JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
CD271+ osteosarcoma cells display stem-like properties.
PLoS ONE
PUBLISHED: 01-01-2014
Cancer stem cell (CSC) theory has been proposed and verified in many cancers. The existence of osteosarcoma CSCs has been confirmed for many years and multiple surface markers have been employed to identify them. In this study, we identified CD271(+) subpopulation of osteosarcoma displaying stem-like properties. CD271, known as the neural crest nerve growth factor receptor, is the marker of bone marrow mesenchymal stem cells (MSCs) and human melanoma-initiating cells. We discovered that CD271 was expressed differentially in diverse types of human osteosarcoma and stabilized cell lines. CD271(+) osteosarcoma cells displayed most of the properties of CSC, such as self-renewal, differentiation, drug resistance and tumorigenicity in vivo. Nanog, Oct3/4, STAT3, DNA-PKcs, Bcl-2 and ABCG2 were more expressed in CD271(+) cells compared with CD271- cells. Our study supported the osteosarcoma CSC hypothesis and, to a certain extent, revealed one of the possible mechanisms involved in maintaining CSCs properties.
ABSTRACT
Hair follicles undergo lifelong growth and hair cycle is a well-controlled process involving stem cell proliferation and quiescence. Hair bulge is a well-characterized niche for adult stem cells1. This segment of the outer root sheath contains a number of different types of stem cells, including epithelial stem cells2, melanocyte stem cells3 and neural crest like stem cells4-7. Hair follicles represent an accessible and rich source for different types of human stem cells. We and others have isolated neural crest stem cells (NCSCs) from human fetal and adult hair follicles4,5. These human stem cells are label-retaining cells and are capable of self-renewal through asymmetric cell division in vitro. They express immature neural crest cell markers but not differentiation markers. Our expression profiling study showed that they share a similar gene expression pattern with murine skin immature neural crest cells. They exhibit clonal multipotency that can give rise to myogenic, melanocytic, and neuronal cell lineages after in vitro clonal single cell culture. Differentiated cells not only acquire lineage-specific markers but also demonstrate appropriate functions in ex vivo conditions. In addition, these NCSCs show differentiation potential toward mesenchymal lineages. Differentiated neuronal cells can persist in mouse brain and retain neuronal differentiation markers. It has been shown that hair follicle derived NCSCs can help nerve regrowth, and they improve motor function in mice transplanted with these stem cells following transecting spinal cord injury8. Furthermore, peripheral nerves have been repaired with stem cell grafts9, and implantation of skin-derived precursor cells adjacent to crushed sciatic nerves has resulted in remyelination10. Therefore, the hair follicle/skin derived NCSCs have already shown promising results for regenerative therapy in preclinical models. Somatic cell reprogramming to induced pluripotent stem (iPS) cells has shown enormous potential for regenerative medicine. However, there are still many issues with iPS cells, particularly the long term effect of oncogene/virus integration and potential tumorigenicity of pluripotent stem cells have not been adequately addressed. There are still many hurdles to be overcome before iPS cells can be used for regenerative medicine. Whereas the adult stem cells are known to be safe and they have been used clinically for many years, such as bone marrow transplant. Many patients have already benefited from the treatment. Autologous adult stem cells are still preferred cells for transplantation. Therefore, the readily accessible and expandable adult stem cells in human skin/hair follicles are a valuable source for regenerative medicine.
22 Related JoVE Articles!
Play Button
A Real-time Electrical Impedance Based Technique to Measure Invasion of Endothelial Cell Monolayer by Cancer Cells
Authors: Said Rahim, Aykut Üren.
Institutions: Georgetown University.
