JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
SUMO-2 promotes mRNA translation by enhancing interaction between eIF4E and eIF4G.
PUBLISHED: 01-01-2014
Small ubiquitin-like modifier (SUMO) proteins regulate many important eukaryotic cellular processes through reversible covalent conjugation to target proteins. In addition to its many well-known biological consequences, like subcellular translocation of protein, subnuclear structure formation, and modulation of transcriptional activity, we show here that SUMO-2 also plays a role in mRNA translation. SUMO-2 promoted formation of the active eukaryotic initiation factor 4F (eIF4F) complex by enhancing interaction between Eukaryotic Initiation Factor 4E (eIF4E) and Eukaryotic Initiation Factor 4G (eIF4G), and induced translation of a subset of proteins, such as cyclinD1 and c-myc, which essential for cell proliferation and apoptosis. As expected, overexpression of SUMO-2 can partially cancel out the disrupting effect of 4EGI-1, a small molecule inhibitor of eIF4E/eIF4G interaction, on formation of the eIF4F complex, translation of the cap-dependent protein, cell proliferation and apoptosis. On the other hand, SUMO-2 knockdown via shRNA partially impaired cap-dependent translation and cell proliferation and promoted apoptosis. These results collectively suggest that SUMO-2 conjugation plays a crucial regulatory role in protein synthesis. Thus, this report might contribute to the basic understanding of mammalian protein translation and sheds some new light on the role of SUMO in this process.
Authors: Dalan Bailey, Luis Urena, Lucy Thorne, Ian Goodfellow.
Published: 02-25-2012
A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification1. Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast2,3 but more recently has been adapted to use in mammalian cells4-8. As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E9,10.The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation10. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence8. To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function.
17 Related JoVE Articles!
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
Analysis of Translation Initiation During Stress Conditions by Polysome Profiling
Authors: Laëtitia Coudert, Pauline Adjibade, Rachid Mazroui.
Institutions: Laval University, CHU de Quebec Research Center.
Precise control of mRNA translation is fundamental for eukaryotic cell homeostasis, particularly in response to physiological and pathological stress. Alterations of this program can lead to the growth of damaged cells, a hallmark of cancer development, or to premature cell death such as seen in neurodegenerative diseases. Much of what is known concerning the molecular basis for translational control has been obtained from polysome analysis using a density gradient fractionation system. This technique relies on ultracentrifugation of cytoplasmic extracts on a linear sucrose gradient. Once the spin is completed, the system allows fractionation and quantification of centrifuged zones corresponding to different translating ribosomes populations, thus resulting in a polysome profile. Changes in the polysome profile are indicative of changes or defects in translation initiation that occur in response to various types of stress. This technique also allows to assess the role of specific proteins on translation initiation, and to measure translational activity of specific mRNAs. Here we describe our protocol to perform polysome profiles in order to assess translation initiation of eukaryotic cells and tissues under either normal or stress growth conditions.
Cellular Biology, Issue 87, Translation initiation, polysome profile, sucrose gradient, protein and RNA isolation, stress conditions
Play Button
Identification of Protein Interaction Partners in Mammalian Cells Using SILAC-immunoprecipitation Quantitative Proteomics
Authors: Edward Emmott, Ian Goodfellow.
Institutions: University of Cambridge.
Quantitative proteomics combined with immuno-affinity purification, SILAC immunoprecipitation, represent a powerful means for the discovery of novel protein:protein interactions. By allowing the accurate relative quantification of protein abundance in both control and test samples, true interactions may be easily distinguished from experimental contaminants. Low affinity interactions can be preserved through the use of less-stringent buffer conditions and remain readily identifiable. This protocol discusses the labeling of tissue culture cells with stable isotope labeled amino acids, transfection and immunoprecipitation of an affinity tagged protein of interest, followed by the preparation for submission to a mass spectrometry facility. This protocol then discusses how to analyze and interpret the data returned from the mass spectrometer in order to identify cellular partners interacting with a protein of interest. As an example this technique is applied to identify proteins binding to the eukaryotic translation initiation factors: eIF4AI and eIF4AII.
