JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Roles for human papillomavirus type 16 l1 cysteine residues 161, 229, and 379 in genome encapsidation and capsid stability.
PLoS ONE
PUBLISHED: 01-01-2014
Human papillomavirus (HPV) capsids are formed through a network of inter- and intra-pentameric hydrophobic interactions and disulfide bonds. 72 pentamers of the major capsid protein, L1, and an unknown amount of the minor capsid protein, L2, form the structure of the capsid. There are 12 conserved L1 cysteine residues in HPV16. While C175, C185, and C428 have been implicated in the formation of a critical inter-pentameric disulfide bond, no structural or functional roles have been firmly attributed to any of the other conserved cysteine residues. Here, we show that substitution of cysteine residues C161, C229, and C379 for serine hinders the accumulation of endonuclease-resistant genomes as virions mature within stratifying and differentiating human epithelial tissue. C229S mutant virions form, but are non-infectious. These studies add detail to the differentiation-dependent assembly and maturation that occur during the HPV16 life cycle in human tissue.
ABSTRACT
Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.
21 Related JoVE Articles!
Play Button
In vitro Uncoating of HIV-1 Cores
Authors: Vaibhav B. Shah, Christopher Aiken.
Institutions: Vanderbilt University School of Medicine.
The genome of the retroviruses is encased in a capsid surrounded by a lipid envelope. For lentiviruses, such as HIV-1, the conical capsid shell is composed of CA protein arranged as a lattice of hexagon. The capsid is closed by 7 pentamers at the broad end and 5 at the narrow end of the cone1, 2. Encased in this capsid shell is the viral ribonucleoprotein complex, and together they comprise the core. Following fusion of the viral membrane with the target cell membrane, the HIV-1 is released into the cytoplasm. The capsid then disassembles releasing free CA in the soluble form3 in a process referred to as uncoating. The intracellular location and timing of HIV-1 uncoating are poorly understood. Single amino-acid substitutions in CA that alter the stability of the capsid also impair the ability of HIV-1 to infect cells4. This indicates that the stability of the capsid is critical for HIV-1 infection. HIV-1 uncoating has been difficult to study due to lack of availability of sensitive and reliable assays for this process. Here we describe a quantitative method for studying uncoating in vitro using cores isolated from infectious HIV-1 particles. The approach involves isolation of cores by sedimentation of concentrated virions through a layer of detergent and into a linear sucrose gradient, in the cold. To quantify uncoating, the isolated cores are incubated at 37°C for various timed intervals and subsequently pelleted by ultracentrifugation. The extent of uncoating is analyzed by quantifying the fraction of CA in the supernatant. This approach has been employed to analyze effects of viral mutations on HIV-1 capsid stability4, 5, 6. It should also be useful for studying the role of cellular factors in HIV-1 uncoating.
Immunology, Issue 57, Lentivirus, HIV, virus, infection, capsid, virons, 293T Cells, T Cells
3384
Play Button
The Importance of Correct Protein Concentration for Kinetics and Affinity Determination in Structure-function Analysis
Authors: Ewa Pol.
Institutions: GE Healthcare Bio-Sciences AB.
In this study, we explore the interaction between the bovine cysteine protease inhibitor cystatin B and a catalytically inactive form of papain (Fig. 1), a plant cysteine protease, by real-time label-free analysis using Biacore X100. Several cystatin B variants with point mutations in areas of interaction with papain, are produced. For each cystatin B variant we determine its specific binding concentration using calibration-free concentration analysis (CFCA) and compare the values obtained with total protein concentration as determined by A280. After that, the kinetics of each cystatin B variant binding to papain is measured using single-cycle kinetics (SCK). We show that one of the four cystatin B variants we examine is only partially active for binding. This partial activity, revealed by CFCA, translates to a significant difference in the association rate constant (ka) and affinity (KD), compared to the values calculated using total protein concentration. Using CFCA in combination with kinetic analysis in a structure-function study contributes to obtaining reliable results, and helps to make the right interpretation of the interaction mechanism.
Cellular Biology, Issue 37, Protein interaction, Surface Plasmon Resonance, Biacore X100, CFCA, Cystatin B, Papain
1746
Play Button
Generation of Organotypic Raft Cultures from Primary Human Keratinocytes
Authors: Daniel Anacker, Cary Moody.
