JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Value of prominent flow voids without cord edema in the detection of spinal arteriovenous fistulae.
PUBLISHED: 01-01-2014
To determine the prevalence of spinal dural arteriovenous fistulae (SDAVF) in patients presenting with prominent vascular flow voids on imaging without other imaging findings suggestive of SDAVF.
Authors: John D. Houle, Arthi Amin, Marie-Pascale Cote, Michel Lemay, Kassi Miller, Harra Sandrow, Lauren Santi, Jed Shumsky, Veronica Tom.
Published: 11-20-2009
Traumatic injury to the spinal cord (SCI) causes death of neurons, disruption of motor and sensory nerve fiber (axon) pathways and disruption of communication with the brain. One of the goals of our research is to promote axon regeneration to restore connectivity across the lesion site. To accomplish this we developed a peripheral nerve (PN) grafting technique where segments of sciatic nerve are either placed directly between the damaged ends of the spinal cord or are used to form a bridge across the lesion. There are several advantages to this approach compared to transplantation of other neural tissues; regenerating axons can be directed towards a specific target area, the number and source of regenerating axons is easily determined by tracing techniques, the graft can be used for electrophysiological experiments to measure functional recovery associated with axons in the graft, and it is possible to use an autologous nerve to reduce the possibility of graft rejection. In our lab we have performed both autologous (donor and recipient are the same animal) and heterologous (donor and recipient are different animals) grafts with comparable results. This approach has been used successfully in both acute and chronic injury situations. Regenerated axons that reach the distal end of the PN graft often fail to extend back into the spinal cord, so we use microinjections of chondroitinase to degrade inhibitory molecules associated with the scar tissue surrounding the area of SCI. At the same time we have found that providing exogenous growth and trophic molecules encourages longer distance axonal regrowth into the spinal cord. Several months after transplantation we perform a variety of anatomical, behavioral and electrophysiological tests to evaluate the recovery of function in our spinal cord injured animals. This experimental approach has been used successfully in several spinal cord injury models, at different levels of injury and in different species (mouse, rat and cat). Importantly, the peripheral nerve grafting approach is effective in promoting regeneration by acute and chronically injured neurons.
24 Related JoVE Articles!
Play Button
Culture of Isolated Floor Plate Tissue and Production of Conditioned Medium to Assess Functional Properties of Floor Plate-released Signals
Authors: Camille Charoy, Elise Arbeille, Karine Thoinet, Valérie Castellani.
Institutions: University of Lyon 1.
During development, progenitors and post-mitotic neurons receive signals from adjacent territories that regulate their fate. The floor-plate is a group of glial cells lining the ependymal canal at ventral position. The floor-plate expresses key morphogens contributing to the patterning of cell lineages in the spinal cord. At later developmental stages, the floor-plate regulates the navigation of axons in the spinal cord, acting as a barrier to prevent the crossing of ipsilateral axons and controlling midline crossing by commissural axons1. These functions are achieved through the secretion of various guidance cues. Some of these cues act as attractants and repellents for the growing axons while others regulate guidance receptors and downstream signaling to modulate the sensitivity of the axons to the local guidance cues2,3. Here we describe a method that allows investigating the properties of floor-plate derived signals in a variety of developmental contexts, based on the production of Floor-Plate conditioned medium (FPcm)4-6. We then exemplify the use of this FPcm in the context of axon guidance. First, the spinal cord is isolated from mouse embryo at E12.5 and the floor-plate is dissected out and cultivated in a plasma-thrombin matrix (Figure 1). Second two days later, commissural tissue are dissected out from E12.5 embryos, triturated and exposed to the FPcm. Third, the tissue are processed for Western blot analysis of commissural markers.
Neuroscience, Issue 84, Neurons, Growth Cones, Axons, Embryonic Development, Floor plate, conditioned medium, axon guidance, commissural tissue, biochemistry, receptor levels
Play Button
Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis
Authors: Parvathi Menon, Steve Vucic.
Institutions: Westmead Hospital, University of Sydney, Australia.
The split hand phenomenon refers to predominant wasting of thenar muscles and is an early and specific feature of amyotrophic lateral sclerosis (ALS). A novel split hand index (SI) was developed to quantify the split hand phenomenon, and its diagnostic utility was assessed in ALS patients. The split hand index was derived by dividing the product of the compound muscle action potential (CMAP) amplitude recorded over the abductor pollicis brevis and first dorsal interosseous muscles by the CMAP amplitude recorded over the abductor digiti minimi muscle. In order to assess the diagnostic utility of the split hand index, ALS patients were prospectively assessed and their results were compared to neuromuscular disorder patients. The split hand index was significantly reduced in ALS when compared to neuromuscular disorder patients (P<0.0001). Limb-onset ALS patients exhibited the greatest reduction in the split hand index, and a value of 5.2 or less reliably differentiated ALS from other neuromuscular disorders. Consequently, the split hand index appears to be a novel diagnostic biomarker for ALS, perhaps facilitating an earlier diagnosis.
