JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Selection and characterization of a DNA aptamer that can discriminate between cJun/cJun and cJun/cFos.
PLoS ONE
PUBLISHED: 01-01-2014
The AP-1 family of transcriptional activators plays pivotal roles in regulating a wide range of biological processes from the immune response to tumorigenesis. Determining the roles of specific AP-1 dimers in cells, however, has remained challenging because common molecular biology techniques are unable to distinguish between the role of, for example, cJun/cJun homodimers versus cJun/cFos heterodimers. Here we used SELEX (systematic evolution of ligands by exponential enrichment) to identify and characterize DNA aptamers that are >100-fold more specific for binding cJun/cJun compared to cJun/cFos, setting the foundation to investigate the biological functions of different AP-1 dimer compositions.
Authors: Weihua Pan, Ping Xin, Susan Patrick, Stacey Dean, Christine Keating, Gary Clawson.
Published: 07-26-2010
ABSTRACT
Aptamers are highly structured oligonucleotides (DNA or RNA) that can bind to targets with affinities comparable to antibodies 1. They are identified through an in vitro selection process called Systematic Evolution of Ligands by EXponential enrichment (SELEX) to recognize a wide variety of targets, from small molecules to proteins and other macromolecules 2-4. Aptamers have properties that are well suited for in vivo diagnostic and/or therapeutic applications: Besides good specificity and affinity, they are easily synthesized, survive more rigorous processing conditions, they are poorly immunogenic, and their relatively small size can result in facile penetration of tissues. Aptamers that are identified through the standard SELEX process usually comprise ~80 nucleotides (nt), since they are typically selected from nucleic acid libraries with ~40 nt long randomized regions plus fixed primer sites of ~20 nt on each side. The fixed primer sequences thus can comprise nearly ~50% of the library sequences, and therefore may positively or negatively compromise identification of aptamers in the selection process 3, although bioinformatics approaches suggest that the fixed sequences do not contribute significantly to aptamer structure after selection 5. To address these potential problems, primer sequences have been blocked by complementary oligonucleotides or switched to different sequences midway during the rounds of SELEX 6, or they have been trimmed to 6-9 nt 7, 8. Wen and Gray 9 designed a primer-free genomic SELEX method, in which the primer sequences were completely removed from the library before selection and were then regenerated to allow amplification of the selected genomic fragments. However, to employ the technique, a unique genomic library has to be constructed, which possesses limited diversity, and regeneration after rounds of selection relies on a linear reamplification step. Alternatively, efforts to circumvent problems caused by fixed primer sequences using high efficiency partitioning are met with problems regarding PCR amplification 10. We have developed a primer-free (PF) selection method that significantly simplifies SELEX procedures and effectively eliminates primer-interference problems 11, 12. The protocols work in a straightforward manner. The central random region of the library is purified without extraneous flanking sequences and is bound to a suitable target (for example to a purified protein or complex mixtures such as cell lines). Then the bound sequences are obtained, reunited with flanking sequences, and re-amplified to generate selected sub-libraries. As an example, here we selected aptamers to S100B, a protein marker for melanoma. Binding assays showed Kd s in the 10-7 - 10-8 M range after a few rounds of selection, and we demonstrate that the aptamers function effectively in a sandwich binding format.
21 Related JoVE Articles!
Play Button
Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery
Authors: Jiehua Zhou, Haitang Li, Jane Zhang, Swiderski Piotr, John Rossi.
Institutions: Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and clinical translation of siRNAs is efficient delivery. Particularly, considering the safety and efficacy of RNAi-based therapeutics, it is highly desirable to develop a targeted intracellular siRNA delivery approach to specific cell populations or tissues. The HIV-1 gp120 protein, a glycoprotein envelope on the surface of HIV-1, plays an important role in viral entry into CD4 cells. The interaction of gp120 and CD4 that triggers HIV-1 entry and initiates cell fusion has been validated as a clinically relevant anti-viral strategy for drug discovery. Herein, we firstly discuss the selection and identification of 2'-F modified anti-HIV gp120 RNA aptamers. Using a conventional nitrocellulose filter SELEX method, several new aptamers with nanomolar affinity were isolated from a 50 random nt RNA library. In order to successfully obtain bound species with higher affinity, the selection stringency is carefully controlled by adjusting the conditions. The selected aptamers can specifically bind and be rapidly internalized into cells expressing the HIV-1 envelope protein. Additionally, the aptamers alone can neutralize HIV-1 infectivity. Based upon the best aptamer A-1, we also create a novel dual inhibitory function anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. Further, we utilize the gp120 aptamer-siRNA chimeras for cell-type specific delivery of the siRNA into HIV-1 infected cells. This dual function chimera shows considerable potential for combining various nucleic acid therapeutic agents (aptamer and siRNA) in suppressing HIV-1 infection, making the aptamer-siRNA chimeras attractive therapeutic candidates for patients failing highly active antiretroviral therapy (HAART).