Institutions: University of North Carolina-Chapel Hill, University of North Carolina-Chapel Hill.
The development of organotypic epithelial raft cultures has provided researchers with an efficient in vitro system that faithfully recapitulates epithelial differentiation. There are many uses for this system. For instance, the ability to grow three-dimensional organotypic raft cultures of keratinocytes has been an important milestone in the study of human papillomavirus (HPV)1. The life cycle of HPV is tightly linked to the differentiation of squamous epithelium2. Organotypic epithelial raft cultures as demonstrated here reproduce the entire papillomavirus life cycle, including virus production3,4,5. In addition, these raft cultures exhibit dysplastic lesions similar to those observed upon in vivo infection with HPV. Hence this system can also be used to study epithelial cell cancers, as well as the effect of drugs on epithelial cell differentiation in general. Originally developed by Asselineau and Prunieras6 and modified by Kopan et al.7, the organotypic epithelial raft culture system has matured into a general, relatively easy culture model, which involves the growth of cells on collagen plugs maintained at an air-liquid interface (Figure 1A). Over the course of 10-14 days, the cells stratify and differentiate, forming a full thickness epithelium that produces differentiation-specific cytokeratins. Harvested rafts can be examined histologically, as well as by standard molecular and biochemical techniques. In this article, we describe a method for the generation of raft cultures from primary human keratinocytes. The same technique can be used with established epithelial cell lines, and can easily be adapted for use with epithelial tissue from normal or diseased biopsies8. Many viruses target either the cutaneous or mucosal epithelium as part of their replicative life cycle. Over the past several years, the feasibility of using organotypic raft cultures as a method of studying virus-host cell interactions has been shown for several herpesviruses, as well as adenoviruses, parvoviruses, and poxviruses9. Organotypic raft cultures can thus be adapted to examine viral pathogenesis, and are the only means to test novel antiviral agents for those viruses that are not cultivable in permanent cell lines.
Immunology, Issue 60, Epithelium, organotypic raft culture, virus, keratinocytes, papillomavirus
3668
Play Button
Isolation and Genome Analysis of Single Virions using 'Single Virus Genomics'
Authors: Lisa Zeigler Allen, Thomas Ishoey, Mark A. Novotny, Jeffrey S. McLean, Roger S. Lasken, Shannon J. Williamson.
Institutions: The J. Craig Venter Institute.
Whole genome amplification and sequencing of single microbial cells enables genomic characterization without the need of cultivation 1-3. Viruses, which are ubiquitous and the most numerous entities on our planet 4 and important in all environments 5, have yet to be revealed via similar approaches. Here we describe an approach for isolating and characterizing the genomes of single virions called 'Single Virus Genomics' (SVG). SVG utilizes flow cytometry to isolate individual viruses and whole genome amplification to obtain high molecular weight genomic DNA (gDNA) that can be used in subsequent sequencing reactions.
Genetics, Issue 75, Microbiology, Immunology, Virology, Molecular Biology, Environmental Sciences, Genomics, environmental genomics, Single virus, single virus genomics, SVG, whole genome amplification, flow cytometry, viral ecology, virion, genome analysis, DNA, PCR, sequencing
3899
Play Button
Detection of Protein Palmitoylation in Cultured Hippocampal Neurons by Immunoprecipitation and Acyl-Biotin Exchange (ABE)
Authors: G. Stefano Brigidi, Shernaz X Bamji.
Institutions: University of British Columbia .