Medicine, Issue 85, Amyotrophic Lateral Sclerosis (ALS), dissociated muscle atrophy, hypothenar muscles, motor neuron disease, split-hand index, thenar muscles
Play Button
Clinical Examination Protocol to Detect Atypical and Classical Scrapie in Sheep
Authors: Timm Konold, Laura Phelan.
Institutions: Animal Health and Veterinary Laboratories Agency Weybridge.
The diagnosis of scrapie, a transmissible spongiform encephalopathy (TSEs) of sheep and goats, is currently based on the detection of disease-associated prion protein by post mortem tests. Unless a random sample of the sheep or goat population is actively monitored for scrapie, identification of scrapie cases relies on the reporting of clinical suspects, which is dependent on the individual's familiarization with the disease and ability to recognize clinical signs associated with scrapie. Scrapie may not be considered in the differential diagnosis of neurological diseases in small ruminants, particularly in countries with low scrapie prevalence, or not recognized if it presents as nonpruritic form like atypical scrapie. To aid in the identification of clinical suspects, a short examination protocol is presented to assess the display of specific clinical signs associated with pruritic and nonpruritic forms of TSEs in sheep, which could also be applied to goats. This includes assessment of behavior, vision (by testing of the menace response), pruritus (by testing the response to scratching), and movement (with and without blindfolding). This may lead to a more detailed neurologic examination of reporting animals as scrapie suspects. It could also be used in experimental TSE studies of sheep or goats to evaluate disease progression or to identify clinical end-point.
Infectious Diseases, Issue 83, transmissible spongiform encephalopathy, sheep, atypical scrapie, classical scrapie, neurologic examination, scratch test, menace response, blindfolding
Play Button
Production of RNA for Transcriptomic Analysis from Mouse Spinal Cord Motor Neuron Cell Bodies by Laser Capture Microdissection
Authors: Urmi Bandyopadhyay, Wayne A. Fenton, Arthur L. Horwich, Maria Nagy.
Institutions: Yale School of Medicine, Howard Hughes Medical Institute.
Preparation of high-quality RNA from cells of interest is critical to precise and meaningful analysis of transcriptional differences among cell types or between the same cell type in health and disease or following pharmacologic treatments. In the spinal cord, such preparation from motor neurons, the target of interest in many neurologic and neurodegenerative diseases, is complicated by the fact that motor neurons represent <10% of the total cell population. Laser capture microdissection (LMD) has been developed to address this problem. Here, we describe a protocol to quickly recover, freeze, and section mouse spinal cord to avoid RNA damage by endogenous and exogenous RNases, followed by staining with Azure B in 70% ethanol to identify the motor neurons while keeping endogenous RNase inhibited. LMD is then used to capture the stained neurons directly into guanidine thiocyanate lysis buffer, maintaining RNA integrity. Standard techniques are used to recover the total RNA and measure its integrity. This material can then be used for downstream analysis of the transcripts by RNA-seq and qRT-PCR.
Neuroscience, Issue 83, Laser capture microdissection, Motor neuron, Spinal cord, Azure B, RNA, RNA-seq, qRT-PCR
Play Button
A Murine Model of Cervical Spinal Cord Injury to Study Post-lesional Respiratory Neuroplasticity
Authors: Emilie Keomani, Thérèse B. Deramaudt, Michel Petitjean, Marcel Bonay, Frédéric Lofaso, Stéphane Vinit.
Institutions: Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, Université de Versailles Saint-Quentin-en-Yvelines.
A cervical spinal cord injury induces permanent paralysis, and often leads to respiratory distress. To date, no efficient therapeutics have been developed to improve/ameliorate the respiratory failure following high cervical spinal cord injury (SCI). Here we propose a murine pre-clinical model of high SCI at the cervical 2 (C2) metameric level to study diverse post-lesional respiratory neuroplasticity. The technique consists of a surgical partial injury at the C2 level, which will induce a hemiparalysis of the diaphragm due to a deafferentation of the phrenic motoneurons from the respiratory centers located in the brainstem. The contralateral side of the injury remains intact and allows the animal recovery. Unlike other SCIs which affect the locomotor function (at the thoracic and lumbar level), the respiratory function does not require animal motivation and the quantification of the deficit/recovery can be easily performed (diaphragm and phrenic nerve recordings, whole body ventilation). This pre-clinical C2 SCI model is a powerful, useful, and reliable pre-clinical model to study various respiratory and non-respiratory neuroplasticity events at different levels (molecular to physiology) and to test diverse putative therapeutic strategies which might improve the respiration in SCI patients.
