JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
A Chinese character teaching system using structure theory and morphing technology.
PUBLISHED: 01-01-2014
This paper proposes a Chinese character teaching system by using the Chinese character structure theory and the 2D contour morphing technology. This system, including the offline phase and the online phase, automatically generates animation for the same Chinese character from different writing stages to intuitively show the evolution of shape and topology in the process of Chinese characters teaching. The offline phase builds the component models database for the same script and the components correspondence database for different scripts. Given two or several different scripts of the same Chinese character, the online phase firstly divides the Chinese characters into components by using the process of Chinese character parsing, and then generates the evolution animation by using the process of Chinese character morphing. Finally, two writing stages of Chinese characters, i.e., seal script and clerical script, are used in experiment to show the ability of the system. The result of the user experience study shows that the system can successfully guide students to improve the learning of Chinese characters. And the users agree that the system is interesting and can motivate them to learn.
Authors: Gary E. Raney, Spencer J. Campbell, Joanna C. Bovee.
Published: 01-10-2014
The present article describes how to use eye tracking methodologies to study the cognitive processes involved in text comprehension. Measuring eye movements during reading is one of the most precise methods for measuring moment-by-moment (online) processing demands during text comprehension. Cognitive processing demands are reflected by several aspects of eye movement behavior, such as fixation duration, number of fixations, and number of regressions (returning to prior parts of a text). Important properties of eye tracking equipment that researchers need to consider are described, including how frequently the eye position is measured (sampling rate), accuracy of determining eye position, how much head movement is allowed, and ease of use. Also described are properties of stimuli that influence eye movements that need to be controlled in studies of text comprehension, such as the position, frequency, and length of target words. Procedural recommendations related to preparing the participant, setting up and calibrating the equipment, and running a study are given. Representative results are presented to illustrate how data can be evaluated. Although the methodology is described in terms of reading comprehension, much of the information presented can be applied to any study in which participants read verbal stimuli.
23 Related JoVE Articles!
Play Button
Creating Objects and Object Categories for Studying Perception and Perceptual Learning
Authors: Karin Hauffen, Eugene Bart, Mark Brady, Daniel Kersten, Jay Hegdé.
Institutions: Georgia Health Sciences University, Georgia Health Sciences University, Georgia Health Sciences University, Palo Alto Research Center, Palo Alto Research Center, University of Minnesota .
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
Neuroscience, Issue 69, machine learning, brain, classification, category learning, cross-modal perception, 3-D prototyping, inference
Play Button
Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice
Authors: Hirotaka Shoji, Keizo Takao, Satoko Hattori, Tsuyoshi Miyakawa.
Institutions: Fujita Health University, Core Research for Evolutionary Science and Technology (CREST), National Institutes of Natural Sciences.
The contextual and cued fear conditioning test is one of the behavioral tests that assesses the ability of mice to learn and remember an association between environmental cues and aversive experiences. In this test, mice are placed into a conditioning chamber and are given parings of a conditioned stimulus (an auditory cue) and an aversive unconditioned stimulus (an electric footshock). After a delay time, the mice are exposed to the same conditioning chamber and a differently shaped chamber with presentation of the auditory cue. Freezing behavior during the test is measured as an index of fear memory. To analyze the behavior automatically, we have developed a video analyzing system using the ImageFZ application software program, which is available as a free download at Here, to show the details of our protocol, we demonstrate our procedure for the contextual and cued fear conditioning test in C57BL/6J mice using the ImageFZ system. In addition, we validated our protocol and the video analyzing system performance by comparing freezing time measured by the ImageFZ system or a photobeam-based computer measurement system with that scored by a human observer. As shown in our representative results, the data obtained by ImageFZ were similar to those analyzed by a human observer, indicating that the behavioral analysis using the ImageFZ system is highly reliable. The present movie article provides detailed information regarding the test procedures and will promote understanding of the experimental situation.