Biochemistry, Issue 89, mass spectrometry, tissue culture techniques, isotope labeling, SILAC, Stable Isotope Labeling of Amino Acids in Cell Culture, proteomics, Interactomics, immunoprecipitation, pulldown, eIF4A, GFP, nanotrap, orbitrap
Play Button
Quantitative FRET (Förster Resonance Energy Transfer) Analysis for SENP1 Protease Kinetics Determination
Authors: Yan Liu, Jiayu Liao.
Institutions: University of California, Riverside .
Reversible posttranslational modifications of proteins with ubiquitin or ubiquitin-like proteins (Ubls) are widely used to dynamically regulate protein activity and have diverse roles in many biological processes. For example, SUMO covalently modifies a large number or proteins with important roles in many cellular processes, including cell-cycle regulation, cell survival and death, DNA damage response, and stress response 1-5. SENP, as SUMO-specific protease, functions as an endopeptidase in the maturation of SUMO precursors or as an isopeptidase to remove SUMO from its target proteins and refresh the SUMOylation cycle 1,3,6,7. The catalytic efficiency or specificity of an enzyme is best characterized by the ratio of the kinetic constants, kcat/KM. In several studies, the kinetic parameters of SUMO-SENP pairs have been determined by various methods, including polyacrylamide gel-based western-blot, radioactive-labeled substrate, fluorescent compound or protein labeled substrate 8-13. However, the polyacrylamide-gel-based techniques, which used the "native" proteins but are laborious and technically demanding, that do not readily lend themselves to detailed quantitative analysis. The obtained kcat/KM from studies using tetrapeptides or proteins with an ACC (7-amino-4-carbamoylmetylcoumarin) or AMC (7-amino-4-methylcoumarin) fluorophore were either up to two orders of magnitude lower than the natural substrates or cannot clearly differentiate the iso- and endopeptidase activities of SENPs. Recently, FRET-based protease assays were used to study the deubiquitinating enzymes (DUBs) or SENPs with the FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 9,10,14,15. The ratio of acceptor emission to donor emission was used as the quantitative parameter for FRET signal monitor for protease activity determination. However, this method ignored signal cross-contaminations at the acceptor and donor emission wavelengths by acceptor and donor self-fluorescence and thus was not accurate. We developed a novel highly sensitive and quantitative FRET-based protease assay for determining the kinetic parameters of pre-SUMO1 maturation by SENP1. An engineered FRET pair CyPet and YPet with significantly improved FRET efficiency and fluorescence quantum yield, were used to generate the CyPet-(pre-SUMO1)-YPet substrate 16. We differentiated and quantified absolute fluorescence signals contributed by the donor and acceptor and FRET at the acceptor and emission wavelengths, respectively. The value of kcat/KM was obtained as (3.2 ± 0.55) x107 M-1s-1 of SENP1 toward pre-SUMO1, which is in agreement with general enzymatic kinetic parameters. Therefore, this methodology is valid and can be used as a general approach to characterize other proteases as well.
Bioengineering, Issue 72, Biochemistry, Molecular Biology, Proteins, Quantitative FRET analysis, QFRET, enzyme kinetics analysis, SENP, SUMO, plasmid, protein expression, protein purification, protease assay, quantitative analysis
Play Button
Isolation of Ribosome Bound Nascent Polypeptides in vitro to Identify Translational Pause Sites Along mRNA
Authors: Sujata S. Jha, Anton A. Komar.
Institutions: Cleveland State University.
