JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Myeloid derived suppressor cells (MDSCs) are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs) in chronic myeloid leukemia patients.
PLoS ONE
PUBLISHED: 01-01-2014
Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs), able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML) patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1) that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs) we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.
ABSTRACT
MDSC are a heterogeneous population of immature macrophages, dendritic cells and granulocytes that accumulate in lymphoid organs in pathological conditions including parasitic infection, inflammation, traumatic stress, graft-versus-host disease, diabetes and cancer1-7. In mice, MDSC express Mac-1 (CD11b) and Gr-1 (Ly6G and Ly6C) surface antigens7. It is important to note that MDSC are well studied in various tumor-bearing hosts where they are significantly expanded and suppress anti-tumor immune responses compared to naïve counterparts7-10. However, depending on the pathological condition, there are different subpopulations of MDSC with distinct mechanisms and targets of suppression11,12. Therefore, effective methods to isolate viable MDSC populations are important in elucidating their different molecular mechanisms of suppression in vitro and in vivo. Recently, the Ghansah group has reported the expansion of MDSC in a murine pancreatic cancer model. Our tumor-bearing MDSC display a loss of homeostasis and increased suppressive function compared to naïve MDSC 13. MDSC percentages are significantly less in lymphoid compartments of naïve vs. tumor-bearing mice. This is a major caveat, which often hinders accurate comparative analyses of these MDSC. Therefore, enriching Gr-1+ leukocytes from naïve mice prior to Fluorescence Activated Cell Sorting (FACS) enhances purity, viability and significantly reduces sort time. However, enrichment of Gr-1+ leukocytes from tumor-bearing mice is optional as these are in abundance for quick FACS sorting. Therefore, in this protocol, we describe a highly efficient method of immunophenotyping MDSC and enriching Gr-1+ leukocytes from spleens of naïve mice for sorting MDSC in a timely manner. Immunocompetent C57BL/6 mice are inoculated with murine Panc02 cells subcutaneously whereas naïve mice receive 1XPBS. Approximately 30 days post inoculation; spleens are harvested and processed into single-cell suspensions using a cell dissociation sieve. Splenocytes are then Red Blood Cell (RBC) lysed and an aliquot of these leukocytes are stained using fluorochrome-conjugated antibodies against Mac-1 and Gr-1 to immunophenotype MDSC percentages using Flow Cytometry. In a parallel experiment, whole leukocytes from naïve mice are stained with fluorescent-conjugated Gr-1 antibodies, incubated with PE-MicroBeads and positively selected using an automated Magnetic Activated Cell Sorting (autoMACS) Pro Separator. Next, an aliquot of Gr-1+ leukocytes are stained with Mac-1 antibodies to identify the increase in MDSC percentages using Flow Cytometry. Now, these Gr1+ enriched leukocytes are ready for FACS sorting of MDSC to be used in comparative analyses (naïve vs. tumor- bearing) in in vivo and in vitro assays.
19 Related JoVE Articles!
Play Button
A Method for Screening and Validation of Resistant Mutations Against Kinase Inhibitors
Authors: Meenu Kesarwani, Erika Huber, Zachary Kincaid, Mohammad Azam.
Institutions: Cincinnati Children's Hospital Medical Center.
The discovery of BCR/ABL as a driver oncogene in chronic myeloid leukemia (CML) resulted in the development of Imatinib, which, in fact, demonstrated the potential of targeting the kinase in cancers by effectively treating the CML patients. This observation revolutionized drug development to target the oncogenic kinases implicated in various other malignancies, such as, EGFR, B-RAF, KIT and PDGFRs. However, one major drawback of anti-kinase therapies is the emergence of drug resistance mutations rendering the target to have reduced or lost affinity for the drug. Understanding the mechanisms employed by resistant variants not only helps in developing the next generation inhibitors but also gives impetus to clinical management using personalized medicine. We reported a retroviral vector based screening strategy to identify the spectrum of resistance conferring mutations in BCR/ABL, which has helped in developing the next generation BCR/ABL inhibitors. Using Ruxolitinib and JAK2 as a drug target pair, here we describe in vitro screening methods that utilizes the mouse BAF3 cells expressing the random mutation library of JAK2 kinase.