Metastatic dissemination of malignant cells requires degradation of basement membrane, attachment of tumor cells to vascular endothelium, retraction of endothelial junctions and finally invasion and migration of tumor cells through the endothelial layer to enter the bloodstream as a means of transport to distant sites in the host1-3. Once in the circulatory system, cancer cells adhere to capillary walls and extravasate to the surrounding tissue to form metastatic tumors4,5. The various components of tumor cell-endothelial cell interaction can be replicated in vitro by challenging a monolayer of human umbilical vein endothelial cells (HUVEC) with cancer cells. Studies performed with electron and phase-contrast microscopy suggest that the in vitro sequence of events fairly represent the in vivo metastatic process6. Here, we describe an electrical-impedance based technique that monitors and quantifies in real-time the invasion of endothelial cells by malignant tumor cells. Giaever and Keese first described a technique for measuring fluctuations in impedance when a population of cells grow on the surface of electrodes7,8. The xCELLigence instrument, manufactured by Roche, utilizes a similar technique to measure changes in electrical impedance as cells attach and spread in a culture dish covered with a gold microelectrode array that covers approximately 80% of the area on the bottom of a well. As cells attach and spread on the electrode surface, it leads to an increase in electrical impedance9-12. The impedance is displayed as a dimensionless parameter termed cell-index, which is directly proportional to the total area of tissue-culture well that is covered by cells. Hence, the cell-index can be used to monitor cell adhesion, spreading, morphology and cell density. The invasion assay described in this article is based on changes in electrical impedance at the electrode/cell interphase, as a population of malignant cells invade through a HUVEC monolayer (Figure 1). The disruption of endothelial junctions, retraction of endothelial monolayer and replacement by tumor cells lead to large changes in impedance. These changes directly correlate with the invasive capacity of tumor cells, i.e., invasion by highly aggressive cells lead to large changes in cell impedance and vice versa. This technique provides a two-fold advantage over existing methods of measuring invasion, such as boyden chamber and matrigel assays: 1) the endothelial cell-tumor cell interaction more closely mimics the in vivo process, and 2) the data is obtained in real-time and is more easily quantifiable, as opposed to end-point analysis for other methods.
Cellular Biology, Issue 50, Invasion, HUVEC, xCELLigence, impedance, real-time, cell-index
2792
Play Button
Cytotoxic Efficacy of Photodynamic Therapy in Osteosarcoma Cells In Vitro
Authors: Daniela Meier, Carmen Campanile, Sander M. Botter, Walter Born, Bruno Fuchs.
Institutions: Balgrist University Hospital, Zurich, Switzerland.
In recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment. Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response1. Despite its approval almost twenty years ago by the FDA, PDT is nowadays only used to treat a limited number of cancer types (skin, bladder) and nononcological diseases (psoriasis, actinic keratosis)2. The major advantage of the use of PDT is the ability to perform a local treatment, which prevents systemic side effects. Moreover, it allows the treatment of tumors at delicate sites (e.g. around nerves or blood vessels). Here, an intraoperative application of PDT is considered in osteosarcoma (OS), a tumor of the bone, to target primary tumor satellites left behind in tumor surrounding tissue after surgical tumor resection. The treatment aims at decreasing the number of recurrences and at reducing the risk for (postoperative) metastasis. In the present study, we present in vitro PDT procedures to establish the optimal PDT settings for effective treatment of widely used OS cell lines that are used to reproduce the human disease in well established intratibial OS mouse models. The uptake of the PS mTHPC was examined with a spectrophotometer and phototoxicity was provoked with laser light excitation of mTHPC at 652 nm to induce cell death assessed with a WST-1 assay and by the counting of surviving cells. The established techniques enable us to define the optimal PDT settings for future studies in animal models. They are an easy and quick tool for the evaluation of the efficacy of PDT in vitro before an application in vivo.
Medicine, Issue 85, Photodynamic Therapy (PDT), 5,10,15,20-tetrakis(meta-hydroxyphenyl)chlorin (mTHPC), phototoxicity, dark-toxicity, osteosarcoma (OS), photosensitizer
51213
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
51673
Play Button
Monitoring Cell-autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters
Authors: Chidambaram Ramanathan, Sanjoy K. Khan, Nimish D. Kathale, Haiyan Xu, Andrew C. Liu.
Institutions: The University of Memphis.
In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed1,2). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere1,2. Individual cells are the functional units for generation and maintenance of circadian rhythms3,4, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous5-7. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects5,8. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms5,8-13. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals14,15, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection13,16,17 or stable transduction5,10,18,19. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells20. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.
Genetics, Issue 67, Molecular Biology, Cellular Biology, Chemical Biology, Circadian clock, firefly luciferase, real-time bioluminescence technology, cell-autonomous model, lentiviral vector, RNA interference (RNAi), high-throughput screening (HTS)
4234
Play Button
Derivation of T Cells In Vitro from Mouse Embryonic Stem Cells
Authors: Martina Kučerová-Levisohn, Jordana Lovett, Armin Lahiji, Roxanne Holmes, Juan Carlos Zúñiga-Pflücker, Benjamin D. Ortiz.