Physiology, Issue 87, rat, cervical spinal cord injury, respiratory deficit, crossed phrenic phenomenon, respiratory neuroplasticity
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
Play Button
Acute Dissociation of Lamprey Reticulospinal Axons to Enable Recording from the Release Face Membrane of Individual Functional Presynaptic Terminals
Authors: Shankar Ramachandran, Simon Alford.
Institutions: University of Illinois at Chicago.
Synaptic transmission is an extremely rapid process. Action potential driven influx of Ca2+ into the presynaptic terminal, through voltage-gated calcium channels (VGCCs) located in the release face membrane, is the trigger for vesicle fusion and neurotransmitter release. Crucial to the rapidity of synaptic transmission is the spatial and temporal synchrony between the arrival of the action potential, VGCCs and the neurotransmitter release machinery. The ability to directly record Ca2+ currents from the release face membrane of individual presynaptic terminals is imperative for a precise understanding of the relationship between presynaptic Ca2+ and neurotransmitter release. Access to the presynaptic release face membrane for electrophysiological recording is not available in most preparations and presynaptic Ca2+ entry has been characterized using imaging techniques and macroscopic current measurements – techniques that do not have sufficient temporal resolution to visualize Ca2+ entry. The characterization of VGCCs directly at single presynaptic terminals has not been possible in central synapses and has thus far been successfully achieved only in the calyx-type synapse of the chick ciliary ganglion and in rat calyces. We have successfully addressed this problem in the giant reticulospinal synapse of the lamprey spinal cord by developing an acutely dissociated preparation of the spinal cord that yields isolated reticulospinal axons with functional presynaptic terminals devoid of postsynaptic structures. We can fluorescently label and identify individual presynaptic terminals and target them for recording. Using this preparation, we have characterized VGCCs directly at the release face of individual presynaptic terminals using immunohistochemistry and electrophysiology approaches. Ca2+ currents have been recorded directly at the release face membrane of individual presynaptic terminals, the first such recording to be carried out at central synapses.
Neuroscience, Issue 92, reticulospinal synapse, reticulospinal axons, presynaptic terminal, presynaptic calcium, voltage-gated calcium channels, vesicle fusion, synaptic transmission, neurotransmitter release, spinal cord, lamprey, synaptic vesicles, acute dissociation
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
An Ex Vivo Laser-induced Spinal Cord Injury Model to Assess Mechanisms of Axonal Degeneration in Real-time
Authors: Starlyn L. M. Okada, Nicole S. Stivers, Peter K. Stys, David P. Stirling.
Institutions: University of Louisville, University of Calgary.
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.
Neuroscience, Issue 93, spinal cord injury, axon, myelin, two-photon excitation microscopy, Nile Red, axonal degeneration, axonal dieback, axonal retraction
Play Button
Implanting Glass Spinal Cord Windows in Adult Mice with Experimental Autoimmune Encephalomyelitis
Authors: Keith K. Fenrich, Pascal Weber, Genevieve Rougon, Franck Debarbieux.
Institutions: Aix Marseille University, European Research Center for Medical Imaging (CERIMED).
Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.
Medicine, Issue 82, Spinal cord, two-photon microscopy, In vivo, intravital microscopy, EAE, Multiple Sclerosis, transgenic mouse
Play Button
Promotion of Survival and Differentiation of Neural Stem Cells with Fibrin and Growth Factor Cocktails after Severe Spinal Cord Injury
Authors: Paul Lu, Lori Graham, Yaozhi Wang, Di Wu, Mark Tuszynski.
Institutions: Veterans Administration Medical Center, San Diego, University of California, San Diego.