Genetics, Issue 94, JAK2, BCR/ABL, TKI, random mutagenesis, drug resistance, kinase inhibitors, in-vivo resistance,
51984
Play Button
Methods to Assess Beta Cell Death Mediated by Cytotoxic T Lymphocytes
Authors: Jing Chen, Scott Grieshaber, Clayton E. Mathews.
Institutions: University of Florida.
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease. During the pathogenesis, patients become progressively more insulinopenic as insulin production is lost, presumably this results from the destruction of pancreatic beta cells by T cells. Understanding the mechanisms of beta cell death during the development of T1D will provide insights to generate an effective cure for this disease. Cell-mediated lymphocytotoxicity (CML) assays have historically used the radionuclide Chromium 51 (51Cr) to label target cells. These targets are then exposed to effector cells and the release of 51Cr from target cells is read as an indication of lymphocyte-mediated cell death. Inhibitors of cell death result in decreased release of 51Cr. As effector cells, we used an activated autoreactive clonal population of CD8+ Cytotoxic T lymphocytes (CTL) isolated from a mouse stock transgenic for both the alpha and beta chains of the AI4 T cell receptor (TCR). Activated AI4 T cells were co-cultured with 51Cr labeled target NIT cells for 16 hours, release of 51Cr was recorded to calculate specific lysis Mitochondria participate in many important physiological events, such as energy production, regulation of signaling transduction, and apoptosis. The study of beta cell mitochondrial functional changes during the development of T1D is a novel area of research. Using the mitochondrial membrane potential dye Tetramethyl Rhodamine Methyl Ester (TMRM) and confocal microscopic live cell imaging, we monitored mitochondrial membrane potential over time in the beta cell line NIT-1. For imaging studies, effector AI4 T cells were labeled with the fluorescent nuclear staining dye Picogreen. NIT-1 cells and T cells were co-cultured in chambered coverglass and mounted on the microscope stage equipped with a live cell chamber, controlled at 37°C, with 5% CO2, and humidified. During these experiments images were taken of each cluster every 3 minutes for 400 minutes. Over a course of 400 minutes, we observed the dissipation of mitochondrial membrane potential in NIT-1 cell clusters where AI4 T cells were attached. In the simultaneous control experiment where NIT-1 cells were co-cultured with MHC mis-matched human lymphocyte Jurkat cells, mitochondrial membrane potential remained intact. This technique can be used to observe real-time changes in mitochondrial membrane potential in cells under attack of cytotoxic lymphocytes, cytokines, or other cytotoxic reagents.
Immunology, Issue 52, cell, Type 1 Diabetes, Autoimmunity, Cytotoxic T Lymphocyte
2724
Play Button
Ex vivo Expansion of Tumor-reactive T Cells by Means of Bryostatin 1/Ionomycin and the Common Gamma Chain Cytokines Formulation
Authors: Maciej Kmieciak, Amir Toor, Laura Graham, Harry D. Bear, Masoud H. Manjili.
Institutions: Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center.
It was reported that breast cancer patients have pre-existing immune responses against their tumors1,2. However, such immune responses fail to provide complete protection against the development or recurrence of breast cancer. To overcome this problem by increasing the frequency of tumor-reactive T cells, adoptive immunotherapy has been employed. A variety of protocols have been used for the expansion of tumor-specific T cells. These protocols, however, are restricted to the use of tumor antigens ex vivo for the activation of antigen-specific T cells. Very recently, common gamma chain cytokines such as IL-2, IL-7, IL-15, and IL-21 have been used alone or in combination for the enhancement of anti-tumor immune responses3. However, it is not clear what formulation would work best for the expansion of tumor-reactive T cells. Here we present a protocol for the selective activation and expansion of tumor-reactive T cells from the FVBN202 transgenic mouse model of HER-2/neu positive breast carcinoma for use in adoptive T cell therapy of breast cancer. The protocol includes activation of T cells with bryostatin-1/ionomycin (B/I) and IL-2 in the absence of tumor antigens for 16 hours. B/I activation mimics intracellular signals that result in T cell activation by increasing protein kinase C activity and intracellular calcium, respectively4. This protocol specifically activates tumor-specific T cells while killing irrelevant T cells. The B/I-activated T cells are cultured with IL-7 and IL-15 for 24 hours and then pulsed with IL-2. After 24 hours, T cells are washed, split, and cultured with IL-7 + IL-15 for additional 4 days. Tumor-specificity and anti-tumor efficacy of the ex vivo expanded T cells is determined.