The rate of translational elongation is non-uniform. mRNA secondary structure, codon usage and mRNA associated proteins may alter ribosome movement on the messagefor review see 1. However, it's now widely accepted that synonymous codon usage is the primary cause of non-uniform translational elongation rates1. Synonymous codons are not used with identical frequency. A bias exists in the use of synonymous codons with some codons used more frequently than others2. Codon bias is organism as well as tissue specific2,3. Moreover, frequency of codon usage is directly proportional to the concentrations of cognate tRNAs4. Thus, a frequently used codon will have higher multitude of corresponding tRNAs, which further implies that a frequent codon will be translated faster than an infrequent one. Thus, regions on mRNA enriched in rare codons (potential pause sites) will as a rule slow down ribosome movement on the message and cause accumulation of nascent peptides of the respective sizes5-8. These pause sites can have functional impact on the protein expression, mRNA stability and protein foldingfor review see 9. Indeed, it was shown that alleviation of such pause sites can alter ribosome movement on mRNA and subsequently may affect the efficiency of co-translational (in vivo) protein folding1,7,10,11. To understand the process of protein folding in vivo, in the cell, that is ultimately coupled to the process of protein synthesis it is essential to gain comprehensive insights into the impact of codon usage/tRNA content on the movement of ribosomes along mRNA during translational elongation. Here we describe a simple technique that can be used to locate major translation pause sites for a given mRNA translated in various cell-free systems6-8. This procedure is based on isolation of nascent polypeptides accumulating on ribosomes during in vitro translation of a target mRNA. The rationale is that at low-frequency codons, the increase in the residence time of the ribosomes results in increased amounts of nascent peptides of the corresponding sizes. In vitro transcribed mRNA is used for in vitro translational reactions in the presence of radioactively labeled amino acids to allow the detection of the nascent chains. In order to isolate ribosome bound nascent polypeptide complexes the translation reaction is layered on top of 30% glycerol solution followed by centrifugation. Nascent polypeptides in polysomal pellet are further treated with ribonuclease A and resolved by SDS PAGE. This technique can be potentially used for any protein and allows analysis of ribosome movement along mRNA and the detection of the major pause sites. Additionally, this protocol can be adapted to study factors and conditions that can alter ribosome movement and thus potentially can also alter the function/conformation of the protein.
Genetics, Issue 65, Molecular Biology, Ribosome, Nascent polypeptide, Co-translational protein folding, Synonymous codon usage, gene regulation
Play Button
In vitro Transcription and Capping of Gaussia Luciferase mRNA Followed by HeLa Cell Transfection
Authors: Bhairavi Jani, Ryan Fuchs.
Institutions: New England Biolabs.
In vitro transcription is the synthesis of RNA transcripts by RNA polymerase from a linear DNA template containing the corresponding promoter sequence (T7, T3, SP6) and the gene to be transcribed (Figure 1A). A typical transcription reaction consists of the template DNA, RNA polymerase, ribonucleotide triphosphates, RNase inhibitor and buffer containing Mg2+ ions. Large amounts of high quality RNA are often required for a variety of applications. Use of in vitro transcription has been reported for RNA structure and function studies such as splicing1, RNAi experiments in mammalian cells2, antisense RNA amplification by the "Eberwine method"3, microarray analysis4 and for RNA vaccine studies5. The technique can also be used for producing radiolabeled and dye labeled probes6. Warren, et al. recently reported reprogramming of human cells by transfection with in vitro transcribed capped RNA7. The T7 High Yield RNA Synthesis Kit from New England Biolabs has been designed to synthesize up to 180 μg RNA per 20 μl reaction. RNA of length up to 10kb has been successfully transcribed using this kit. Linearized plasmid DNA, PCR products and synthetic DNA oligonucleotides can be used as templates for transcription as long as they have the T7 promoter sequence upstream of the gene to be transcribed. Addition of a 5' end cap structure to the RNA is an important process in eukaryotes. It is essential for RNA stability8, efficient translation9, nuclear transport10 and splicing11. The process involves addition of a 7-methylguanosine cap at the 5' triphosphate end of the RNA. RNA capping can be carried out post-transcriptionally using capping enzymes or co-transcriptionally using cap analogs. In the enzymatic method, the mRNA is capped using the Vaccinia virus capping enzyme12,13. The enzyme adds on a 7-methylguanosine cap at the 5' end of the RNA using GTP and S-adenosyl methionine as donors (cap 0 structure). Both methods yield functionally active capped RNA suitable for transfection or other applications14 such as generating viral genomic RNA for reverse-genetic systems15 and crystallographic studies of cap binding proteins such as eIF4E16. In the method described below, the T7 High Yield RNA Synthesis Kit from NEB is used to synthesize capped and uncapped RNA transcripts of Gaussia luciferase (GLuc) and Cypridina luciferase (CLuc). A portion of the uncapped GLuc RNA is capped using the Vaccinia Capping System (NEB). A linearized plasmid containing the GLuc or CLuc gene and T7 promoter is used as the template DNA. The transcribed RNA is transfected into HeLa cells and cell culture supernatants are assayed for luciferase activity. Capped CLuc RNA is used as the internal control to normalize GLuc expression.