Palmitoylation is a post-translational lipid modification involving the attachment of a 16-carbon saturated fatty acid, palmitate, to cysteine residues of substrate proteins through a labile thioester bond [reviewed in1]. Palmitoylation of a substrate protein increases its hydrophobicity, and typically facilitates its trafficking toward cellular membranes. Recent studies have shown palmitoylation to be one of the most common lipid modifications in neurons1, 2, suggesting that palmitate turnover is an important mechanism by which these cells regulate the targeting and trafficking of proteins. The identification and detection of palmitoylated substrates can therefore better our understanding of protein trafficking in neurons. Detection of protein palmitoylation in the past has been technically hindered due to the lack of a consensus sequence among substrate proteins, and the reliance on metabolic labeling of palmitoyl-proteins with 3H-palmitate, a time-consuming biochemical assay with low sensitivity. Development of the Acyl-Biotin Exchange (ABE) assay enables more rapid and high sensitivity detection of palmitoylated proteins2-4, and is optimal for measuring the dynamic turnover of palmitate on neuronal proteins. The ABE assay is comprised of three biochemical steps (Figure 1): 1) irreversible blockade of unmodified cysteine thiol groups using N-ethylmaliemide (NEM), 2) specific cleavage and unmasking of the palmitoylated cysteine's thiol group by hydroxylamine (HAM), and 3) selective labeling of the palmitoylated cysteine using a thiol-reactive biotinylation reagent, biotin-BMCC. Purification of the thiol-biotinylated proteins following the ABE steps has differed, depending on the overall goal of the experiment. Here, we describe a method to purify a palmitoylated protein of interest in primary hippocampal neurons by an initial immunoprecipitation (IP) step using an antibody directed against the protein, followed by the ABE assay and western blotting to directly measure palmitoylation levels of that protein, which is termed the IP-ABE assay. Low-density cultures of embryonic rat hippocampal neurons have been widely used to study the localization, function, and trafficking of neuronal proteins, making them ideally suited for studying neuronal protein palmitoylation using the IP-ABE assay. The IP-ABE assay mainly requires standard IP and western blotting reagents, and is only limited by the availability of antibodies against the target substrate. This assay can easily be adapted for the purification and detection of transfected palmitoylated proteins in heterologous cell cultures, primary neuronal cultures derived from various brain tissues of both mouse and rat, and even primary brain tissue itself.
Neuroscience, Issue 72, Biochemistry, Neurobiology, Molecular Biology, Cellular Biology, Physiology, Proteins, synapse, cultured hippocampal neurons, palmitoylation, lipid, immunoprecipitation, western blotting, biotin, Acyl-Biotin Exchange, ABE, neuron, brain, cell culture, rat, mouse, animal model
50031
Play Button
Determination of the Gas-phase Acidities of Oligopeptides
Authors: Jianhua Ren, Ashish Sawhney, Yuan Tian, Bhupinder Padda, Patrick Batoon.
Institutions: University of the Pacific.
Amino acid residues located at different positions in folded proteins often exhibit different degrees of acidities. For example, a cysteine residue located at or near the N-terminus of a helix is often more acidic than that at or near the C-terminus 1-6. Although extensive experimental studies on the acid-base properties of peptides have been carried out in the condensed phase, in particular in aqueous solutions 6-8, the results are often complicated by solvent effects 7. In fact, most of the active sites in proteins are located near the interior region where solvent effects have been minimized 9,10. In order to understand intrinsic acid-base properties of peptides and proteins, it is important to perform the studies in a solvent-free environment. We present a method to measure the acidities of oligopeptides in the gas-phase. We use a cysteine-containing oligopeptide, Ala3CysNH2 (A3CH), as the model compound. The measurements are based on the well-established extended Cooks kinetic method (Figure 1) 11-16. The experiments are carried out using a triple-quadrupole mass spectrometer interfaced with an electrospray ionization (ESI) ion source (Figure 2). For each peptide sample, several reference acids are selected. The reference acids are structurally similar organic compounds with known gas-phase acidities. A solution of the mixture of the peptide and a reference acid is introduced into the mass spectrometer, and a gas-phase proton-bound anionic cluster of peptide-reference acid is formed. The proton-bound cluster is mass isolated and subsequently fragmented via collision-induced dissociation (CID) experiments. The resulting fragment ion abundances are analyzed using a relationship between the acidities and the cluster ion dissociation kinetics. The gas-phase acidity of the peptide is then obtained by linear regression of the thermo-kinetic plots 17,18. The method can be applied to a variety of molecular systems, including organic compounds, amino acids and their derivatives, oligonucleotides, and oligopeptides. By comparing the gas-phase acidities measured experimentally with those values calculated for different conformers, conformational effects on the acidities can be evaluated.
Chemistry, Issue 76, Biochemistry, Molecular Biology, Oligopeptide, gas-phase acidity, kinetic method, collision-induced dissociation, triple-quadrupole mass spectrometry, oligopeptides, peptides, mass spectrometry, MS
4348
Play Button
Use of Interferon-γ Enzyme-linked Immunospot Assay to Characterize Novel T-cell Epitopes of Human Papillomavirus
Authors: Xuelian Wang, William W. Greenfield, Hannah N. Coleman, Lindsey E. James, Mayumi Nakagawa.