Immunology, Issue 47, Adoptive T cell therapy, Breast Cancer, HER-2/neu, common gamma chain cytokines, Bryostatin 1, Ionomycin
2381
Play Button
Investigation of Macrophage Polarization Using Bone Marrow Derived Macrophages
Authors: Wei Ying, Patali S. Cheruku, Fuller W. Bazer, Stephen H. Safe, Beiyan Zhou.
Institutions: Texas A&M University, Texas A&M University, Texas A&M University.
The article describes a readily easy adaptive in vitro model to investigate macrophage polarization. In the presence of GM-CSF/M-CSF, hematopoietic stem/progenitor cells from the bone marrow are directed into monocytic differentiation, followed by M1 or M2 stimulation. The activation status can be tracked by changes in cell surface antigens, gene expression and cell signaling pathways.
Immunology, Issue 76, Cellular Biology, Molecular Biology, Medicine, Genetics, Biomedical Engineering, biology (general), genetics (animal and plant), immunology, life sciences, Life Sciences (General), macrophage polarization, bone marrow derived macrophage, flow cytometry, PCR, animal model
50323
Play Button
Studying Interactions of Staphylococcus aureus with Neutrophils by Flow Cytometry and Time Lapse Microscopy
Authors: Bas G.J. Surewaard, Jos A.G. van Strijp, Reindert Nijland.
Institutions: University Medical Center Utrecht.
We present methods to study the effect of phenol soluble modulins (PSMs) and other toxins produced and secreted by Staphylococcus aureus on neutrophils. To study the effects of the PSMs on neutrophils we isolate fresh neutrophils using density gradient centrifugation. These neutrophils are loaded with a dye that fluoresces upon calcium mobilization. The activation of neutrophils by PSMs initiates a rapid and transient increase in the free intracellular calcium concentration. In a flow cytometry experiment this rapid mobilization can be measured by monitoring the fluorescence of a pre-loaded dye that reacts to the increased concentration of free Ca2+. Using this method we can determine the PSM concentration necessary to activate the neutrophil, and measure the effects of specific and general inhibitors of the neutrophil activation. To investigate the expression of the PSMs in the intracellular space, we have constructed reporter fusions of the promoter of the PSMα operon to GFP. When these reporter strains of S. aureus are phagocytosed by neutrophils, the induction of expression can be observed using fluorescence microscopy.
Infection, Issue 77, Immunology, Cellular Biology, Infectious Diseases, Microbiology, Genetics, Medicine, Biomedical Engineering, Bioengineering, Neutrophils, Staphylococcus aureus, Bacterial Toxins, Microscopy, Fluorescence, Time-Lapse Imaging, Phagocytosis, phenol soluble modulins, PSMs, Polymorphonuclear Neutrophils, PMNs, intracellular expression, time-lapse microscopy, flow cytometry, cell, isolation, cell culture
50788
Play Button
Immunohistochemical Staining of B7-H1 (PD-L1) on Paraffin-embedded Slides of Pancreatic Adenocarcinoma Tissue
Authors: Elaine Bigelow, Katherine M. Bever, Haiying Xu, Allison Yager, Annie Wu, Janis Taube, Lieping Chen, Elizabeth M. Jaffee, Robert A. Anders, Lei Zheng.
Institutions: The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, Yale School of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine.