Behavior, Issue 85, Fear, Learning, Memory, ImageFZ program, Mouse, contextual fear, cued fear
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
Play Button
A Practical Guide to Phylogenetics for Nonexperts
Authors: Damien O'Halloran.
Institutions: The George Washington University.
Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts. We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteria and finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studies and also serve as an educational resource that could be incorporated into a classroom or teaching-lab.
Basic Protocol, Issue 84, phylogenetics, multiple sequence alignments, phylogenetic tree, BLAST executables, basic local alignment search tool, Bayesian models
Play Button
Isolation of Cellular Lipid Droplets: Two Purification Techniques Starting from Yeast Cells and Human Placentas
Authors: Jaana Mannik, Alex Meyers, Paul Dalhaimer.
Institutions: University of Tennessee, University of Tennessee.
Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method - density gradient centrifugation - is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps are suitable for subsequent proteomic and lipidomic analysis.
Bioengineering, Issue 86, Lipid droplet, lipid body, fat body, oil body, Yeast, placenta, placental villous cells, isolation, purification, density gradient centrifugation
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Proprioception and Tension Receptors in Crab Limbs: Student Laboratory Exercises
Authors: Zana R. Majeed, Josh Titlow, H. Bernard Hartman, Robin Cooper.
Institutions: University of Kentucky, University of Kentucky, University of Oregon.
The primary purpose of these procedures is to demonstrate for teaching and research purposes how to record the activity of living primary sensory neurons responsible for proprioception as they are detecting joint position and movement, and muscle tension. Electrical activity from crustacean proprioceptors and tension receptors is recorded by basic neurophysiological instrumentation, and a transducer is used to simultaneously measure force that is generated by stimulating a motor nerve. In addition, we demonstrate how to stain the neurons for a quick assessment of their anatomical arrangement or for permanent fixation. Staining reveals anatomical organization that is representative of chordotonal organs in most crustaceans. Comparing the tension nerve responses to the proprioceptive responses is an effective teaching tool in determining how these sensory neurons are defined functionally and how the anatomy is correlated to the function. Three staining techniques are presented allowing researchers and instructors to choose a method that is ideal for their laboratory.
Neuroscience, Issue 80, Crustacean, joint, Muscle, sensory, teaching, educational, neuroscience
Play Button
FIBS-enabled Noninvasive Metabolic Profiling
Authors: Alireza Behjousiar, Antony Constantinou, Karen M. Polizzi, Cleo Kontoravdi.
Institutions: Imperial College London, Imperial College London.
In the era of computational biology, new high throughput experimental systems are necessary in order to populate and refine models so that they can be validated for predictive purposes. Ideally such systems would be low volume, which precludes sampling and destructive analyses when time course data are to be obtained. What is needed is an in situ monitoring tool which can report the necessary information in real-time and noninvasively. An interesting option is the use of fluorescent, protein-based in vivo biological sensors as reporters of intracellular concentrations. One particular class of in vivo biosensors that has found applications in metabolite quantification is based on Förster Resonance Energy Transfer (FRET) between two fluorescent proteins connected by a ligand binding domain. FRET integrated biological sensors (FIBS) are constitutively produced within the cell line, they have fast response times and their spectral characteristics change based on the concentration of metabolite within the cell. In this paper, the method for constructing Chinese hamster ovary (CHO) cell lines that constitutively express a FIBS for glucose and glutamine and calibrating the FIBS in vivo in batch cell culture in order to enable future quantification of intracellular metabolite concentration is described. Data from fed-batch CHO cell cultures demonstrates that the FIBS was able in each case to detect the resulting change in the intracellular concentration. Using the fluorescent signal from the FIBS and the previously constructed calibration curve, the intracellular concentration was accurately determined as confirmed by an independent enzymatic assay.
Bioengineering, Issue 84, metabolite monitoring, in vivo biosensors, in situ monitoring, mammalian cell culture, bioprocess engineering, medium formulation
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
Play Button
Bioluminescence Imaging of Heme Oxygenase-1 Upregulation in the Gua Sha Procedure
Authors: Kenneth K. Kwong, Lenuta Kloetzer, Kelvin K. Wong, Jia-Qian Ren, Braden Kuo, Yan Jiang, Y. Iris Chen, Suk-Tak Chan, Geoffrey S. Young, Stephen T.C. Wong.