Institutions: City University of New York, University of Toronto.
The OP9/OP9-DL1 co-culture system has become a well-established method for deriving differentiated blood cell types from embryonic and hematopoietic progenitors of both mouse and human origin. It is now used to address a growing variety of complex genetic, cellular and molecular questions related to hematopoiesis, and is at the cutting edge of efforts to translate these basic findings to therapeutic applications. The procedures are straightforward and routinely yield robust results. However, achieving successful hematopoietic differentiation in vitro requires special attention to the details of reagent and cell culture maintenance. Furthermore, the protocol features technique sensitive steps that, while not difficult, take care and practice to master. Here we focus on the procedures for differentiation of T lymphocytes from mouse embryonic stem cells (mESC). We provide a detailed protocol with discussions of the critical steps and parameters that enable reproducibly robust cellular differentiation in vitro. It is in the interest of the field to consider wider adoption of this technology, as it has the potential to reduce animal use, lower the cost and shorten the timelines of both basic and translational experimentation.
Immunology, Issue 92, mouse, embryonic stem cells, in vitro differentiation, OP9 cells, Delta-like 1 (Dll-1) ligand, Notch, hematopoiesis, lymphocytes, T cells
52119
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
51963
Play Button
Clinical Application of Sleeping Beauty and Artificial Antigen Presenting Cells to Genetically Modify T Cells from Peripheral and Umbilical Cord Blood
Authors: M. Helen Huls, Matthew J. Figliola, Margaret J. Dawson, Simon Olivares, Partow Kebriaei, Elizabeth J. Shpall, Richard E. Champlin, Harjeet Singh, Laurence J.N. Cooper.
Institutions: U.T. MD Anderson Cancer Center, U.T. MD Anderson Cancer Center.
The potency of clinical-grade T cells can be improved by combining gene therapy with immunotherapy to engineer a biologic product with the potential for superior (i) recognition of tumor-associated antigens (TAAs), (ii) persistence after infusion, (iii) potential for migration to tumor sites, and (iv) ability to recycle effector functions within the tumor microenvironment. Most approaches to genetic manipulation of T cells engineered for human application have used retrovirus and lentivirus for the stable expression of CAR1-3. This approach, although compliant with current good manufacturing practice (GMP), can be expensive as it relies on the manufacture and release of clinical-grade recombinant virus from a limited number of production facilities. The electro-transfer of nonviral plasmids is an appealing alternative to transduction since DNA species can be produced to clinical grade at approximately 1/10th the cost of recombinant GMP-grade virus. To improve the efficiency of integration we adapted Sleeping Beauty (SB) transposon and transposase for human application4-8. Our SB system uses two DNA plasmids that consist of a transposon coding for a gene of interest (e.g. 2nd generation CD19-specific CAR transgene, designated CD19RCD28) and a transposase (e.g. SB11) which inserts the transgene into TA dinucleotide repeats9-11. To generate clinically-sufficient numbers of genetically modified T cells we use K562-derived artificial antigen presenting cells (aAPC) (clone #4) modified to express a TAA (e.g. CD19) as well as the T cell costimulatory molecules CD86, CD137L, a membrane-bound version of interleukin (IL)-15 (peptide fused to modified IgG4 Fc region) and CD64 (Fc-γ receptor 1) for the loading of monoclonal antibodies (mAb)12. In this report, we demonstrate the procedures that can be undertaken in compliance with cGMP to generate CD19-specific CAR+ T cells suitable for human application. This was achieved by the synchronous electro-transfer of two DNA plasmids, a SB transposon (CD19RCD28) and a SB transposase (SB11) followed by retrieval of stable integrants by the every-7-day additions (stimulation cycle) of γ-irradiated aAPC (clone #4) in the presence of soluble recombinant human IL-2 and IL-2113. Typically 4 cycles (28 days of continuous culture) are undertaken to generate clinically-appealing numbers of T cells that stably express the CAR. This methodology to manufacturing clinical-grade CD19-specific T cells can be applied to T cells derived from peripheral blood (PB) or umbilical cord blood (UCB). Furthermore, this approach can be harnessed to generate T cells to diverse tumor types by pairing the specificity of the introduced CAR with expression of the TAA, recognized by the CAR, on the aAPC.