B7-H1/PD-L1, a member of the B7 family of immune-regulatory cell-surface proteins, plays an important role in the negative regulation of cell-mediated immune responses through its interaction with its receptor, programmed death-1 (PD-1) 1,2. Overexpression of B7-H1 by tumor cells has been noted in a number of human cancers, including melanoma, glioblastoma, and carcinomas of the lung, breast, colon, ovary, and renal cells, and has been shown to impair anti-tumor T-cell immunity3-8. Recently, B7-H1 expression by pancreatic adenocarcinoma tissues has been identified as a potential prognostic marker9,10. Additionally, blockade of B7-H1 in a mouse model of pancreatic cancer has been shown to produce an anti-tumor response11. These data suggest the importance of B7-H1 as a potential therapeutic target. Anti-B7-H1 blockade antibodies are therefore being tested in clinical trials for multiple human solid tumors including melanoma and cancers of lung, colon, kidney, stomach and pancreas12. In order to eventually be able to identify the patients who will benefit from B7-H1 targeting therapies, it is critical to investigate the correlation between expression and localization of B7-H1 and patient response to treatment with B7-H1 blockade antibodies. Examining the expression of B7-H1 in human pancreatic adenocarcinoma tissues through immunohistochemistry will give a better understanding of how this co-inhibitory signaling molecule contributes to the suppression of antitumor immunity in the tumor's microenvironment. The anti-B7-H1 monoclonal antibody (clone 5H1) developed by Chen and coworkers has been shown to produce reliable staining results in cryosections of multiple types of human neoplastic tissues4,8, but staining on paraffin-embedded slides had been a challenge until recently13-18. We have developed the B7-H1 staining protocol for paraffin-embedded slides of pancreatic adenocarcinoma tissues. The B7-H1 staining protocol described here produces consistent membranous and cytoplasmic staining of B7-H1 with little background.
Cancer Biology, Issue 71, Medicine, Immunology, Biochemistry, Molecular Biology, Cellular Biology, Chemistry, Oncology, immunohistochemistry, B7-H1 (PD-L1), pancreatic adenocarcinoma, pancreatic cancer, pancreas, tumor, T-cell immunity, cancer
4059
Play Button
Identifying DNA Mutations in Purified Hematopoietic Stem/Progenitor Cells
Authors: Ziming Cheng, Ting Zhou, Azhar Merchant, Thomas J. Prihoda, Brian L. Wickes, Guogang Xu, Christi A. Walter, Vivienne I. Rebel.
Institutions: UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio.
In recent years, it has become apparent that genomic instability is tightly related to many developmental disorders, cancers, and aging. Given that stem cells are responsible for ensuring tissue homeostasis and repair throughout life, it is reasonable to hypothesize that the stem cell population is critical for preserving genomic integrity of tissues. Therefore, significant interest has arisen in assessing the impact of endogenous and environmental factors on genomic integrity in stem cells and their progeny, aiming to understand the etiology of stem-cell based diseases. LacI transgenic mice carry a recoverable λ phage vector encoding the LacI reporter system, in which the LacI gene serves as the mutation reporter. The result of a mutated LacI gene is the production of β-galactosidase that cleaves a chromogenic substrate, turning it blue. The LacI reporter system is carried in all cells, including stem/progenitor cells and can easily be recovered and used to subsequently infect E. coli. After incubating infected E. coli on agarose that contains the correct substrate, plaques can be scored; blue plaques indicate a mutant LacI gene, while clear plaques harbor wild-type. The frequency of blue (among clear) plaques indicates the mutant frequency in the original cell population the DNA was extracted from. Sequencing the mutant LacI gene will show the location of the mutations in the gene and the type of mutation. The LacI transgenic mouse model is well-established as an in vivo mutagenesis assay. Moreover, the mice and the reagents for the assay are commercially available. Here we describe in detail how this model can be adapted to measure the frequency of spontaneously occurring DNA mutants in stem cell-enriched Lin-IL7R-Sca-1+cKit++(LSK) cells and other subpopulations of the hematopoietic system.
Infection, Issue 84, In vivo mutagenesis, hematopoietic stem/progenitor cells, LacI mouse model, DNA mutations, E. coli
50752
Play Button
Real-time Imaging of Endothelial Cell-cell Junctions During Neutrophil Transmigration Under Physiological Flow
Authors: Jeffrey Kroon, Anna E. Daniel, Mark Hoogenboezem, Jaap D. van Buul.
Institutions: Sanquin Research and Landsteiner Laboratory, AMC at University of Amsterdam.
During inflammation, leukocytes leave the circulation and cross the endothelium to fight invading pathogens in underlying tissues. This process is known as leukocyte transendothelial migration. Two routes for leukocytes to cross the endothelial monolayer have been described: the paracellular route, i.e., through the cell-cell junctions and the transcellular route, i.e., through the endothelial cell body. However, it has been technically difficult to discriminate between the para- and transcellular route. We developed a simple in vitro assay to study the distribution of endogenous VE-cadherin and PECAM-1 during neutrophil transendothelial migration under physiological flow conditions. Prior to neutrophil perfusion, endothelial cells were briefly treated with fluorescently-labeled antibodies against VE-cadherin and PECAM-1. These antibodies did not interfere with the function of both proteins, as was determined by electrical cell-substrate impedance sensing and FRAP measurements. Using this assay, we were able to follow the distribution of endogenous VE-cadherin and PECAM-1 during transendothelial migration under flow conditions and discriminate between the para- and transcellular migration routes of the leukocytes across the endothelium.