Genetics, Issue 61, In vitro transcription, Vaccinia capping enzyme, transfection, T7 RNA Polymerase, RNA synthesis
Play Button
Isolation of Translating Ribosomes Containing Peptidyl-tRNAs for Functional and Structural Analyses
Authors: Nitin Shirole, Sreeram Balasubramanian, Charles Yanofsky, Luis Cruz-Vera.
Institutions: University of Alabama Huntsville, Stanford University .
Recently, structural and biochemical studies have detailed many of the molecular events that occur in the ribosome during inhibition of protein synthesis by antibiotics and during nascent polypeptide synthesis. Some of these antibiotics, and regulatory nascent polypeptides mostly in the form of peptidyl-tRNAs, inhibit either peptide bond formation or translation termination1-7. These inhibitory events can stop the movement of the ribosome, a phenomenon termed "translational arrest". Translation arrest induced by either an antibiotic or a nascent polypeptide has been shown to regulate the expression of genes involved in diverse cellular functions such as cell growth, antibiotic resistance, protein translocation and cell metabolism8-13. Knowledge of how antibiotics and regulatory nascent polypeptides alter ribosome function is essential if we are to understand the complete role of the ribosome in translation, in every organism. Here, we describe a simple methodology that can be used to purify, exclusively, for analysis, those ribosomes translating a specific mRNA and containing a specific peptidyl-tRNA14. This procedure is based on selective isolation of translating ribosomes bound to a biotin-labeled mRNA. These translational complexes are separated from other ribosomes in the same mixture, using streptavidin paramagnetic beads (SMB) and a magnetic field (MF). Biotin-labeled mRNAs are synthesized by run-off transcription assays using as templates PCR-generated DNA fragments that contain T7 transcriptional promoters. T7 RNA polymerase incorporates biotin-16-UMP from biotin-UTP; under our conditions approximately ten biotin-16-UMP molecules are incorporated in a 600 nt mRNA with a 25% UMP content. These biotin-labeled mRNAs are then isolated, and used in in vitro translation assays performed with release factor 2 (RF2)-depleted cell-free extracts obtained from Escherichia coli strains containing wild type or mutant ribosomes. Ribosomes translating the biotin-labeled mRNA sequences are stalled at the stop codon region, due to the absence of the RF2 protein, which normally accomplishes translation termination. Stalled ribosomes containing the newly synthesized peptidyl-tRNA are isolated and removed from the translation reactions using SMB and an MF. These beads only bind biotin-containing messages. The isolated, translational complexes, can be used to analyze the structural and functional features of wild type or mutant ribosomal components, or peptidyl-tRNA sequences, as well as determining ribosome interaction with antibiotics or other molecular factors 1,14-16. To examine the function of these isolated ribosome complexes, peptidyl-transferase assays can be performed in the presence of the antibiotic puromycin1. To study structural changes in translational complexes, well established procedures can be used, such as i) crosslinking to specific amino acids14 and/or ii) alkylation protection assays1,14,17.
Molecular Biology, Issue 48, Ribosome stalling, ribosome isolation, peptidyl-tRNA, in vitro translation, RNA chemical modification, puromycin, antibiotics.
Play Button
In Vitro Synthesis of Modified mRNA for Induction of Protein Expression in Human Cells
Authors: Meltem Avci-Adali, Andreas Behring, Heidrun Steinle, Timea Keller, Stefanie Krajeweski, Christian Schlensak, Hans P. Wendel.
Institutions: University Hospital Tuebingen.