Institutions: China Medical University , University of Arkansas for Medical Sciences , University of Arkansas for Medical Sciences .
A protocol has been developed to overcome the difficulties of isolating and characterizing rare T cells specific for pathogens, such as human papillomavirus (HPV), that cause localized infections. The steps involved are identifying region(s) of HPV proteins that contain T-cell epitope(s) from a subject, selecting for the peptide-specific T cells based on interferon-γ (IFN-γ) secretion, and growing and characterizing the T-cell clones (Fig. 1). Subject 1 was a patient who was recently diagnosed with a high-grade squamous intraepithelial lesion by biopsy and underwent loop electrical excision procedure for treatment on the day the T cells were collected1. A region within the human papillomavirus type 16 (HPV 16) E6 and E7 proteins which contained a T-cell epitope was identified using an IFN- g enzyme-linked immunospot (ELISPOT) assay performed with overlapping synthetic peptides (Fig. 2). The data from this assay were used not only to identify a region containing a T-cell epitope, but also to estimate the number of epitope specific T cells and to isolate them on the basis of IFN- γ secretion using commercially available magnetic beads (CD8 T-cell isolation kit, Miltenyi Biotec, Auburn CA). The selected IFN-γ secreting T cells were diluted and grown singly in the presence of an irradiated feeder cell mixture in order to support the growth of a single T-cell per well. These T-cell clones were screened using an IFN- γ ELISPOT assay in the presence of peptides covering the identified region and autologous Epstein-Barr virus transformed B-lymphoblastoid cells (LCLs, obtained how described by Walls and Crawford)2 in order to minimize the number of T-cell clone cells needed. Instead of using 1 x 105 cells per well typically used in ELISPOT assays1,3, 1,000 T-cell clone cells in the presence of 1 x 105 autologous LCLs were used, dramatically reducing the number of T-cell clone cells needed. The autologous LCLs served not only to present peptide antigens to the T-cell clone cells, but also to keep a high cell density in the wells allowing the epitope-specific T-cell clone cells to secrete IFN-γ. This assures successful performance of IFN-γ ELISPOT assay. Similarly, IFN- γ ELISPOT assays were utilized to characterize the minimal and optimal amino acid sequence of the CD8 T-cell epitope (HPV 16 E6 52-61 FAFRDLCIVY) and its HLA class I restriction element (B58). The IFN- γ ELISPOT assay was also performed using autologous LCLs infected with vaccinia virus expressing HPV 16 E6 or E7 protein. The result demonstrated that the E6 T-cell epitope was endogenously processed. The cross-recognition of homologous T-cell epitope of other high-risk HPV types was shown. This method can also be used to describe CD4 T-cell epitopes4.
Immunology, Issue 61, Interferon-γ enzyme-linked immunospot assay, T-cell, epitope, human papillomavirus
3657
Play Button
Chemoselective Modification of Viral Surfaces via Bioorthogonal Click Chemistry
Authors: Frederick A. Rubino, Yoon Hyeun Oum, Lakshmi Rajaram, Yanjie Chu, Isaac S. Carrico.
Institutions: Stony Brook University.
The modification of virus particles has received a significant amount of attention for its tremendous potential for impacting gene therapy, oncolytic applications and vaccine development.1,2,3 Current approaches to modifying viral surfaces, which are mostly genetics-based, often suffer from attenuation of virus production, infectivity and cellular transduction.4,5 Using chemoselective click chemistry, we have developed a straightforward alternative approach which sidesteps these issues while remaining both highly flexible and accessible.1,2 The goal of this protocol is to demonstrate the effectiveness of using bioorthogonal click chemistry to modify the surface of adenovirus type 5 particles. This two-step process can be used both therapeutically1 or analytically,2,6 as it allows for chemoselective ligation of targeting molecules, dyes or other molecules of interest onto proteins pre-labeled with azide tags. The three major advantages of this method are that (1) metabolic labeling demonstrates little to no impact on viral fitness,1,7 (2) a wide array of effector ligands can be utilized, and (3) it is remarkably fast, reliable and easy to access.1,2,7 In the first step of this procedure, adenovirus particles are produced bearing either azidohomoalanine (Aha, a methionine surrogate) or the unnatural sugar O-linked N-azidoacetylglucosamine (O-GlcNAz), both of which contain the azide (-N3) functional group. After purification of the azide-modified virus particles, an alkyne probe containing the fluorescent TAMRA moiety is ligated in a chemoselective manner to the pre-labeled proteins or glycoproteins. Finally, an SDS-PAGE analysis is performed to demonstrate the successful ligation of the probe onto the viral capsid proteins. Aha incorporation is shown to label all viral capsid proteins (Hexon, Penton and Fiber), while O-GlcNAz incorporation results in labeling of Fiber only. In this evolving field, multiple methods for azide-alkyne ligation have been successfully developed; however only the two we have found to be most convenient are demonstrated herein – strain-promoted azide-alkyne cycloaddition (SPAAC) and copper-catalyzed azide-alkyne cycloaddition (CuAAC) under deoxygenated atmosphere.