Immunology, Issue 90, Leukocytes, Human Umbilical Vein Endothelial Cells (HUVECs), transmigration, VE-cadherin, PECAM-1, endothelium, transcellular, paracellular
51766
Play Button
New Tools to Expand Regulatory T Cells from HIV-1-infected Individuals
Authors: Mathieu Angin, Melanie King, Marylyn Martina Addo.
Institutions: Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied. Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals. Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.
Infection, Issue 75, Infectious Diseases, Medicine, Immunology, Virology, Cellular Biology, Molecular Biology, Lymphocytes, T-Lymphocytes, Regulatory, HIV, Culture Techniques, flow cytometry, cell culture, Treg expansion, regulatory T cells, CD4+ T cells, Tregs, HIV-1, virus, HIV-1 infection, AIDS, clinical techniques
50244
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
51963
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
51204
Play Button
Real-time Imaging of Myeloid Cells Dynamics in ApcMin/+ Intestinal Tumors by Spinning Disk Confocal Microscopy
Authors: Caroline Bonnans, Marja Lohela, Zena Werb.
Institutions: INSERM U661, Functional Genomic Institute, University of California.
Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. ApcMin/+ mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.
Cancer Biology, Issue 92, intravital imaging, spinning disk confocal, ApcMin/+ mice, colorectal cancer, tumor, myeloid cells
51916
Play Button
Initiation of Metastatic Breast Carcinoma by Targeting of the Ductal Epithelium with Adenovirus-Cre: A Novel Transgenic Mouse Model of Breast Cancer
Authors: Melanie R. Rutkowski, Michael J. Allegrezza, Nikolaos Svoronos, Amelia J. Tesone, Tom L. Stephen, Alfredo Perales-Puchalt, Jenny Nguyen, Paul J. Zhang, Steven N. Fiering, Julia Tchou, Jose R. Conejo-Garcia.
Institutions: Wistar Institute, University of Pennsylvania, Geisel School of Medicine at Dartmouth, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.
Medicine, Issue 85, Transgenic mice, breast cancer, metastasis, intraductal injection, latent mutations, adenovirus-Cre
51171
Play Button
Live Imaging of Drug Responses in the Tumor Microenvironment in Mouse Models of Breast Cancer
Authors: Elizabeth S. Nakasone, Hanne A. Askautrud, Mikala Egeblad.
Institutions: Watson School of Biological Sciences, Cold Spring Harbor Laboratory, University of Oslo and Oslo University Hospital.
The tumor microenvironment plays a pivotal role in tumor initiation, progression, metastasis, and the response to anti-cancer therapies. Three-dimensional co-culture systems are frequently used to explicate tumor-stroma interactions, including their role in drug responses. However, many of the interactions that occur in vivo in the intact microenvironment cannot be completely replicated in these in vitro settings. Thus, direct visualization of these processes in real-time has become an important tool in understanding tumor responses to therapies and identifying the interactions between cancer cells and the stroma that can influence these responses. Here we provide a method for using spinning disk confocal microscopy of live, anesthetized mice to directly observe drug distribution, cancer cell responses and changes in tumor-stroma interactions following administration of systemic therapy in breast cancer models. We describe procedures for labeling different tumor components, treatment of animals for observing therapeutic responses, and the surgical procedure for exposing tumor tissues for imaging up to 40 hours. The results obtained from this protocol are time-lapse movies, in which such processes as drug infiltration, cancer cell death and stromal cell migration can be evaluated using image analysis software.
Cancer Biology, Issue 73, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Genetics, Oncology, Pharmacology, Surgery, Tumor Microenvironment, Intravital imaging, chemotherapy, Breast cancer, time-lapse, mouse models, cancer cell death, stromal cell migration, cancer, imaging, transgenic, animal model
50088
Play Button
Quantitative Assessment of Immune Cells in the Injured Spinal Cord Tissue by Flow Cytometry: a Novel Use for a Cell Purification Method
Authors: Hal X. Nguyen, Kevin D. Beck, Aileen J. Anderson.