The exogenous delivery of coding synthetic messenger RNA (mRNA) for induction of protein synthesis in desired cells has enormous potential in the fields of regenerative medicine, basic cell biology, treatment of diseases, and reprogramming of cells. Here, we describe a step by step protocol for generation of modified mRNA with reduced immune activation potential and increased stability, quality control of produced mRNA, transfection of cells with mRNA and verification of the induced protein expression by flow cytometry. Up to 3 days after a single transfection with eGFP mRNA, the transfected HEK293 cells produce eGFP. In this video article, the synthesis of eGFP mRNA is described as an example. However, the procedure can be applied for production of other desired mRNA. Using the synthetic modified mRNA, cells can be induced to transiently express the desired proteins, which they normally would not express.
Genetics, Issue 93, mRNA synthesis, in vitro transcription, modification, transfection, protein synthesis, eGFP, flow cytometry
Play Button
Eukaryotic Polyribosome Profile Analysis
Authors: Anthony M. Esposito, Maria Mateyak, Dongming He, Marcus Lewis, Arjun N. Sasikumar, Jenna Hutton, Paul R. Copeland, Terri G. Kinzy.
Institutions: University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School.
Protein synthesis is a complex cellular process that is regulated at many levels. For example, global translation can be inhibited at the initiation phase or the elongation phase by a variety of cellular stresses such as amino acid starvation or growth factor withdrawal. Alternatively, translation of individual mRNAs can be regulated by mRNA localization or the presence of cognate microRNAs. Studies of protein synthesis frequently utilize polyribosome analysis to shed light on the mechanisms of translation regulation or defects in protein synthesis. In this assay, mRNA/ribosome complexes are isolated from eukaryotic cells. A sucrose density gradient separates mRNAs bound to multiple ribosomes known as polyribosomes from mRNAs bound to a single ribosome or monosome. Fractionation of the gradients allows isolation and quantification of the different ribosomal populations and their associated mRNAs or proteins. Differences in the ratio of polyribosomes to monosomes under defined conditions can be indicative of defects in either translation initiation or elongation/termination. Examination of the mRNAs present in the polyribosome fractions can reveal whether the cohort of individual mRNAs being translated changes with experimental conditions. In addition, ribosome assembly can be monitored by analysis of the small and large ribosomal subunit peaks which are also separated by the gradient. In this video, we present a method for the preparation of crude ribosomal extracts from yeast cells, separation of the extract by sucrose gradient and interpretation of the results. This procedure is readily adaptable to mammalian cells.
Cellular Biology, Issue 40, translation, ribosome, polyribosome, gradient, fractionation
Play Button
siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells
Authors: John S. Bett, Adel F. M. Ibrahim, Amit K. Garg, Sonia Rocha, Ronald T. Hay.
Institutions: University of Dundee, University of Dundee.
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) is emerging as a dynamic cellular signaling network that regulates diverse biological pathways including the hypoxia response, proteostasis, the DNA damage response and transcription.  To better understand how UBLs regulate pathways relevant to human disease, we have compiled a human siRNA “ubiquitome” library consisting of 1,186 siRNA duplex pools targeting all known and predicted components of UBL system pathways. This library can be screened against a range of cell lines expressing reporters of diverse biological pathways to determine which UBL components act as positive or negative regulators of the pathway in question.  Here, we describe a protocol utilizing this library to identify ubiquitome-regulators of the HIF1A-mediated cellular response to hypoxia using a transcription-based luciferase reporter.  An initial assay development stage is performed to establish suitable screening parameters of the cell line before performing the screen in three stages: primary, secondary and tertiary/deconvolution screening.  The use of targeted over whole genome siRNA libraries is becoming increasingly popular as it offers the advantage of reporting only on members of the pathway with which the investigators are most interested.  Despite inherent limitations of siRNA screening, in particular false-positives caused by siRNA off-target effects, the identification of genuine novel regulators of the pathways in question outweigh these shortcomings, which can be overcome by performing a series of carefully undertaken control experiments.
Biochemistry, Issue 87, siRNA screening, ubiquitin, UBL, ubiquitome, hypoxia, HIF1A, High-throughput, mammalian cells, luciferase reporter
Play Button
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli
Authors: Natalie J. Saez, Hervé Nozach, Marilyne Blemont, Renaud Vincentelli.