Institutions: Massachusetts General Hospital, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, The Methodist Hospital Research Institute, The Methodist Hospital, Weill Cornell Medical College, Bejing University of Chinese Medicine, The Hong Kong Polytechnic University, Brigham and Women's Hospital, Harvard Medical School.
Gua Sha is a traditional Chinese folk therapy that employs skin scraping to cause subcutaneous microvascular blood extravasation and bruises. The protocol for bioluminescent optical imaging of HO-1-luciferase transgenic mice reported in this manuscript provides a rapid in vivo assay of the upregulation of the heme oxygenase-1 (HO-1) gene expression in response to the Gua Sha procedure. HO-1 has long been known to provide cytoprotection against oxidative stress. The upregulation of HO-1, assessed by the bioluminescence output, is thought to represent an antioxidative response to circulating hemoglobin products released by Gua Sha. Gua Sha was administered by repeated strokes of a smooth spoon edge over lubricated skin on the back or other targeted body part of the transgenic mouse until petechiae (splinter hemorrhages) or ecchymosis (bruises) indicative of extravasation of blood from subcutaneous capillaries was observed. After Gua Sha, bioluminescence imaging sessions were carried out daily for several days to follow the dynamics of HO-1 expression in multiple internal organs.
Medicine, Issue 30, Gua Sha, blood extravasation, bruises, heme oxygenase-1, gene expression, systems biology, small animal molecular imaging, optical and bioluminescence imaging, HO-1-luciferase transgenic mice, Chinese folk therapy
Play Button
Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer
Authors: Cuong H. Le, Jun Han, Christoph H. Borchers.
Institutions: University of Victoria, University of Victoria.
Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.
Basic Protocol, Issue 81, eye, molecular imaging, chemistry technique, analytical, mass spectrometry, matrix assisted laser desorption/ionization (MALDI), tandem mass spectrometry, lipid, tissue imaging, bovine lens, dithranol, matrix, FTICR (Fourier Transform Ion Cyclotron Resonance)
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Automated Interactive Video Playback for Studies of Animal Communication
Authors: Trisha Butkowski, Wei Yan, Aaron M. Gray, Rongfeng Cui, Machteld N. Verzijden, Gil G. Rosenthal.
Institutions: Texas A&M University (TAMU), Texas A&M University (TAMU).
Video playback is a widely-used technique for the controlled manipulation and presentation of visual signals in animal communication. In particular, parameter-based computer animation offers the opportunity to independently manipulate any number of behavioral, morphological, or spectral characteristics in the context of realistic, moving images of animals on screen. A major limitation of conventional playback, however, is that the visual stimulus lacks the ability to interact with the live animal. Borrowing from video-game technology, we have created an automated, interactive system for video playback that controls animations in response to real-time signals from a video tracking system. We demonstrated this method by conducting mate-choice trials on female swordtail fish, Xiphophorus birchmanni. Females were given a simultaneous choice between a courting male conspecific and a courting male heterospecific (X. malinche) on opposite sides of an aquarium. The virtual male stimulus was programmed to track the horizontal position of the female, as courting males do in the wild. Mate-choice trials on wild-caught X. birchmanni females were used to validate the prototype's ability to effectively generate a realistic visual stimulus.
Neuroscience, Issue 48, Computer animation, visual communication, mate choice, Xiphophorus birchmanni, tracking
Play Button
Developing Custom Chinese Hamster Ovary-host Cell Protein Assays using Acoustic Membrane Microparticle Technology
Authors: Matthew Dickerson, Kristen Leong, Kate Sheldon, Lara Madison.
Institutions: BioScale, Inc., BioScale, Inc..