Neural stem cells (NSCs) can self-renew and differentiate into neurons and glia. Transplanted NSCs can replace lost neurons and glia after spinal cord injury (SCI), and can form functional relays to re-connect spinal cord segments above and below a lesion. Previous studies grafting neural stem cells have been limited by incomplete graft survival within the spinal cord lesion cavity. Further, tracking of graft cell survival, differentiation, and process extension had not been optimized. Finally, in previous studies, cultured rat NSCs were typically reported to differentiate into glia when grafted to the injured spinal cord, rather than neurons, unless fate was driven to a specific cell type. To address these issues, we developed new methods to improve the survival, integration and differentiation of NSCs to sites of even severe SCI. NSCs were freshly isolated from embryonic day 14 spinal cord (E14) from a stable transgenic Fischer 344 rat line expressing green fluorescent protein (GFP) and were embedded into a fibrin matrix containing growth factors; this formulation aimed to retain grafted cells in the lesion cavity and support cell survival. NSCs in the fibrin/growth factor cocktail were implanted two weeks after thoracic level-3 (T3) complete spinal cord transections, thereby avoiding peak periods of inflammation. Resulting grafts completely filled the lesion cavity and differentiated into both neurons, which extended axons into the host spinal cord over remarkably long distances, and glia. Grafts of cultured human NSCs expressing GFP resulted in similar findings. Thus, methods are defined for improving neural stem cell grafting, survival and analysis of in vivo findings.
Neuroscience, Issue 89, nervous system diseases, wounds and injuries, biological factors, therapeutics, surgical procedures, neural stem cells, transplantation, spinal cord injury, fibrin, growth factors
Play Button
Technical Aspects of the Mouse Aortocaval Fistula
Authors: Kota Yamamoto, Xin Li, Chang Shu, Tetsuro Miyata, Alan Dardik.
Institutions: Yale University, The University of Tokyo, Central South University, VA Connecticut Healthcare Systems.
Technical aspects of creating an arteriovenous fistula in the mouse are discussed. Under general anesthesia, an abdominal incision is made, and the aorta and inferior vena cava (IVC) are exposed. The proximal infrarenal aorta and the distal aorta are dissected for clamp placement and needle puncture, respectively. Special attention is paid to avoid dissection between the aorta and the IVC. After clamping the aorta, a 25 G needle is used to puncture both walls of the aorta into the IVC. The surrounding connective tissue is used for hemostatic compression. Successful creation of the AVF will show pulsatile arterial blood flow in the IVC. Further confirmation of successful AVF can be achieved by post-operative Doppler ultrasound.
Biomedical Engineering, Issue 77, Medicine, Anatomy, Physiology, Surgery, Cardiology, Hematology, Blood Vessels, Arteries, Aorta, Abdominal, Veins, Vena Cava, Inferior, Cardiovascular System, aortocaval fistula, mouse, puncture, Doppler ultrasound, compression, surgical techniques, animal model
Play Button
Vascular Occlusion Training for Inclusion Body Myositis: A Novel Therapeutic Approach
Authors: Bruno Gualano, Carlos Ugrinowitsch, Manoel Neves Jr., Fernanda R. Lima, Ana Lúcia S. Pinto, Gilberto Laurentino, Valmor A.A. Tricoli, Antonio H. Lancha Jr., Hamilton Roschel.
Institutions: University of São Paulo, University of São Paulo.
Inclusion body myositis (IBM) is a rare idiopathic inflammatory myopathy. It is known to produces remarkable muscle weakness and to greatly compromise function and quality of life. Moreover, clinical practice suggests that, unlike other inflammatory myopathies, the majority of IBM patients are not responsive to treatment with immunosuppressive or immunomodulatory drugs to counteract disease progression1. Additionally, conventional resistance training programs have been proven ineffective in restoring muscle function and muscle mass in these patients2,3. Nevertheless, we have recently observed that restricting muscle blood flow using tourniquet cuffs in association with moderate intensity resistance training in an IBM patient produced a significant gain in muscle mass and function, along with substantial benefits in quality of life4. Thus, a new non-pharmacological approach for IBM patients has been proposed. Herein, we describe the details of a proposed protocol for vascular occlusion associated with a resistance training program for this population.
Medicine, Issue 40, exercise training, therapeutical, myositis, vascular occlusion
Play Button
Intravital Microscopy of the Inguinal Lymph Node
Authors: Stephanie L. Sellers, Geoffrey W. Payne.
Institutions: University of Northern British Columbia, University of Northern British Columbia.