Chemistry, Issue 66, Virology, Immunology, Genetics, adenovirus, azide-alkyne cycloaddition, azido sugar, azidohomoalanine, bioorthogonal, click chemistry, gene therapy, unnatural amino acid
4246
Play Button
Mouse Genome Engineering Using Designer Nucleases
Authors: Mario Hermann, Tomas Cermak, Daniel F. Voytas, Pawel Pelczar.
Institutions: University of Zurich, University of Minnesota.
Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.
Genetics, Issue 86, Oocyte microinjection, Designer nucleases, ZFN, TALEN, Genome Engineering
50930
Play Button
Analysis of the Solvent Accessibility of Cysteine Residues on Maize rayado fino virus Virus-like Particles Produced in Nicotiana benthamiana Plants and Cross-linking of Peptides to VLPs
Authors: Angela Natilla, Rosemarie W. Hammond.
Institutions: Agricultural Research Service, United States Department of Agriculture, Agricultural Research Service, United States Department of Agriculture.
Mimicking and exploiting virus properties and physicochemical and physical characteristics holds promise to provide solutions to some of the world's most pressing challenges. The sheer range and types of viruses coupled with their intriguing properties potentially give endless opportunities for applications in virus-based technologies. Viruses have the ability to self- assemble into particles with discrete shape and size, specificity of symmetry, polyvalence, and stable properties under a wide range of temperature and pH conditions. Not surprisingly, with such a remarkable range of properties, viruses are proposed for use in biomaterials 9, vaccines 14, 15, electronic materials, chemical tools, and molecular electronic containers4, 5, 10, 11, 16, 18, 12. In order to utilize viruses in nanotechnology, they must be modified from their natural forms to impart new functions. This challenging process can be performed through several mechanisms including genetic modification of the viral genome and chemically attaching foreign or desired molecules to the virus particle reactive groups 8. The ability to modify a virus primarily depends upon the physiochemical and physical properties of the virus. In addition, the genetic or physiochemical modifications need to be performed without adversely affecting the virus native structure and virus function. Maize rayado fino virus (MRFV) coat proteins self-assemble in Escherichia coli producing stable and empty VLPs that are stabilized by protein-protein interactions and that can be used in virus-based technologies applications 8. VLPs produced in tobacco plants were examined as a scaffold on which a variety of peptides can be covalently displayed 13. Here, we describe the steps to 1) determine which of the solvent-accessible cysteines in a virus capsid are available for modification, and 2) bioconjugate peptides to the modified capsids. By using native or mutationally-inserted amino acid residues and standard coupling technologies, a wide variety of materials have been displayed on the surface of plant viruses such as, Brome mosaic virus 3, Carnation mottle virus 12, Cowpea chlorotic mottle virus 6, Tobacco mosaic virus 17, Turnip yellow mosaic virus 1, and MRFV 13.
Virology, Issue 72, Plant Biology, Infection, Molecular Biology, Biochemistry, Proteins, Chemicals and Drugs, Analytical, Diagnostic and Therapeutic Techniques and Equipment, Technology, Industry, Agriculture, Chemistry and materials, Virus-like particles (VLPs), VLP, sulfhydryl-reactive chemistries, labeling, cross-linking, multivalent display, Maize rayado fino virus, mosaic virus, virus, nanoparticle, drug delivery, peptides, Nicotiana benthamiana, plant model
50084
Play Button
Production of Disulfide-stabilized Transmembrane Peptide Complexes for Structural Studies
Authors: Pooja Sharma, Mariam Kaywan-Lutfi, Logesvaran Krshnan, Eamon F. X. Byrne, Melissa Joy Call, Matthew Edwin Call.