Institutions: Aix-Marseille Université, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (, our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Bioengineering, Issue 89, E. coli, expression, recombinant, high throughput (HTP), purification, auto-induction, immobilized metal affinity chromatography (IMAC), tobacco etch virus protease (TEV) cleavage, disulfide bond isomerase C (DsbC) fusion, disulfide bonds, animal venom proteins/peptides
Play Button
Reconstitution Of β-catenin Degradation In Xenopus Egg Extract
Authors: Tony W. Chen, Matthew R. Broadus, Stacey S. Huppert, Ethan Lee.
Institutions: Vanderbilt University Medical Center, Cincinnati Children's Hospital Medical Center, Vanderbilt University School of Medicine.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.
Molecular Biology, Issue 88, Xenopus laevis, Xenopus egg extracts, protein degradation, radiolabel, luciferase, autoradiography, high-throughput screening
Play Button
Assessment of Selective mRNA Translation in Mammalian Cells by Polysome Profiling
Authors: Mame Daro Faye, Tyson E Graber, Martin Holcik.
Institutions: University of Ottawa, Montreal Neurological Institute, University of Ottawa.
Regulation of protein synthesis represents a key control point in cellular response to stress. In particular, discreet RNA regulatory elements were shown to allow to selective translation of specific mRNAs, which typically encode for proteins required for a particular stress response. Identification of these mRNAs, as well as the characterization of regulatory mechanisms responsible for selective translation has been at the forefront of molecular biology for some time. Polysome profiling is a cornerstone method in these studies. The goal of polysome profiling is to capture mRNA translation by immobilizing actively translating ribosomes on different transcripts and separate the resulting polyribosomes by ultracentrifugation on a sucrose gradient, thus allowing for a distinction between highly translated transcripts and poorly translated ones. These can then be further characterized by traditional biochemical and molecular biology methods. Importantly, combining polysome profiling with high throughput genomic approaches allows for a large scale analysis of translational regulation.
Cellular Biology, Issue 92, cellular stress, translation initiation, internal ribosome entry site, polysome, RT-qPCR, gradient
Play Button
Budding Yeast Protein Extraction and Purification for the Study of Function, Interactions, and Post-translational Modifications
Authors: Eva Paige Szymanski, Oliver Kerscher.
Institutions: The College of William & Mary.
Homogenization by bead beating is a fast and efficient way to release DNA, RNA, proteins, and metabolites from budding yeast cells, which are notoriously hard to disrupt. Here we describe the use of a bead mill homogenizer for the extraction of proteins into buffers optimized to maintain the functions, interactions and post-translational modifications of proteins. Logarithmically growing cells expressing the protein of interest are grown in a liquid growth media of choice. The growth media may be supplemented with reagents to induce protein expression from inducible promoters (e.g. galactose), synchronize cell cycle stage (e.g. nocodazole), or inhibit proteasome function (e.g. MG132). Cells are then pelleted and resuspended in a suitable buffer containing protease and/or phosphatase inhibitors and are either processed immediately or frozen in liquid nitrogen for later use. Homogenization is accomplished by six cycles of 20 sec bead-beating (5.5 m/sec), each followed by one minute incubation on ice. The resulting homogenate is cleared by centrifugation and small particulates can be removed by filtration. The resulting cleared whole cell extract (WCE) is precipitated using 20% TCA for direct analysis of total proteins by SDS-PAGE followed by Western blotting. Extracts are also suitable for affinity purification of specific proteins, the detection of post-translational modifications, or the analysis of co-purifying proteins. As is the case for most protein purification protocols, some enzymes and proteins may require unique conditions or buffer compositions for their purification and others may be unstable or insoluble under the conditions stated. In the latter case, the protocol presented may provide a useful starting point to empirically determine the best bead-beating strategy for protein extraction and purification. We show the extraction and purification of an epitope-tagged SUMO E3 ligase, Siz1, a cell cycle regulated protein that becomes both sumoylated and phosphorylated, as well as a SUMO-targeted ubiquitin ligase subunit, Slx5.