Lymph nodes (LN's), located throughout the body, are an integral component of the immune system. They serve as a site for induction of adaptive immune response and therefore, the development of effector cells. As such, LNs are key to fighting invading pathogens and maintaining health. The choice of LN to study is dictated by accessibility and the desired model; the inguinal lymph node is well situated and easily supports studies of biologically relevant models of skin and genital mucosal infection. The inguinal LN, like all LNs, has an extensive microvascular network supplying it with blood. In general, this microvascular network includes the main feed arteriole of the LN that subsequently branches and feeds high endothelial venules (HEVs). HEVs are specialized for facilitating the trafficking of immune cells into the LN during both homeostasis and infection. How HEVs regulate trafficking into the LN under both of these circumstances is an area of intense exploration. The LN feed arteriole, has direct upstream influence on the HEVs and is the main supply of nutrients and cell rich blood into the LN. Furthermore, changes in the feed arteriole are implicated in facilitating induction of adaptive immune response. The LN microvasculature has obvious importance in maintaining an optimal blood supply to the LN and regulating immune cell influx into the LN, which are crucial elements in proper LN function and subsequently immune response. The ability to study the LN microvasculature in vivo is key to elucidating how the immune system and the microvasculature interact and influence one another within the LN. Here, we present a method for in vivo imaging of the inguinal lymph node. We focus on imaging of the microvasculature of the LN, paying particular attention to methods that ensure the study of healthy vessels, the ability to maintain imaging of viable vessels over a number of hours, and quantification of vessel magnitude. Methods for perfusion of the microvasculature with vasoactive drugs as well as the potential to trace and quantify cellular traffic are also presented. Intravital microscopy of the inguinal LN allows direct evaluation of microvascular functionality and real-time interface of the direct interface between immune cells, the LN, and the microcirculation. This technique potential to be combined with many immunological techniques and fluorescent cell labelling as well as manipulated to study vasculature of other LNs.
Immunology, Issue 50, Intravital vital microscopy, lymph node, arteriole, vasculature, cellular trafficking, immune response
Play Button
Microvascular Decompression: Salient Surgical Principles and Technical Nuances
Authors: Jonathan Forbes, Calvin Cooper, Walter Jermakowicz, Joseph Neimat, Peter Konrad.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center.
Trigeminal neuralgia is a disorder associated with severe episodes of lancinating pain in the distribution of the trigeminal nerve. Previous reports indicate that 80-90% of cases are related to compression of the trigeminal nerve by an adjacent vessel. The majority of patients with trigeminal neuralgia eventually require surgical management in order to achieve remission of symptoms. Surgical options for management include ablative procedures (e.g., radiosurgery, percutaneous radiofrequency lesioning, balloon compression, glycerol rhizolysis, etc.) and microvascular decompression. Ablative procedures fail to address the root cause of the disorder and are less effective at preventing recurrence of symptoms over the long term than microvascular decompression. However, microvascular decompression is inherently more invasive than ablative procedures and is associated with increased surgical risks. Previous studies have demonstrated a correlation between surgeon experience and patient outcome in microvascular decompression. In this series of 59 patients operated on by two neurosurgeons (JSN and PEK) since 2006, 93% of patients demonstrated substantial improvement in their trigeminal neuralgia following the procedure—with follow-up ranging from 6 weeks to 2 years. Moreover, 41 of 66 patients (approximately 64%) have been entirely pain-free following the operation. In this publication, video format is utilized to review the microsurgical pathology of this disorder. Steps of the operative procedure are reviewed and salient principles and technical nuances useful in minimizing complications and maximizing efficacy are discussed.
Medicine, Issue 53, microvascular, decompression, trigeminal, neuralgia, operation, video
Play Button
Quantitative Assessment of Immune Cells in the Injured Spinal Cord Tissue by Flow Cytometry: a Novel Use for a Cell Purification Method
Authors: Hal X. Nguyen, Kevin D. Beck, Aileen J. Anderson.
Institutions: University of California, University of California, University of California, University of California, University of California, University of California.
Detection of immune cells in the injured central nervous system (CNS) using morphological or histological techniques has not always provided true quantitative analysis of cellular inflammation. Flow cytometry is a quick alternative method to quantify immune cells in the injured brain or spinal cord tissue. Historically, flow cytometry has been used to quantify immune cells collected from blood or dissociated spleen or thymus, and only a few studies have attempted to quantify immune cells in the injured spinal cord by flow cytometry using fresh dissociated cord tissue. However, the dissociated spinal cord tissue is concentrated with myelin debris that can be mistaken for cells and reduce cell count reliability obtained by the flow cytometer. We have advanced a cell preparation method using the OptiPrep gradient system to effectively separate lipid/myelin debris from cells, providing sensitive and reliable quantifications of cellular inflammation in the injured spinal cord by flow cytometry. As described in our recent study (Beck & Nguyen et al., Brain. 2010 Feb; 133 (Pt 2): 433-47), the OptiPrep cell preparation had increased sensitivity to detect cellular inflammation in the injured spinal cord, with counts of specific cell types correlating with injury severity. Critically, novel usage of this method provided the first characterization of acute and chronic cellular inflammation after SCI to include a complete time course for polymorphonuclear leukocytes (PMNs, neutrophils), macrophages/microglia, and T-cells over a period ranging from 2 hours to 180 days post-injury (dpi), identifying a surprising novel second phase of cellular inflammation. Thorough characterization of cellular inflammation using this method may provide a better understanding of neuroinflammation in the injured CNS, and reveal an important multiphasic component of neuroinflammation that may be critical for the design and implementation of rational therapeutic treatment strategies, including both cell-based and pharmacological interventions for SCI.