Institutions: The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne.
Physical interactions among the lipid-embedded alpha-helical domains of membrane proteins play a crucial role in folding and assembly of membrane protein complexes and in dynamic processes such as transmembrane (TM) signaling and regulation of cell-surface protein levels. Understanding the structural features driving the association of particular sequences requires sophisticated biophysical and biochemical analyses of TM peptide complexes. However, the extreme hydrophobicity of TM domains makes them very difficult to manipulate using standard peptide chemistry techniques, and production of suitable study material often proves prohibitively challenging. Identifying conditions under which peptides can adopt stable helical conformations and form complexes spontaneously adds a further level of difficulty. Here we present a procedure for the production of homo- or hetero-dimeric TM peptide complexes from materials that are expressed in E. coli, thus allowing incorporation of stable isotope labels for nuclear magnetic resonance (NMR) or non-natural amino acids for other applications relatively inexpensively. The key innovation in this method is that TM complexes are produced and purified as covalently associated (disulfide-crosslinked) assemblies that can form stable, stoichiometric and homogeneous structures when reconstituted into detergent, lipid or other membrane-mimetic materials. We also present carefully optimized procedures for expression and purification that are equally applicable whether producing single TM domains or crosslinked complexes and provide advice for adapting these methods to new TM sequences.
Biochemistry, Issue 73, Structural Biology, Chemistry, Chemical Engineering, Biophysics, Genetics, Molecular Biology, Membrane Proteins, Proteins, Molecular Structure, transmembrane domain, peptide chemistry, membrane protein structure, immune receptors, reversed-phase HPLC, HPLC, peptides, lipids, protein, cloning, TFA Elution, CNBr Digestion, NMR, expression, cell culture
50141
Play Button
Live Cell Imaging of Alphaherpes Virus Anterograde Transport and Spread
Authors: Matthew P. Taylor, Radomir Kratchmarov, Lynn W. Enquist.
Institutions: Montana State University, Princeton University.
Advances in live cell fluorescence microscopy techniques, as well as the construction of recombinant viral strains that express fluorescent fusion proteins have enabled real-time visualization of transport and spread of alphaherpes virus infection of neurons. The utility of novel fluorescent fusion proteins to viral membrane, tegument, and capsids, in conjunction with live cell imaging, identified viral particle assemblies undergoing transport within axons. Similar tools have been successfully employed for analyses of cell-cell spread of viral particles to quantify the number and diversity of virions transmitted between cells. Importantly, the techniques of live cell imaging of anterograde transport and spread produce a wealth of information including particle transport velocities, distributions of particles, and temporal analyses of protein localization. Alongside classical viral genetic techniques, these methodologies have provided critical insights into important mechanistic questions. In this article we describe in detail the imaging methods that were developed to answer basic questions of alphaherpes virus transport and spread.
Virology, Issue 78, Infection, Immunology, Medicine, Molecular Biology, Cellular Biology, Microbiology, Genetics, Microscopy, Fluorescence, Neurobiology, Herpes virus, fluorescent protein, epifluorescent microscopy, neuronal culture, axon, virion, video microscopy, virus, live cell, imaging
50723
Play Button
Reverse Genetics Mediated Recovery of Infectious Murine Norovirus
Authors: Armando Arias, Luis Ureña, Lucy Thorne, Muhammad A. Yunus, Ian Goodfellow.
Institutions: Imperial College London .