Immunology, Issue 72, Cellular Biology, Medicine, Molecular Biology, Cancer Biology, Biomedical Engineering, Hematology, Biochemistry, Genetics, T-Lymphocytes, Antigen-Presenting Cells, Leukemia, Lymphoid, Lymphoma, Antigens, CD19, Immunotherapy, Adoptive, Electroporation, Genetic Engineering, Gene Therapy, Sleeping Beauty, CD19, T cells, Chimeric Antigen Receptor, Artificial Antigen Presenting Cells, Clinical Trial, Peripheral Blood, Umbilical Cord Blood, Cryopreservation, Electroporation
50070
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Isolation of Stem Cells from Human Pancreatic Cancer Xenografts
Authors: Zeshaan Rasheed, Qiuju Wang, William Matsui.
Institutions: Johns Hopkins University School of Medicine.
Cancer stem cells (CSCs) have been identified in a growing number of malignancies and are functionally defined by their ability to undergo self-renewal and produce differentiated progeny1. These properties allow CSCs to recapitulate the original tumor when injected into immunocompromised mice. CSCs within an epithelial malignancy were first described in breast cancer and found to display specific cell surface antigen expression (CD44+CD24low/-)2. Since then, CSCs have been identified in an increasing number of other human malignancies using CD44 and CD24 as well as a number of other surface antigens. Physiologic properties, including aldehyde dehydrogenase (ALDH) activity, have also been used to isolate CSCs from malignant tissues3-5. Recently, we and others identified CSCs from pancreatic adenocarcinoma based on ALDH activity and the expression of the cell surface antigens CD44 and CD24, and CD1336-8. These highly tumorigenic populations may or may not be overlapping and display other functions. We found that ALDH+ and CD44+CD24+ pancreatic CSCs are similarly tumorigenic, but ALDH+ cells are relatively more invasive8. In this protocol we describe a method to isolate viable pancreatic CSCs from low-passage human xenografts9. Xenografted tumors are harvested from mice and made into a single-cell suspension. Tissue debris and dead cells are separated from live cells and then stained using antibodies against CD44 and CD24 and using the ALDEFLUOR reagent, a fluorescent substrate of ALDH10. CSCs are then isolated by fluorescence activated cell sorting. Isolated CSCs can then be used for analytical or functional assays requiring viable cells.
Cellular Biology, Issue 43, mouse models, pancreatic cancer, cancer stem cell, xenograft, fluorescent activated cell sorting, aldehyde dehydrogenase, CD44, CD24
2169
Play Button
Isolation and Enrichment of Rat Mesenchymal Stem Cells (MSCs) and Separation of Single-colony Derived MSCs
Authors: Linxia Zhang, Christina Chan.
Institutions: City of Hope Cancer Center.
MSCs are a population of adult stem cells that is a promising source for therapeutic applications. These cells can be isolated from the bone marrow and can be easily separated from the hematopoietic stem cells (HSCs) due to their plastic adherence. This protocol describes how to isolate MSCs from rat femurs and tibias. The isolated cells were further enriched against two MSCs surface markers CD54 and CD90 by magnetic cell sorting. Expression of surface markers CD54 and CD90 were then confirmed by flow cytometry analysis. HSC marker CD45 was also included to check if the sorted MSCs were depleted of HSCs. MSCs are naturally quite heterogeneous. There are subpopulations of cells that have different shapes, proliferation and differentiation abilities. These subpopulations all express the known MSCs markers and no unique marker has yet been identified for the different subpopulations. Therefore, an alternative approach to separate out the different subpopulations is using cloning cylinders to separate out single-colony derived cells. The cells derived from the single-colonies can then be cultured and evaluated separately.
Cellular Biology, Issue 37, mesenchymal stem cells, magnetic cell sorting, flow cytometry, cloning cylinder
1852
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
50585
Play Button
Enrichment for Chemoresistant Ovarian Cancer Stem Cells from Human Cell Lines
Authors: Jennifer M. Cole, Stancy Joseph, Christopher G. Sudhahar, Karen D. Cowden Dahl.
Institutions: Indiana University School of Medicine.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.
Medicine, Issue 91, cancer stem cells, stem cell markers, ovarian cancer, chemoresistance, cisplatin, cancer progression
51891
Play Button
Generation of a Novel Dendritic-cell Vaccine Using Melanoma and Squamous Cancer Stem Cells
Authors: Qiao Li, Lin Lu, Huimin Tao, Carolyn Xue, Seagal Teitz-Tennenbaum, John H. Owen, Jeffrey S Moyer, Mark E.P. Prince, Alfred E. Chang, Max S. Wicha.