Immunology, Issue 52, SELEX (Systematic Evolution of Ligands by EXponential enrichment), RNA aptamer, HIV-1 gp120, RNAi (RNA interference), siRNA (small interfering RNA), cell-type specific delivery
2954
Play Button
Selection of Aptamers for Amyloid β-Protein, the Causative Agent of Alzheimer's Disease
Authors: Farid Rahimi, Gal Bitan.
Institutions: David Geffen School of Medicine, University of California, Los Angeles, University of California, Los Angeles.
Alzheimer's disease (AD) is a progressive, age-dependent, neurodegenerative disorder with an insidious course that renders its presymptomatic diagnosis difficult1. Definite AD diagnosis is achieved only postmortem, thus establishing presymptomatic, early diagnosis of AD is crucial for developing and administering effective therapies2,3. Amyloid β-protein (Aβ) is central to AD pathogenesis. Soluble, oligomeric Aβ assemblies are believed to affect neurotoxicity underlying synaptic dysfunction and neuron loss in AD4,5. Various forms of soluble Aβ assemblies have been described, however, their interrelationships and relevance to AD etiology and pathogenesis are complex and not well understood6. Specific molecular recognition tools may unravel the relationships amongst Aβ assemblies and facilitate detection and characterization of these assemblies early in the disease course before symptoms emerge. Molecular recognition commonly relies on antibodies. However, an alternative class of molecular recognition tools, aptamers, offers important advantages relative to antibodies7,8. Aptamers are oligonucleotides generated by in-vitro selection: systematic evolution of ligands by exponential enrichment (SELEX)9,10. SELEX is an iterative process that, similar to Darwinian evolution, allows selection, amplification, enrichment, and perpetuation of a property, e.g., avid, specific, ligand binding (aptamers) or catalytic activity (ribozymes and DNAzymes). Despite emergence of aptamers as tools in modern biotechnology and medicine11, they have been underutilized in the amyloid field. Few RNA or ssDNA aptamers have been selected against various forms of prion proteins (PrP)12-16. An RNA aptamer generated against recombinant bovine PrP was shown to recognize bovine PrP-β17, a soluble, oligomeric, β-sheet-rich conformational variant of full-length PrP that forms amyloid fibrils18. Aptamers generated using monomeric and several forms of fibrillar β2-microglobulin (β2m) were found to bind fibrils of certain other amyloidogenic proteins besides β2m fibrils19. Ylera et al. described RNA aptamers selected against immobilized monomeric Aβ4020. Unexpectedly, these aptamers bound fibrillar Aβ40. Altogether, these data raise several important questions. Why did aptamers selected against monomeric proteins recognize their polymeric forms? Could aptamers against monomeric and/or oligomeric forms of amyloidogenic proteins be obtained? To address these questions, we attempted to select aptamers for covalently-stabilized oligomeric Aβ4021 generated using photo-induced cross-linking of unmodified proteins (PICUP)22,23. Similar to previous findings17,19,20, these aptamers reacted with fibrils of Aβ and several other amyloidogenic proteins likely recognizing a potentially common amyloid structural aptatope21. Here, we present the SELEX methodology used in production of these aptamers21.
Neuroscience, Issue 39, Cellular Biology, Aptamer, RNA, amyloid β-protein, oligomer, amyloid fibrils, protein assembly
1955
Play Button
Steady-state, Pre-steady-state, and Single-turnover Kinetic Measurement for DNA Glycosylase Activity
Authors: Akira Sassa, William A. Beard, David D. Shock, Samuel H. Wilson.
Institutions: NIEHS, National Institutes of Health.
Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, koff). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (koff). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (<1 sec) before the steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate constants that influence the efficiency of removal of a DNA lesion.
Chemistry, Issue 78, Biochemistry, Genetics, Molecular Biology, Microbiology, Structural Biology, Chemical Biology, Eukaryota, Amino Acids, Peptides, and Proteins, Nucleic Acids, Nucleotides, and Nucleosides, Enzymes and Coenzymes, Life Sciences (General), enzymology, rapid quench-flow, active site titration, steady-state, pre-steady-state, single-turnover, kinetics, base excision repair, DNA glycosylase, 8-oxo-7,8-dihydroguanine, 8-oxoG, sequencing
50695
Play Button
Enrichment and Purging of Human Embryonic Stem Cells by Detection of Cell Surface Antigens Using the Monoclonal Antibodies TG30 and GCTM-2
Authors: Juan Carlos Polanco, Bei Wang, Qi Zhou, Hun Chy, Carmel O'Brien, Andrew L. Laslett.