Human noroviruses are responsible for most cases of human gastroenteritis (GE) worldwide and are recurrent problem in environments where close person-to-person contact cannot be avoided 1, 2. During the last few years an increase in the incidence of outbreaks in hospitals has been reported, causing significant disruptions to their operational capacity as well as large economic losses. The identification of new antiviral approaches has been limited due to the inability of human noroviruses to complete a productive infection in cell culture 3. The recent isolation of a murine norovirus (MNV), closely related to human norovirus 4 but which can be propagated in cells 5 has opened new avenues for the investigation of these pathogens 6, 7. MNV replication results in the synthesis of new positive sense genomic and subgenomic RNA molecules, the latter of which corresponds to the last third of the viral genome (Figure 1). MNV contains four different open reading frames (ORFs), of which ORF1 occupies most of the genome and encodes seven non-structural proteins (NS1-7) released from a polyprotein precursor. ORF2 and ORF3 are contained within the subgenomic RNA region and encode the capsid proteins (VP1 and VP2, respectively) (Figure 1). Recently, we have identified that additional ORF4 overlapping ORF2 but in a different reading frame is functional and encodes for a mitochondrial localised virulence factor (VF1) 8. Replication for positive sense RNA viruses, including noroviruses, takes place in the cytoplasm resulting in the synthesis of new uncapped RNA genomes. To promote viral translation, viruses exploit different strategies aimed at recruiting the cellular protein synthesis machinery 9-11. Interestingly, norovirus translation is driven by the multifunctional viral protein-primer VPg covalently linked to the 5' end of both genomic and subgenomic RNAs 12-14. This sophisticated mechanism of translation is likely to be a major factor in the limited efficiency of viral recovery by conventional reverse genetics approaches. Here we report two different strategies based on the generation of murine norovirus-1 (referred to as MNV herewith) transcripts capped at the 5' end. One of the methods involves both in vitro synthesis and capping of viral RNA, whereas the second approach entails the transcription of MNV cDNA in cells expressing T7 RNA polymerase. The availability of these reverse genetics systems for the study of MNV and a small animal model has provided an unprecedented ability to dissect the role of viral sequences in replication and pathogenesis 15-17.
Virology, Issue 64, Immunology, Genetics, Infection, RNA virus, VPg, RNA capping, T7 RNA polymerase, calicivirus, norovirus
4145
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Structure and Coordination Determination of Peptide-metal Complexes Using 1D and 2D 1H NMR
Authors: Michal S. Shoshan, Edit Y. Tshuva, Deborah E. Shalev.
Institutions: The Hebrew University of Jerusalem, The Hebrew University of Jerusalem.
Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy. NMR is a widely accepted technique for the determination of solution structures of proteins and peptides. Due to difficulty in crystallization to provide single crystals suitable for X-ray crystallography, the NMR technique is extremely valuable, especially as it provides information on the solution state rather than the solid state. Herein we describe all steps that are required for full three-dimensional structure determinations by NMR. The protocol includes sample preparation in an NMR tube, 1D and 2D data collection and processing, peak assignment and integration, molecular mechanics calculations, and structure analysis. Importantly, the analysis was first conducted without any preset metal-ligand bonds, to assure a reliable structure determination in an unbiased manner.
Chemistry, Issue 82, solution structure determination, NMR, peptide models, copper-binding proteins, copper complexes
50747
Play Button
Simple and Robust in vivo and in vitro Approach for Studying Virus Assembly
Authors: Sonali Chaturvedi, Bongsu Jung, Sharad Gupta, Bahman Anvari, A.L.N. Rao.
Institutions: University of California, Riverside , University of California, Riverside .
In viruses with positive-sense RNA genomes pathogenic to humans, animals and plants, progeny encapsidation into mature and stable virions is a cardinal phase during establishment of infection in a given host. Consequently, study of encapsidation deciphers the information regarding the know-how of the mechanism regulating virus assembly to form infectious virions. Such information is vital in formulating novel methods of curbing virus spread and disease control. Virus encapsidation can be studied in vivo and in vitro. Genome encapsidation in vivo is a highly regulated selective process involving macromolecular interactions and subcellular compartmentalization. Therefore, study leading to dissect events encompassing virus encapsidation in vivo would provide basic knowledge to understand how viruses proliferate and assemble. Recently in vitro encapsidation has been exploited for the research in the area of biomedical imaging and therapeutic applications. Non-enveloped plant viruses stand far ahead in the venture of in vitro encapsidation of the negatively charged foreign material. Brome mosaic virus (BMV), a non-enveloped multicomponent RNA virus pathogenic to plants, has been used as a model system for studying genome packaging in vivo and in vitro. For encapsidation assays in Nicotiana benthamiana plants, Agrobacterium -mediated transient expression, refer to as agroinfiltration, is an efficient and robust technique for the synchronized delivery and expression of multiple components to the same cell. In this approach, a suspension of Agrobacterium tumefaciens cells carrying binary plasmid vectors carrying cDNAs of desiredviral mRNAs is infiltrated into the intercellular space withina leaf using nothing more sophisticated than a 1 ml disposable syringe (without needle). This process results in the transfer of DNA insert into plant cells; the T-DNA insert remains transiently in the nucleus and is then transcribed by the host polymerase II, leading to the transient expression. The resulting mRNA transcript (capped and polyadenylated) is then exported to the cytoplasm for translation. After approximately 24 to 48 hours of incubation,sections of infiltrated leaves can be sampled for microscopyor biochemical analyses. Agroinfiltration permits large numbers (hundreds to thousands) of cells to be transfected simultaneously. For in vitro encapsidation, purified virions of BMV are dissociated into capsid protein by dialyzing against dissociation buffer containing calcium chloride followed by removal of RNA and un-dissociated virions by centrifugation. Genome depleted capsid protein subunits are then reassembled with desired viral genome components or non-viral components such as indocyanine dye.