Basic Protocol, Issue 80, Life Sciences (General), budding yeast, protein extracts, bead beating, sumo, Ubiquitin, post-translational modifications, 6xHis affinity tag
Play Button
Isolation of mRNAs Associated with Yeast Mitochondria to Study Mechanisms of Localized Translation
Authors: Chen Lesnik, Yoav Arava.
Institutions: Technion - Israel Institute of Technology.
Most of mitochondrial proteins are encoded in the nucleus and need to be imported into the organelle. Import may occur while the protein is synthesized near the mitochondria. Support for this possibility is derived from recent studies, in which many mRNAs encoding mitochondrial proteins were shown to be localized to the mitochondria vicinity. Together with earlier demonstrations of ribosomes’ association with the outer membrane, these results suggest a localized translation process. Such localized translation may improve import efficiency, provide unique regulation sites and minimize cases of ectopic expression. Diverse methods have been used to characterize the factors and elements that mediate localized translation. Standard among these is subcellular fractionation by differential centrifugation. This protocol has the advantage of isolation of mRNAs, ribosomes and proteins in a single procedure. These can then be characterized by various molecular and biochemical methods. Furthermore, transcriptomics and proteomics methods can be applied to the resulting material, thereby allow genome-wide insights. The utilization of yeast as a model organism for such studies has the advantages of speed, costs and simplicity. Furthermore, the advanced genetic tools and available deletion strains facilitate verification of candidate factors.
Biochemistry, Issue 85, mitochondria, mRNA localization, Yeast, S. cerevisiae, microarray, localized translation, biochemical fractionation
Play Button
Detection of Protein Ubiquitination
Authors: Yeun Su Choo, Zhuohua Zhang.
Institutions: The Sanford Burnham Institute for Medical Research.
Ubiquitination, the covalent attachment of the polypeptide ubiquitin to target proteins, is a key posttranslational modification carried out by a set of three enzymes. They include ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3. Unlike to E1 and E2, E3 ubiquitin ligases display substrate specificity. On the other hand, numerous deubiquitylating enzymes have roles in processing polyubiquitinated proteins. Ubiquitination can result in change of protein stability, cellular localization, and biological activity. Mutations of genes involved in the ubiquitination/deubiquitination pathway or altered ubiquitin system function are associated with many different human diseases such as various types of cancer, neurodegeneration, and metabolic disorders. The detection of altered or normal ubiquitination of target proteins may provide a better understanding on the pathogenesis of these diseases.  Here, we describe protocols to detect protein ubiquitination in cultured cells in vivo and test tubes in vitro. These protocols are also useful to detect other ubiquitin-like small molecule modification such as sumolyation and neddylation.
Cell Biology, Biochemistry, Issue 30, ubiquitination, cultured cell, in vitro system, immunoprecipitation, immunoblotting, ubiquitin, posttranslational modification
Play Button
Visualization of Endoplasmic Reticulum Localized mRNAs in Mammalian Cells
Authors: Xianying A. Cui, Alexander F. Palazzo.
Institutions: University of Toronto.
In eukaryotes, most of the messenger RNAs (mRNAs) that encode secreted and membrane proteins are localized to the surface of the endoplasmic reticulum (ER). However, the visualization of these mRNAs can be challenging. This is especially true when only a fraction of the mRNA is ER-associated and their distribution to this organelle is obstructed by non-targeted (i.e. "free") transcripts. In order to monitor ER-associated mRNAs, we have developed a method in which cells are treated with a short exposure to a digitonin extraction solution that selectively permeabilizes the plasma membrane, and thus removes the cytoplasmic contents, while simultaneously maintaining the integrity of the ER. When this method is coupled with fluorescent in situ hybridization (FISH), one can clearly visualize ER-bound mRNAs by fluorescent microscopy. Using this protocol the degree of ER-association for either bulk poly(A) transcripts or specific mRNAs can be assessed and even quantified. In the process, one can use this assay to investigate the nature of mRNA-ER interactions.
Cellular Biology, Issue 70, Biochemistry, Genetics, Molecular Biology, Genomics, mRNA localization, RNA, digitonin extraction, cell fractionation, endoplasmic reticulum, secretion, microscopy, imaging, fluorescent in situ hybridization, FISH, cell biology
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.