Institutions: CSIRO.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.
Stem Cell Biology, Issue 82, Stem cells, cell surface antigens, antibodies, FACS, purging stem cells, differentiation, pluripotency, teratoma, human embryonic stem cells (hESC)
50856
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
51220
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
51285
Play Button
Nucleoside Triphosphates - From Synthesis to Biochemical Characterization
Authors: Marcel Hollenstein, Christine Catherine Smith, Michael Räz.
Institutions: University of Bern.
The traditional strategy for the introduction of chemical functionalities is the use of solid-phase synthesis by appending suitably modified phosphoramidite precursors to the nascent chain. However, the conditions used during the synthesis and the restriction to rather short sequences hamper the applicability of this methodology. On the other hand, modified nucleoside triphosphates are activated building blocks that have been employed for the mild introduction of numerous functional groups into nucleic acids, a strategy that paves the way for the use of modified nucleic acids in a wide-ranging palette of practical applications such as functional tagging and generation of ribozymes and DNAzymes. One of the major challenges resides in the intricacy of the methodology leading to the isolation and characterization of these nucleoside analogues. In this video article, we present a detailed protocol for the synthesis of these modified analogues using phosphorous(III)-based reagents. In addition, the procedure for their biochemical characterization is divulged, with a special emphasis on primer extension reactions and TdT tailing polymerization. This detailed protocol will be of use for the crafting of modified dNTPs and their further use in chemical biology.
Chemistry, Issue 86, Nucleic acid analogues, Bioorganic Chemistry, PCR, primer extension reactions, organic synthesis, PAGE, HPLC, nucleoside triphosphates
51385
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
51438
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
50598
Play Button
Designing a Bio-responsive Robot from DNA Origami
Authors: Eldad Ben-Ishay, Almogit Abu-Horowitz, Ido Bachelet.
Institutions: Bar-Ilan University.
Nucleic acids are astonishingly versatile. In addition to their natural role as storage medium for biological information1, they can be utilized in parallel computing2,3 , recognize and bind molecular or cellular targets4,5 , catalyze chemical reactions6,7 , and generate calculated responses in a biological system8,9. Importantly, nucleic acids can be programmed to self-assemble into 2D and 3D structures10-12, enabling the integration of all these remarkable features in a single robot linking the sensing of biological cues to a preset response in order to exert a desired effect. Creating shapes from nucleic acids was first proposed by Seeman13, and several variations on this theme have since been realized using various techniques11,12,14,15 . However, the most significant is perhaps the one proposed by Rothemund, termed scaffolded DNA origami16. In this technique, the folding of a long (>7,000 bases) single-stranded DNA 'scaffold' is directed to a desired shape by hundreds of short complementary strands termed 'staples'. Folding is carried out by temperature annealing ramp. This technique was successfully demonstrated in the creation of a diverse array of 2D shapes with remarkable precision and robustness. DNA origami was later extended to 3D as well17,18 . The current paper will focus on the caDNAno 2.0 software19 developed by Douglas and colleagues. caDNAno is a robust, user-friendly CAD tool enabling the design of 2D and 3D DNA origami shapes with versatile features. The design process relies on a systematic and accurate abstraction scheme for DNA structures, making it relatively straightforward and efficient. In this paper we demonstrate the design of a DNA origami nanorobot that has been recently described20. This robot is 'robotic' in the sense that it links sensing to actuation, in order to perform a task. We explain how various sensing schemes can be integrated into the structure, and how this can be relayed to a desired effect. Finally we use Cando21 to simulate the mechanical properties of the designed shape. The concept we discuss can be adapted to multiple tasks and settings.
Bioengineering, Issue 77, Genetics, Biomedical Engineering, Molecular Biology, Medicine, Genomics, Nanotechnology, Nanomedicine, DNA origami, nanorobot, caDNAno, DNA, DNA Origami, nucleic acids, DNA structures, CAD, sequencing
50268
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Fabrication of Electrochemical-DNA Biosensors for the Reagentless Detection of Nucleic Acids, Proteins and Small Molecules
Authors: Aaron A. Rowe, Ryan J. White, Andrew J. Bonham, Kevin W. Plaxco.
Institutions: University Of California Santa Barbara, University Of California Santa Barbara.