Immunology, Issue 61, Agrobacterium, Brome mosaic virus, Nicotiana benthamiana, encapsidation, dissociation, in vitro assembly, Nano technology
3645
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
50890
Play Button
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli
Authors: Natalie J. Saez, Hervé Nozach, Marilyne Blemont, Renaud Vincentelli.
Institutions: Aix-Marseille Université, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Bioengineering, Issue 89, E. coli, expression, recombinant, high throughput (HTP), purification, auto-induction, immobilized metal affinity chromatography (IMAC), tobacco etch virus protease (TEV) cleavage, disulfide bond isomerase C (DsbC) fusion, disulfide bonds, animal venom proteins/peptides
51464
Play Button
Designing Silk-silk Protein Alloy Materials for Biomedical Applications
Authors: Xiao Hu, Solomon Duki, Joseph Forys, Jeffrey Hettinger, Justin Buchicchio, Tabbetha Dobbins, Catherine Yang.
Institutions: Rowan University, Rowan University, Cooper Medical School of Rowan University, Rowan University.
Fibrous proteins display different sequences and structures that have been used for various applications in biomedical fields such as biosensors, nanomedicine, tissue regeneration, and drug delivery. Designing materials based on the molecular-scale interactions between these proteins will help generate new multifunctional protein alloy biomaterials with tunable properties. Such alloy material systems also provide advantages in comparison to traditional synthetic polymers due to the materials biodegradability, biocompatibility, and tenability in the body. This article used the protein blends of wild tussah silk (Antheraea pernyi) and domestic mulberry silk (Bombyx mori) as an example to provide useful protocols regarding these topics, including how to predict protein-protein interactions by computational methods, how to produce protein alloy solutions, how to verify alloy systems by thermal analysis, and how to fabricate variable alloy materials including optical materials with diffraction gratings, electric materials with circuits coatings, and pharmaceutical materials for drug release and delivery. These methods can provide important information for designing the next generation multifunctional biomaterials based on different protein alloys.
Bioengineering, Issue 90, protein alloys, biomaterials, biomedical, silk blends, computational simulation, implantable electronic devices
50891
Play Button
A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation
Authors: Mariko Kobayashi, Ju-Youn Kim, Vladimir Camarena, Pamela C. Roehm, Moses V. Chao, Angus C. Wilson, Ian Mohr.
Institutions: New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine.
Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA+ neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron and can be induced to productively replicate by interfering with PI3-Kinase / Akt signaling or the simple withdrawal of nerve growth factor1. A recombinant HSV-1 encoding EGFP fused to the viral lytic protein Us11 provides a functional, real-time marker for replication resulting from reactivation that is readily quantified. In addition to chemical treatments, genetic methodologies such as RNA-interference or gene delivery via lentiviral vectors can be successfully applied to the system permitting mechanistic studies that are very difficult, if not impossible, in animals. In summary, the SCG-based HSV-1 latency / reactivation system provides a powerful, necessary tool to unravel the molecular mechanisms controlling HSV1 latency and reactivation in neurons, a long standing puzzle in virology whose solution may offer fresh insights into developing new therapies that target the latent herpesvirus reservoir.
Immunology, Issue 62, neuron cell culture, Herpes Simplex Virus (HSV), molecular biology, virology
3823
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.