Immunology, Issue 50, spinal cord injury, cellular inflammation, neuroinflammation, OptiPrep, central nervous system, neutrophils, macrophages, microglia, T-cells, flow cytometry
Play Button
In vivo Imaging of the Mouse Spinal Cord Using Two-photon Microscopy
Authors: Dimitrios Davalos, Katerina Akassoglou.
Institutions: University of California, San Francisco , University of California, San Francisco .
In vivo imaging using two-photon microscopy 1 in mice that have been genetically engineered to express fluorescent proteins in specific cell types 2-3 has significantly broadened our knowledge of physiological and pathological processes in numerous tissues in vivo 4-7. In studies of the central nervous system (CNS), there has been a broad application of in vivo imaging in the brain, which has produced a plethora of novel and often unexpected findings about the behavior of cells such as neurons, astrocytes, microglia, under physiological or pathological conditions 8-17. However, mostly technical complications have limited the implementation of in vivo imaging in studies of the living mouse spinal cord. In particular, the anatomical proximity of the spinal cord to the lungs and heart generates significant movement artifact that makes imaging the living spinal cord a challenging task. We developed a novel method that overcomes the inherent limitations of spinal cord imaging by stabilizing the spinal column, reducing respiratory-induced movements and thereby facilitating the use of two-photon microscopy to image the mouse spinal cord in vivo. This is achieved by combining a customized spinal stabilization device with a method of deep anesthesia, resulting in a significant reduction of respiratory-induced movements. This video protocol shows how to expose a small area of the living spinal cord that can be maintained under stable physiological conditions over extended periods of time by keeping tissue injury and bleeding to a minimum. Representative raw images acquired in vivo detail in high resolution the close relationship between microglia and the vasculature. A timelapse sequence shows the dynamic behavior of microglial processes in the living mouse spinal cord. Moreover, a continuous scan of the same z-frame demonstrates the outstanding stability that this method can achieve to generate stacks of images and/or timelapse movies that do not require image alignment post-acquisition. Finally, we show how this method can be used to revisit and reimage the same area of the spinal cord at later timepoints, allowing for longitudinal studies of ongoing physiological or pathological processes in vivo.
Neuroscience, Issue 59, Spinal cord imaging, in vivo two photon microscopy, axons, microglia, blood vessels
Play Button
Cerebrovascular Casting of the Adult Mouse for 3D Imaging and Morphological Analysis
Authors: Espen J. Walker, Fanxia Shen, William L. Young, Hua Su.
Institutions: University of California, San Francisco, University of California, San Francisco, University of California, San Francisco.
Vascular imaging is crucial in the clinical diagnosis and management of cerebrovascular diseases, such as brain arteriovenous malformations (BAVMs). Animal models are necessary for studying the etiopathology and potential therapies of cerebrovascular diseases. Imaging the vasculature in large animals is relatively easy. However, developing vessel imaging methods of murine brain disease models is desirable due to the cost and availability of genetically-modified mouse lines. Imaging the murine cerebral vascular tree is a challenge. In humans and larger animals, the gold standard for assessing the angioarchitecture at the macrovascular (conductance) level is x-ray catheter contrast-based angiography, a method not suited for small rodents. In this article, we present a method of cerebrovascular casting that produces a durable skeleton of the entire vascular bed, including arteries, veins, and capillaries that may be analyzed using many different modalities. Complete casting of the microvessels of the mouse cerebrovasculature can be difficult; however, these challenges are addressed in this step-by-step protocol. Through intracardial perfusion of the vascular casting material, all vessels of the body are casted. The brain can then be removed and clarified using the organic solvent methyl salicylate. Three dimensional imaging of the brain blood vessels can be visualized simply and inexpensively with any conventional brightfield microscope or dissecting microscope. The casted cerebrovasculature can also be imaged and quantified using micro-computed tomography (micro-CT)1. In addition, after being imaged, the casted brain can be embedded in paraffin for histological analysis. The benefit of this vascular casting method as compared to other techniques is its broad adaptation to various analytic tools, including brightfield microscopic analysis, CT scanning due to the radiopaque characteristic of the material, as well as histological and immunohistochemical analysis. This efficient use of tissue can save animal usage and reduce costs. We have recently demonstrated application of this method to visualize the irregular blood vessels in a mouse model of adult BAVM at a microscopic level2, and provide additional images of the malformed vessels imaged by micro-CT scan. Although this method has drawbacks and may not be ideal for all types of analyses, it is a simple, practical technique that can be easily learned and widely applied to vascular casting of blood vessels throughout the body.
