, Drug Evaluation, Feasibility Studies, Biological Assay, Technology, Pharmaceutical, High-Throughput Screening Assays, Animal Diseases, Investigative Techniques, Antiviral, Efficacy, Bluetongue Virus, Cytopathic effect, Dose response, Time-of-Addition, Mechanism-of-Action
50820
Play Button
A Method For Production of Recombinant mCD1d Protein in Insect Cells.
Authors: Archana Khurana, Mitchell Kronenberg.
Institutions: La Jolla Institute for Allergy and Immunology.
CD1 proteins constitute a third class of antigen-presenting molecules. They are cell surface glycoproteins, expressed as approximately 50-kDa glycosylated heavy chains that are noncovalently associated with beta2-microglobulin. They bind lipids rather than peptides. Although their structure confirms the similarity of CD1 proteins to MHC class I and class II antigen presenting molecules, the mCD1d groove is relatively narrow, deep, and highly hydrophobic and it has two binding pockets instead of the several shallow pockets described for the classical MHC-encoded antigen-presenting molecules. Based upon their amino acid sequences, such a hydrobphobic groove provides an ideal environment for the binding of lipid antigens. The Natural Killer T (NKT) cells use their TCR to recognize glycolipids bound to or presented by CD1d. T cells reactive to lipids presented by CD1 have been involved in the protection against autoimmune and infectious diseases and in tumor rejection. Thus, the ability to identify, purify , and track the response of CD1-reactive NKT cell is of great importance . The generation of tetramers of alpha Galactosyl ceramide (a-Galcer) with CD1d has significant insight into the biology of NKT cells. Tetramers constructed from other CD1 molecules have also been generated and these new reagents have greatly expanded the knowledge of the functions of lipid-reactive T cells, with potential use in monitoring the response to lipid-based vaccines and in the diagnosis of autoimmune diseases and other treatments.
Cell Biology, Issue 10, High Five Insect Cells, baculovirus expression system , Multiplicity of Infection,mCD1d,alphaGalcer, BirA enzymatic biotynlation,Streptavidin PE
556
Play Button
Perspectives on Neuroscience
Authors: Wolf Singer.
Institutions: Max Planck Institute (MPI).
Neuroscience, Issue 6, brain, neuron, complexity
251
Play Button
Obtaining Highly Purified Toxoplasma gondii Oocysts by a Discontinuous Cesium Chloride Gradient
Authors: Sarah E. Staggs, Mary Jean See, J P. Dubey, Eric N. Villegas.
Institutions: Dynamac, Inc., University of Cincinnati, McMicken College of Arts and Science, Agricultural Research Service, U.S. Department of Agriculture, US Environmental Protection Agency.
Toxoplasma gondii is an obligate intracellular protozoan pathogen that commonly infects humans. It is a well characterized apicomplexan associated with causing food- and water-borne disease outbreaks. The definitive host is the feline species where sexual replication occurs resulting in the development of the highly infectious and environmentally resistant oocyst. Infection occurs via ingestion of tissue cysts from contaminated meat or oocysts from soil or water. Infection is typically asymptomatic in healthy individuals, but results in a life-long latent infection that can reactivate causing toxoplasmic encephalitis and death if the individual becomes immunocompromised. Meat contaminated with T. gondii cysts have been the primary source of infection in Europe and the United States, but recent changes in animal management and husbandry practices and improved food handling and processing procedures have significantly reduced the prevalence of T. gondii cysts in meat1, 2. Nonetheless, seroprevalence in humans remains relatively high suggesting that exposure from oocyst contaminated soil or water is likely. Indeed, waterborne outbreaks of toxoplasmosis have been reported worldwide supporting the theory exposure to the environmental oocyst form poses a significant health risk3-5. To date, research on understanding the prevalence of T. gondii oocysts in the water and environment are limited due to the lack of tools to detect oocysts in the environment 5, 6. This is primarily due to the lack of efficient purification protocols for obtaining large numbers of highly purified T gondii oocysts from infected cats for research purposes. This study describes the development of a modified CsCl method that easily purifies T. gondii oocysts from feces of infected cats that are suitable for molecular biological and tissue culture manipulation7.
Jove Infectious Diseases, Microbiology, Issue 33, Toxoplasma gondii, cesium chloride, oocysts, discontinuous gradient, apicomplexan
1420
Play Button
Wolbachia Bacterial Infection in Drosophila
Authors: Horacio Frydman.
Institutions: Boston University.
Developmental Biology, Issue 2, Drosophila, infection, fly
158
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
793
Play Button
Protocols for Oral Infection of Lepidopteran Larvae with Baculovirus
Authors: Wendy Sparks, Huarong Li, Bryony Bonning.
Institutions: Iowa State University.
Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. This video shows how lepidopteran larvae can be infected with polyhedra by droplet feeding and diet plug-based bioassays. This accompanying Springer Protocols section provides an overview of the baculovirus lifecycle and use of baculoviruses as insecticidal agents, including discussion of the pros and cons for use of baculoviruses as insecticides, and progress made in genetic enhancement of baculoviruses for improved insecticidal efficacy.
Plant Biology, Issue 19, Springer Protocols, Baculovirus insecticides, recombinant baculovirus, insect pest management
888
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.