Custom assays for unique proteins are often limited to time consuming manual detection and quantitation techniques such as ELISA or Western blots due to the complexity of development on alternate platforms. BioScale's proprietary Acoustic Membrane MicroParticle (AMMP) technology allows sandwich immunoassays to be easily developed for use on the ViBE platform, providing better sensitivity, reproducibility, and automated operation. Provided as an example, this protocol outlines the procedure for developing a custom Chinese Hamster Ovary- Host Cell Protein (CHO-HCP) assay. The general principles outlined here can be followed for the development of a wide variety of immunoassays. An AMMP assay measures antigen concentration by measuring changes in oscillation frequency caused by the binding of microparticles to the sensor surface to calculate. It consists of four major components: (1) a cartridge that contains a functionalized eight sensor chip (2) antibody labeled magnetic microparticles, (3) hapten tagged antibody that binds to the surface of the functionalized chip (4) samples containing the antigen of interest. BioScale's biosensor is a resonant device that contains eight individual membranes with separate fluidic paths. The membranes change oscillation frequency in response to mass accumulating on the surface and this frequency change is used to quantitate the amount of added mass. To facilitate use in a wide variety of immunoassays the sensor is functionalized with an anti-hapten antibody. Assay specific antibodies are modified through the covalent conjugation of a hapten tag to one antibody and biotin to the other. The biotin label is used to bind the antibody to streptavidin coupled magnetic beads which, in combination with the hapten-tagged antibody, are used to capture the analyte in a sandwich. The complex binds to the chip through the anti-hapten/hapten interaction. At the end of each assay run the sensors are cleaned with a dilute acid enabling the sequential analysis of columns from a 96-well plate. Here, we present the method for developing a custom CHO-HCP AMMP assay for bioprocess development. Developing AMMP assays or modifying existing assays into AMMP assays can provide better performance (reproducibility, sensitivity) in complex samples and reduced operator time. The protocol shows the steps for development and the discussion section reviews representative results. For a more in-depth explanation of assay optimization and customization parameters contact BioScale. This kit offers generic bioprocess development assays such as Residual Protein A, Product titer, and CHO-HCP.
Bioengineering, Issue 48, Immunoassays, Chinese Hamster Ovary Host Cell Protein, Residual Protein A assay, Assay development, Biomarker detection and quantitation, Phospho-AKT, Gadd34, tissue sample, tumor sample, bioreactor sample
Play Button
Genomic MRI - a Public Resource for Studying Sequence Patterns within Genomic DNA
Authors: Ashwin Prakash, Jason Bechtel, Alexei Fedorov.
Institutions: University of Toledo Health Science Campus.
Non-coding genomic regions in complex eukaryotes, including intergenic areas, introns, and untranslated segments of exons, are profoundly non-random in their nucleotide composition and consist of a complex mosaic of sequence patterns. These patterns include so-called Mid-Range Inhomogeneity (MRI) regions -- sequences 30-10000 nucleotides in length that are enriched by a particular base or combination of bases (e.g. (G+T)-rich, purine-rich, etc.). MRI regions are associated with unusual (non-B-form) DNA structures that are often involved in regulation of gene expression, recombination, and other genetic processes (Fedorova & Fedorov 2010). The existence of a strong fixation bias within MRI regions against mutations that tend to reduce their sequence inhomogeneity additionally supports the functionality and importance of these genomic sequences (Prakash et al. 2009). Here we demonstrate a freely available Internet resource -- the Genomic MRI program package -- designed for computational analysis of genomic sequences in order to find and characterize various MRI patterns within them (Bechtel et al. 2008). This package also allows generation of randomized sequences with various properties and level of correspondence to the natural input DNA sequences. The main goal of this resource is to facilitate examination of vast regions of non-coding DNA that are still scarcely investigated and await thorough exploration and recognition.
Genetics, Issue 51, bioinformatics, computational biology, genomics, non-randomness, signals, gene regulation, DNA conformation
Play Button
Analysis of Dendritic Spine Morphology in Cultured CNS Neurons
Authors: Deepak P. Srivastava, Kevin M. Woolfrey, Peter Penzes.