Neuroscience, Issue 57, vessel, vascular cast, capillary, cerebrovasculature, brain, blood, AVM, fistula
Play Button
Intraspinal Cell Transplantation for Targeting Cervical Ventral Horn in Amyotrophic Lateral Sclerosis and Traumatic Spinal Cord Injury
Authors: Angelo C. Lepore.
Institutions: Thomas Jefferson University Medical College.
Respiratory compromise due to phrenic motor neuron loss is a debilitating consequence of a large proportion of human traumatic spinal cord injury (SCI) cases 1 and is the ultimate cause of death in patients with the motor neuron disorder, amyotrophic laterals sclerosis (ALS) 2. ALS is a devastating neurological disorder that is characterized by relatively rapid degeneration of upper and lower motor neurons. Patients ultimately succumb to the disease on average 2-5 years following diagnosis because of respiratory paralysis due to loss of phrenic motor neuron innnervation of the diaphragm 3. The vast majority of cases are sporadic, while 10% are of the familial form. Approximately twenty percent of familial cases are linked to various point mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene on chromosome 21 4. Transgenic mice 4,5 and rats 6 carrying mutant human SOD1 genes (G93A, G37R, G86R, G85R) have been generated, and, despite the existence of other animal models of motor neuron loss, are currently the most highly used models of the disease. Spinal cord injury (SCI) is a heterogeneous set of conditions resulting from physical trauma to the spinal cord, with functional outcome varying according to the type, location and severity of the injury 7. Nevertheless, approximately half of human SCI cases affect cervical regions, resulting in debilitating respiratory dysfunction due to phrenic motor neuron loss and injury to descending bulbospinal respiratory axons 1. A number of animal models of SCI have been developed, with the most commonly used and clinically-relevant being the contusion 8. Transplantation of various classes of neural precursor cells (NPCs) is a promising therapeutic strategy for treatment of traumatic CNS injuries and neurodegeneration, including ALS and SCI, because of the ability to replace lost or dysfunctional CNS cell types, provide neuroprotection, and deliver gene factors of interest 9. Animal models of both ALS and SCI can model many clinically-relevant aspects of these diseases, including phrenic motor neuron loss and consequent respiratory compromise 10,11. In order to evaluate the efficacy of NPC-based strategies on respiratory function in these animal models of ALS and SCI, cellular interventions must be specifically directed to regions containing therapeutically relevant targets such as phrenic motor neurons. We provide a detailed protocol for multi-segmental, intraspinal transplantation of NPCs into the cervical spinal cord ventral gray matter of neurodegenerative models such as SOD1G93A mice and rats, as well as spinal cord injured rats and mice 11.
Medicine, Issue 55, cell transplantation, engraftment, graft, spinal cord, stem cells, precursors, ALS, amyotrophic lateral sclerosis, motor neuron, SCI, spinal cord injury
Play Button
A Polished and Reinforced Thinned-skull Window for Long-term Imaging of the Mouse Brain
Authors: Andy Y. Shih, Celine Mateo, Patrick J. Drew, Philbert S. Tsai, David Kleinfeld.
Institutions: University of California, San Diego, Pennsylvania State University , Pennsylvania State University , University of California, San Diego.
In vivo imaging of cortical function requires optical access to the brain without disruption of the intracranial environment. We present a method to form a polished and reinforced thinned skull (PoRTS) window in the mouse skull that spans several millimeters in diameter and is stable for months. The skull is thinned to 10 to 15 μm in thickness with a hand held drill to achieve optical clarity, and is then overlaid with cyanoacrylate glue and a cover glass to: 1) provide rigidity, 2) inhibit bone regrowth and 3) reduce light scattering from irregularities on the bone surface. Since the skull is not breached, any inflammation that could affect the process being studied is greatly reduced. Imaging depths of up to 250 μm below the cortical surface can be achieved using two-photon laser scanning microscopy. This window is well suited to study cerebral blood flow and cellular function in both anesthetized and awake preparations. It further offers the opportunity to manipulate cell activity using optogenetics or to disrupt blood flow in targeted vessels by irradiation of circulating photosensitizers.