Institutions: University of Michigan, University of Michigan, University of Michigan.
We identified cancer stem cell (CSC)-enriched populations from murine melanoma D5 syngeneic to C57BL/6 mice and the squamous cancer SCC7 syngeneic to C3H mice using ALDEFLUOR/ALDH as a marker, and tested their immunogenicity using the cell lysate as a source of antigens to pulse dendritic cells (DCs). DCs pulsed with ALDHhigh CSC lysates induced significantly higher protective antitumor immunity than DCs pulsed with the lysates of unsorted whole tumor cell lysates in both models and in a lung metastasis setting and a s.c. tumor growth setting, respectively. This phenomenon was due to CSC vaccine-induced humoral as well as cellular anti-CSC responses. In particular, splenocytes isolated from the host subjected to CSC-DC vaccine produced significantly higher amount of IFNγ and GM-CSF than splenocytes isolated from the host subjected to unsorted tumor cell lysate pulsed-DC vaccine. These results support the efforts to develop an autologous CSC-based therapeutic vaccine for clinical use in an adjuvant setting.
Cancer Biology, Issue 83, Cancer stem cell (CSC), Dendritic cells (DC), Vaccine, Cancer immunotherapy, antitumor immunity, aldehyde dehydrogenase
50561
Play Button
Patient Derived Cell Culture and Isolation of CD133+ Putative Cancer Stem Cells from Melanoma
Authors: Yvonne Welte, Cathrin Davies, Reinhold Schäfer, Christian R.A. Regenbrecht.
Institutions: Charité - Universitätsmedizin Berlin, Free University Berlin, Charité - Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin.
Despite improved treatments options for melanoma available today, patients with advanced malignant melanoma still have a poor prognosis for progression-free and overall survival. Therefore, translational research needs to provide further molecular evidence to improve targeted therapies for malignant melanomas. In the past, oncogenic mechanisms related to melanoma were extensively studied in established cell lines. On the way to more personalized treatment regimens based on individual genetic profiles, we propose to use patient-derived cell lines instead of generic cell lines. Together with high quality clinical data, especially on patient follow-up, these cells will be instrumental to better understand the molecular mechanisms behind melanoma progression. Here, we report the establishment of primary melanoma cultures from dissected fresh tumor tissue. This procedure includes mincing and dissociation of the tissue into single cells, removal of contaminations with erythrocytes and fibroblasts as well as primary culture and reliable verification of the cells' melanoma origin. Recent reports revealed that melanomas, like the majority of tumors, harbor a small subpopulation of cancer stem cells (CSCs), which seem to exclusively fuel tumor initiation and progression towards the metastatic state. One of the key markers for CSC identification and isolation in melanoma is CD133. To isolate CD133+ CSCs from primary melanoma cultures, we have modified and optimized the Magnetic-Activated Cell Sorting (MACS) procedure from Miltenyi resulting in high sorting purity and viability of CD133+ CSCs and CD133- bulk, which can be cultivated and functionally analyzed thereafter.
Cancer Biology, Issue 73, Medicine, Stem Cell Biology, Cellular Biology, Molecular Biology, Biomedical Engineering, Genetics, Oncology, Primary cell culture, melanoma, MACS, cancer stem cells, CD133, cancer, prostate cancer cells, melanoma, stem cells, cell culture, personalized treatment
50200
Play Button
Isolation of Cancer Stem Cells From Human Prostate Cancer Samples
Authors: Samuel J. Vidal, S. Aidan Quinn, Janis de la Iglesia-Vicente, Dennis M. Bonal, Veronica Rodriguez-Bravo, Adolfo Firpo-Betancourt, Carlos Cordon-Cardo, Josep Domingo-Domenech.
Institutions: Icahn School of Medicine at Mount Sinai, Memorial Sloan-Kettering Cancer Center.
The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice.
Medicine, Issue 85, Cancer Stem Cells, Tumor Initiating Cells, Prostate Cancer, HLA class I, Primary Prostate Cancer, Castration Resistant Prostate Cancer, Metastatic Prostate Cancer, Human Tissue Samples, Intratumoral heterogeneity
51332
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Optimization of High Grade Glioma Cell Culture from Surgical Specimens for Use in Clinically Relevant Animal Models and 3D Immunochemistry
Authors: Laura A. Hasselbach, Susan M. Irtenkauf, Nancy W. Lemke, Kevin K. Nelson, Artem D. Berezovsky, Enoch T. Carlton, Andrea D. Transou, Tom Mikkelsen, Ana C. deCarvalho.