As medicine is currently practiced, doctors send specimens to a central laboratory for testing and thus must wait hours or days to receive the results. Many patients would be better served by rapid, bedside tests. To this end our laboratory and others have developed a versatile, reagentless biosensor platform that supports the quantitative, reagentless, electrochemical detection of nucleic acids (DNA, RNA), proteins (including antibodies) and small molecules analytes directly in unprocessed clinical and environmental samples. In this video, we demonstrate the preparation and use of several biosensors in this "E-DNA" class. In particular, we fabricate and demonstrate sensors for the detection of a target DNA sequence in a polymerase chain reaction mixture, an HIV-specific antibody and the drug cocaine. The preparation procedure requires only three hours of hands-on effort followed by an overnight incubation, and their use requires only minutes.
Bioengineering, Issue 52, biosensor, chemistry, detection, electrochemistry, point of care, theranostics, diagnostics, antibody, instrument, electronic
2922
Play Button
Making Sense of Listening: The IMAP Test Battery
Authors: Johanna G. Barry, Melanie A. Ferguson, David R. Moore.
Institutions: MRC Institute of Hearing Research, National Biomedical Research Unit in Hearing.
The ability to hear is only the first step towards making sense of the range of information contained in an auditory signal. Of equal importance are the abilities to extract and use the information encoded in the auditory signal. We refer to these as listening skills (or auditory processing AP). Deficits in these skills are associated with delayed language and literacy development, though the nature of the relevant deficits and their causal connection with these delays is hotly debated. When a child is referred to a health professional with normal hearing and unexplained difficulties in listening, or associated delays in language or literacy development, they should ideally be assessed with a combination of psychoacoustic (AP) tests, suitable for children and for use in a clinic, together with cognitive tests to measure attention, working memory, IQ, and language skills. Such a detailed examination needs to be relatively short and within the technical capability of any suitably qualified professional. Current tests for the presence of AP deficits tend to be poorly constructed and inadequately validated within the normal population. They have little or no reference to the presenting symptoms of the child, and typically include a linguistic component. Poor performance may thus reflect problems with language rather than with AP. To assist in the assessment of children with listening difficulties, pediatric audiologists need a single, standardized child-appropriate test battery based on the use of language-free stimuli. We present the IMAP test battery which was developed at the MRC Institute of Hearing Research to supplement tests currently used to investigate cases of suspected AP deficits. IMAP assesses a range of relevant auditory and cognitive skills and takes about one hour to complete. It has been standardized in 1500 normally-hearing children from across the UK, aged 6-11 years. Since its development, it has been successfully used in a number of large scale studies both in the UK and the USA. IMAP provides measures for separating out sensory from cognitive contributions to hearing. It further limits confounds due to procedural effects by presenting tests in a child-friendly game-format. Stimulus-generation, management of test protocols and control of test presentation is mediated by the IHR-STAR software platform. This provides a standardized methodology for a range of applications and ensures replicable procedures across testers. IHR-STAR provides a flexible, user-programmable environment that currently has additional applications for hearing screening, mapping cochlear implant electrodes, and academic research or teaching.
Neuroscience, Issue 44, Listening skills, auditory processing, auditory psychophysics, clinical assessment, child-friendly testing
2139
Play Button
Application of Stopped-flow Kinetics Methods to Investigate the Mechanism of Action of a DNA Repair Protein
Authors: F. Noah Biro, Jie Zhai, Christopher W. Doucette, Manju M. Hingorani.
Institutions: Wesleyan University.