Neuroscience, Issue 61, cranial window, craniotomy, two-photon microscopy, blood flow, dendrite, optogenetics, cortex, capillary, microglia, chronic, mouse
Play Button
Controlled Cervical Laceration Injury in Mice
Authors: Yi Ping Zhang, Melissa J. Walker, Lisa B. E. Shields, Xiaofei Wang, Chandler L. Walker, Xiao-Ming Xu, Christopher B. Shields.
Institutions: Norton Healthcare, Indiana University School of Medicine.
Use of genetically modified mice enhances our understanding of molecular mechanisms underlying several neurological disorders such as a spinal cord injury (SCI). Freehand manual control used to produce a laceration model of SCI creates inconsistent injuries often associated with a crush or contusion component and, therefore, a novel technique was developed. Our model of cervical laceration SCI has resolved inherent difficulties with the freehand method by incorporating 1) cervical vertebral stabilization by vertebral facet fixation, 2) enhanced spinal cord exposure, and 3) creation of a reproducible laceration of the spinal cord using an oscillating blade with an accuracy of ±0.01 mm in depth without associated contusion. Compared to the standard methods of creating a SCI laceration such as freehand use of a scalpel or scissors, our method has produced a consistent lesion. This method is useful for studies on axonal regeneration of corticospinal, rubrospinal, and dorsal ascending tracts.
Medicine, Issue 75, Neurobiology, Anatomy, Physiology, Neuroscience, Immunology, Infection, Surgery, Nervous System Diseases, Diagnosis, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, spine, spinal cord injury, SCI, mouse, laceration, stabilization, axonal regeneration, injury, mice, animal model, surgical techniques
Play Button
A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
Authors: Michele M. Pelter, Teri M. Kozik, Denise L. Loranger, Mary G. Carey.
Institutions: University of Nevada, Reno, St. Joseph's Medical Center, University of Rochester Medical Center .
Each year, an estimated 785,000 Americans will have a new coronary attack, or acute coronary syndrome (ACS). The pathophysiology of ACS involves rupture of an atherosclerotic plaque; hence, treatment is aimed at plaque stabilization in order to prevent cellular death. However, there is considerable debate among clinicians, about which treatment pathway is best: early invasive using percutaneous coronary intervention (PCI/stent) when indicated or a conservative approach (i.e., medication only with PCI/stent if recurrent symptoms occur). There are three types of ACS: ST elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI), and unstable angina (UA). Among the three types, NSTEMI/UA is nearly four times as common as STEMI. Treatment decisions for NSTEMI/UA are based largely on symptoms and resting or exercise electrocardiograms (ECG). However, because of the dynamic and unpredictable nature of the atherosclerotic plaque, these methods often under detect myocardial ischemia because symptoms are unreliable, and/or continuous ECG monitoring was not utilized. Continuous 12-lead ECG monitoring, which is both inexpensive and non-invasive, can identify transient episodes of myocardial ischemia, a precursor to MI, even when asymptomatic. However, continuous 12-lead ECG monitoring is not usual hospital practice; rather, only two leads are typically monitored. Information obtained with 12-lead ECG monitoring might provide useful information for deciding the best ACS treatment. Purpose. Therefore, using 12-lead ECG monitoring, the COMPARE Study (electroCardiographic evaluatiOn of ischeMia comParing invAsive to phaRmacological trEatment) was designed to assess the frequency and clinical consequences of transient myocardial ischemia, in patients with NSTEMI/UA treated with either early invasive PCI/stent or those managed conservatively (medications or PCI/stent following recurrent symptoms). The purpose of this manuscript is to describe the methodology used in the COMPARE Study. Method. Permission to proceed with this study was obtained from the Institutional Review Board of the hospital and the university. Research nurses identify hospitalized patients from the emergency department and telemetry unit with suspected ACS. Once consented, a 12-lead ECG Holter monitor is applied, and remains in place during the patient's entire hospital stay. Patients are also maintained on the routine bedside ECG monitoring system per hospital protocol. Off-line ECG analysis is done using sophisticated software and careful human oversight.
Medicine, Issue 70, Anatomy, Physiology, Cardiology, Myocardial Ischemia, Cardiovascular Diseases, Health Occupations, Health Care, transient myocardial ischemia, Acute Coronary Syndrome, electrocardiogram, ST-segment monitoring, Holter monitoring, research methodology
Play Button
Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury
Authors: Teresa A. Evans, Deborah S. Barkauskas, Jay T. Myers, Alex Y. Huang.
Institutions: Case Western Reserve University, Case Western Reserve University, Case Western Reserve University.
Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury.
Cellular Biology, Issue 93, Intravital, spinal cord crush injury, chimera, microglia, macrophages, dorsal column crush, axonal dieback
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.