Institutions: Henry Ford Hospital.
Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor. Starting with fresh high grade astrocytoma tumors dissociated into single cells, we use the neurosphere assay as an enrichment method for cells presenting cancer stem cell phenotype, including expression of neural stem cell markers, long term self-renewal in vitro, and the ability to form orthotopic xenograft tumors. This method has been previously proposed, and is now in use by several investigators. Based on our experience of dissociating and culturing 125 glioblastoma specimens, we arrived at the detailed protocol we present here, suitable for routine neurosphere culturing of high grade astrocytomas and large scale expansion of tumorigenic cells for preclinical studies. We report on the efficiency of successful long term cultures using this protocol and suggest affordable alternatives for culturing dissociated glioblastoma cells that fail to grow as neurospheres. We also describe in detail a protocol for preserving the neurospheres 3D architecture for immunohistochemistry. Cell cultures enriched in CSCs, capable of generating orthotopic xenograft models that preserve the molecular signatures and heterogeneity of GBMs, are becoming increasingly popular for the study of the biology of GBMs and for the improved design of preclinical testing of potential therapies.
Medicine, Issue 83, Primary Cell Culture, animal models, Nervous System Diseases, Neoplasms, glioblastoma, neurosphere, surgical specimens, long-term self-renewal
51088
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
51519
Play Button
The In ovo CAM-assay as a Xenograft Model for Sarcoma
Authors: Gwen M.L. Sys, Lore Lapeire, Nikita Stevens, Herman Favoreel, Ramses Forsyth, Marc Bracke, Olivier De Wever.
Institutions: Ghent University Hospital, Ghent University, Ghent University, Pathlicon.
Sarcoma is a very rare disease that is heterogeneous in nature, all hampering the development of new therapies. Sarcoma patients are ideal candidates for personalized medicine after stratification, explaining the current interest in developing a reproducible and low-cost xenotransplant model for this disease. The chick chorioallantoic membrane is a natural immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition, it is easily accessed, manipulated and imaged using optical and fluorescence stereomicroscopy. Histology further allows detailed analysis of heterotypic cellular interactions. This protocol describes in detail the in ovo grafting of the chorioallantoic membrane with fresh sarcoma-derived tumor tissues, their single cell suspensions, and permanent and transient fluorescently labeled established sarcoma cell lines (Saos-2 and SW1353). The chick survival rates are up to 75%. The model is used to study graft- (viability, Ki67 proliferation index, necrosis, infiltration) and host (fibroblast infiltration, vascular ingrowth) behavior. For localized grafting of single cell suspensions, ECM gel provides significant advantages over inert containment materials. The Ki67 proliferation index is related to the distance of the cells from the surface of the CAM and the duration of application on the CAM, the latter determining a time frame for the addition of therapeutic products.
Cancer Biology, Issue 77, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Bioengineering, Developmental Biology, Anatomy, Physiology, Oncology, Surgery, Adipose Tissue, Connective Tissue, Neoplasm, Muscle Tissue, Sarcoma, Animal Experimentation, Cell Culture Techniques, Neoplasms, Experimental, Neoplasm Transplantation, Biological Assay, Sarcomas, CAM-assay, CAM, assay, xenograft, proliferation, invasion, cancer, tumor, in ovo, animal model
50522
Play Button
Targeted Expression of GFP in the Hair Follicle Using Ex Vivo Viral Transduction
Authors: Robert M. Hoffman, Lingna Li.
Institutions: AntiCancer, Inc..
There are many cell types in the hair follicle, including hair matrix cells which form the hair shaft and stem cells which can initiate the hair shaft during early anagen, the growth phase of the hair cycle, as well as pluripotent stem cells that play a role in hair follicle growth but have the potential to differentiate to non-follicle cells such as neurons. These properties of the hair follicle are discussed. The various cell types of the hair follicle are potential targets for gene therapy. Gene delivery system for the hair follicle using viral vectors or liposomes for gene targeting to the various cell types in the hair follicle and the results obtained are also discussed.
Cellular Biology, Issue 13, Springer Protocols, hair follicles, liposomes, adenovirus, genes, stem cells
708
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
119
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.