Institutions: Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine.
Dendritic spines are the sites of the majority of excitatory connections within the brain, and form the post-synaptic compartment of synapses. These structures are rich in actin and have been shown to be highly dynamic. In response to classical Hebbian plasticity as well as neuromodulatory signals, dendritic spines can change shape and number, which is thought to be critical for the refinement of neural circuits and the processing and storage of information within the brain. Within dendritic spines, a complex network of proteins link extracellular signals with the actin cyctoskeleton allowing for control of dendritic spine morphology and number. Neuropathological studies have demonstrated that a number of disease states, ranging from schizophrenia to autism spectrum disorders, display abnormal dendritic spine morphology or numbers. Moreover, recent genetic studies have identified mutations in numerous genes that encode synaptic proteins, leading to suggestions that these proteins may contribute to aberrant spine plasticity that, in part, underlie the pathophysiology of these disorders. In order to study the potential role of these proteins in controlling dendritic spine morphologies/number, the use of cultured cortical neurons offers several advantages. Firstly, this system allows for high-resolution imaging of dendritic spines in fixed cells as well as time-lapse imaging of live cells. Secondly, this in vitro system allows for easy manipulation of protein function by expression of mutant proteins, knockdown by shRNA constructs, or pharmacological treatments. These techniques allow researchers to begin to dissect the role of disease-associated proteins and to predict how mutations of these proteins may function in vivo.
Neuroscience, Issue 53, Excitatory synapse, neuroscience, brain, cortex, cortical neurons, primary culture, confocal microscopy, time-lapse imaging, remodeling.
Play Button
Chromosomics: Detection of Numerical and Structural Alterations in All 24 Human Chromosomes Simultaneously Using a Novel OctoChrome FISH Assay
Authors: Zhiying Ji, Luoping Zhang.
Institutions: University of California, Berkeley .
Fluorescence in situ hybridization (FISH) is a technique that allows specific DNA sequences to be detected on metaphase or interphase chromosomes in cell nuclei1. The technique uses DNA probes with unique sequences that hybridize to whole chromosomes or specific chromosomal regions, and serves as a powerful adjunct to classic cytogenetics. For instance, many earlier studies reported the frequent detection of increased chromosome aberrations in leukemia patients related with benzene exposure, benzene-poisoning patients, and healthy workers exposed to benzene, using classic cytogenetic analysis2. Using FISH, leukemia-specific chromosomal alterations have been observed to be elevated in apparently healthy workers exposed to benzene3-6, indicating the critical roles of cytogentic changes in benzene-induced leukemogenesis. Generally, a single FISH assay examines only one or a few whole chromosomes or specific loci per slide, so multiple hybridizations need to be conducted on multiple slides to cover all of the human chromosomes. Spectral karyotyping (SKY) allows visualization of the whole genome simultaneously, but the requirement for special software and equipment limits its application7. Here, we describe a novel FISH assay, OctoChrome-FISH, which can be applied for Chromosomics, which we define here as the simultaneous analysis of all 24 human chromosomes on one slide in human studies, such as chromosome-wide aneuploidy study (CWAS)8. The basis of the method, marketed by Cytocell as the Chromoprobe Multiprobe System, is an OctoChrome device that is divided into 8 squares, each of which carries three different whole chromosome painting probes (Figure 1). Each of the three probes is directly labeled with a different colored fluorophore, green (FITC), red (Texas Red), and blue (Coumarin). The arrangement of chromosome combinations on the OctoChrome device has been designed to facilitate the identification of the non-random structural chromosome alterations (translocations) found in the most common leukemias and lymphomas, for instance t(9;22), t(15;17), t(8;21), t(14;18)9. Moreover, numerical changes (aneuploidy) in chromosomes can be detected concurrently. The corresponding template slide is also divided into 8 squares onto which metaphase spreads are bound (Figure 2), and is positioned over the OctoChrome device. The probes and target DNA are denatured at high-temperature and hybridized in a humid chamber, and then all 24 human chromosomes can be visualized simultaneously. OctoChrome FISH is a promising technique for the clinical diagnosis of leukemia and lymphoma and for detection of aneuploidies in all chromosomes. We have applied this new Chromosomic approach in a CWAS study of benzene-exposed Chinese workers8,10.