Transient kinetic analysis is indispensable for understanding the workings of biological macromolecules, since this approach yields mechanistic information including active site concentrations and intrinsic rate constants that govern macromolecular function. In case of enzymes, for example, transient or pre-steady state measurements identify and characterize individual events in the reaction pathway, whereas steady state measurements only yield overall catalytic efficiency and specificity. Individual events such as protein-protein or protein-ligand interactions and rate-limiting conformational changes often occur in the millisecond timescale, and can be measured directly by stopped-flow and chemical-quench flow methods. Given an optical signal such as fluorescence, stopped-flow serves as a powerful and accessible tool for monitoring reaction progress from substrate binding to product release and catalytic turnover1,2. Here, we report application of stopped-flow kinetics to probe the mechanism of action of Msh2-Msh6, a eukaryotic DNA repair protein that recognizes base-pair mismatches and insertion/deletion loops in DNA and signals mismatch repair (MMR)3-5. In doing so, Msh2-Msh6 increases the accuracy of DNA replication by three orders of magnitude (error frequency decreases from ~10-6 to10-9 bases), and thus helps preserve genomic integrity. Not surprisingly, defective human Msh2-Msh6 function is associated with hereditary non-polyposis colon cancer and other sporadic cancers6-8. In order to understand the mechanism of action of this critical DNA metabolic protein, we are probing the dynamics of Msh2-Msh6 interaction with mismatched DNA as well as the ATPase activity that fuels its actions in MMR. DNA binding is measured by rapidly mixing Msh2-Msh6 with DNA containing a 2-aminopurine (2-Ap) fluorophore adjacent to a G:T mismatch and monitoring the resulting increase in 2-aminopurine fluorescence in real time. DNA dissociation is measured by mixing pre-formed Msh2-Msh6 G:T(2-Ap) mismatch complex with unlabeled trap DNA and monitoring decrease in fluorescence over time9. Pre-steady state ATPase kinetics are measured by the change in fluorescence of 7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin)-labeled Phosphate Binding Protein (MDCC-PBP) on binding phosphate (Pi) released by Msh2-Msh6 following ATP hydrolysis9,10. The data reveal rapid binding of Msh2-Msh6 to a G:T mismatch and formation of a long-lived Msh2-Msh6 G:T complex, which in turn results in suppression of ATP hydrolysis and stabilization of the protein in an ATP-bound form. The reaction kinetics provide clear support for the hypothesis that ATP-bound Msh2-Msh6 signals DNA repair on binding a mismatched base pair in the double helix. F. Noah Biro and Jie Zhai contributed to this paper equally.
Cellular Biology, Issue 37, DNA mismatch repair, Stopped-flow kinetics, Msh2-Msh6, ATPase rate, DNA binding
1874
Play Button
Analysis of Gene Expression in Emerald Ash Borer (Agrilus planipennis) Using Quantitative Real Time-PCR
Authors: Binny Bhandary, Swapna Priya Rajarapu, Loren Rivera-Vega, Omprakash Mittapalli.
Institutions: The Ohio State University.
Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America. EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1st-, 2nd-, 3rd-, 4th-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium.
Cellular Biology, Issue 39, quantitative real time-PCR, peritrophin, emerald ash borer, gene expression
1974
Play Button
Using an Automated Cell Counter to Simplify Gene Expression Studies: siRNA Knockdown of IL-4 Dependent Gene Expression in Namalwa Cells
Authors: Adam M. McCoy, Claudia Litterst, Michelle L. Collins, Luis A. Ugozzoli.
Institutions: Bio-Rad Laboratories.
The use of siRNA mediated gene knockdown is continuing to be an important tool in studies of gene expression. siRNA studies are being conducted not only to study the effects of downregulating single genes, but also to interrogate signaling pathways and other complex interaction networks. These pathway analyses require both the use of relevant cellular models and methods that cause less perturbation to the cellular physiology. Electroporation is increasingly being used as an effective way to introduce siRNA and other nucleic acids into difficult to transfect cell lines and primary cells without altering the signaling pathway under investigation. There are multiple critical steps to a successful siRNA experiment, and there are ways to simplify the work while improving the data quality at several experimental stages. To help you get started with your siRNA mediated gene knockdown project, we will demonstrate how to perform a pathway study complete from collecting and counting the cells prior to electroporation through post transfection real-time PCR gene expression analysis. The following study investigates the role of the transcriptional activator STAT6 in IL-4 dependent gene expression of CCL17 in a Burkitt lymphoma cell line (Namalwa). The techniques demonstrated are useful for a wide range of siRNA-based experiments on both adherent and suspension cells. We will also show how to streamline cell counting with the TC10 automated cell counter, how to electroporate multiple samples simultaneously using the MXcell electroporation system, and how to simultaneously assess RNA quality and quantity with the Experion automated electrophoresis system.
Cellular Biology, Issue 38, Cell Counting, Gene Silencing, siRNA, Namalwa Cells, IL4, Gene Expression, Electroporation, Real Time PCR
1904
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
791
Play Button
Interview: Protein Folding and Studies of Neurodegenerative Diseases
Authors: Susan Lindquist.
Institutions: MIT - Massachusetts Institute of Technology.
In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders. The problem of the protein folding is at the core of the modern biology. In addition to their traditional biochemical functions, proteins can mediate transfer of biological information and therefore can be considered a genetic material. This recently discovered function of proteins has important implications for studies of human disorders. Dr. Lindquist also describes current experimental approaches to investigate the mechanism of neurodegenerative diseases based on genetic studies in model organisms.
Neuroscience, issue 17, protein folding, brain, neuron, prion, neurodegenerative disease, yeast, screen, Translational Research
786
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.