Genetics, Issue 60, Chromosomics, OctoChrome-FISH, fluorescence in situ hybridization (FISH), Chromosome-wide aneuploidy study (CWAS), aneuploidy, chromosomal translocations, leukemia, lymphoma
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Simulation, Fabrication and Characterization of THz Metamaterial Absorbers
Authors: James P. Grant, Iain J.H. McCrindle, David R.S. Cumming.
Institutions: University of Glasgow.
Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical1 and experimental demonstration2 of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical3, near IR4, mid IR5 , THz6 , mm-wave7 , microwave8 and radio9 bands. Applications include perfect lenses10, sensors11, telecommunications12, invisibility cloaks13 and filters14,15. We have recently developed single band16, dual band17 and broadband18 THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers19. In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems.
Materials Science, Issue 70, Physics, Engineering, Metamaterial, terahertz, sensing, fabrication, clean room, simulation, FTIR, spectroscopy
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
Play Button
Quantifying Agonist Activity at G Protein-coupled Receptors
Authors: Frederick J. Ehlert, Hinako Suga, Michael T. Griffin.
Institutions: University of California, Irvine, University of California, Chapman University.
When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (Kb) is much greater than that for the inactive state (Ka). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (Kobs), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the Kobs and relative efficacy of an agonist 1,2. In this report, we show how to modify this analysis to estimate the agonist Kb value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate Kb in absolute units of M-1. Our method of analyzing agonist concentration-response curves 3,4 consists of global nonlinear regression using the operational model 5. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of Kobs and a parameter proportional to efficacy (τ). The estimate of τKobs of one agonist, divided by that of another, is a relative measure of Kb (RAi) 6. For any receptor exhibiting constitutive activity, it is possible to estimate a parameter proportional to the efficacy of the free receptor complex (τsys). In this case, the Kb value of an agonist is equivalent to τKobssys 3. Our method is useful for determining the selectivity of an agonist for receptor subtypes and for quantifying agonist-receptor signaling through different G proteins.
Molecular Biology, Issue 58, agonist activity, active state, ligand bias, constitutive activity, G protein-coupled receptor
Play Button
Using Learning Outcome Measures to assess Doctoral Nursing Education
Authors: Glenn H. Raup, Jeff King, Romana J. Hughes, Natasha Faidley.
Institutions: Harris College of Nursing and Health Sciences, Texas Christian University.
Education programs at all levels must be able to demonstrate successful program outcomes. Grades alone do not represent a comprehensive measurement methodology for assessing student learning outcomes at either the course or program level. The development and application of assessment rubrics provides an unequivocal measurement methodology to ensure a quality learning experience by providing a foundation for improvement based on qualitative and quantitatively measurable, aggregate course and program outcomes. Learning outcomes are the embodiment of the total learning experience and should incorporate assessment of both qualitative and quantitative program outcomes. The assessment of qualitative measures represents a challenge for educators in any level of a learning program. Nursing provides a unique challenge and opportunity as it is the application of science through the art of caring. Quantification of desired student learning outcomes may be enhanced through the development of assessment rubrics designed to measure quantitative and qualitative aspects of the nursing education and learning process. They provide a mechanism for uniform assessment by nursing faculty of concepts and constructs that are otherwise difficult to describe and measure. A protocol is presented and applied to a doctoral nursing education program with recommendations for application and transformation of the assessment rubric to other education programs. Through application of these specially designed rubrics, all aspects of an education program can be adequately assessed to provide information for program assessment that facilitates the closure of the gap between desired and actual student learning outcomes for any desired educational competency.
Medicine, Issue 40, learning, outcomes, measurement, program, assessment, rubric
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.