Institutions: University of California, University of California, University of California, University of California, University of California, University of California.
Detection of immune cells in the injured central nervous system (CNS) using morphological or histological techniques has not always provided true quantitative analysis of cellular inflammation. Flow cytometry is a quick alternative method to quantify immune cells in the injured brain or spinal cord tissue. Historically, flow cytometry has been used to quantify immune cells collected from blood or dissociated spleen or thymus, and only a few studies have attempted to quantify immune cells in the injured spinal cord by flow cytometry using fresh dissociated cord tissue. However, the dissociated spinal cord tissue is concentrated with myelin debris that can be mistaken for cells and reduce cell count reliability obtained by the flow cytometer. We have advanced a cell preparation method using the OptiPrep gradient system to effectively separate lipid/myelin debris from cells, providing sensitive and reliable quantifications of cellular inflammation in the injured spinal cord by flow cytometry. As described in our recent study (Beck & Nguyen et al., Brain. 2010 Feb; 133 (Pt 2): 433-47), the OptiPrep cell preparation had increased sensitivity to detect cellular inflammation in the injured spinal cord, with counts of specific cell types correlating with injury severity. Critically, novel usage of this method provided the first characterization of acute and chronic cellular inflammation after SCI to include a complete time course for polymorphonuclear leukocytes (PMNs, neutrophils), macrophages/microglia, and T-cells over a period ranging from 2 hours to 180 days post-injury (dpi), identifying a surprising novel second phase of cellular inflammation. Thorough characterization of cellular inflammation using this method may provide a better understanding of neuroinflammation in the injured CNS, and reveal an important multiphasic component of neuroinflammation that may be critical for the design and implementation of rational therapeutic treatment strategies, including both cell-based and pharmacological interventions for SCI.
Immunology, Issue 50, spinal cord injury, cellular inflammation, neuroinflammation, OptiPrep, central nervous system, neutrophils, macrophages, microglia, T-cells, flow cytometry
2698
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
Bioenergetics and the Oxidative Burst: Protocols for the Isolation and Evaluation of Human Leukocytes and Platelets
Authors: Philip A. Kramer, Balu K. Chacko, Saranya Ravi, Michelle S. Johnson, Tanecia Mitchell, Victor M. Darley-Usmar.
Institutions: University of Alabama at Birmingham.
Mitochondrial dysfunction is known to play a significant role in a number of pathological conditions such as atherosclerosis, diabetes, septic shock, and neurodegenerative diseases but assessing changes in bioenergetic function in patients is challenging. Although diseases such as diabetes or atherosclerosis present clinically with specific organ impairment, the systemic components of the pathology, such as hyperglycemia or inflammation, can alter bioenergetic function in circulating leukocytes or platelets. This concept has been recognized for some time but its widespread application has been constrained by the large number of primary cells needed for bioenergetic analysis. This technical limitation has been overcome by combining the specificity of the magnetic bead isolation techniques, cell adhesion techniques, which allow cells to be attached without activation to microplates, and the sensitivity of new technologies designed for high throughput microplate respirometry. An example of this equipment is the extracellular flux analyzer. Such instrumentation typically uses oxygen and pH sensitive probes to measure rates of change in these parameters in adherent cells, which can then be related to metabolism. Here we detail the methods for the isolation and plating of monocytes, lymphocytes, neutrophils and platelets, without activation, from human blood and the analysis of mitochondrial bioenergetic function in these cells. In addition, we demonstrate how the oxidative burst in monocytes and neutrophils can also be measured in the same samples. Since these methods use only 8-20 ml human blood they have potential for monitoring reactive oxygen species generation and bioenergetics in a clinical setting.
Immunology, Issue 85, bioenergetics, translational, mitochondria, oxidative stress, reserve capacity, leukocytes
51301
Play Button
Interview: Glycolipid Antigen Presentation by CD1d and the Therapeutic Potential of NKT cell Activation
Authors: Mitchell Kronenberg.
Institutions: La Jolla Institute for Allergy and Immunology.
Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d - the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.
Immunology, Issue 10, Natural Killer T cells, NKT cells, CD1 Tetramers, antigen presentation, glycolipid antigens, CD1d, Mucosal Immunity, Translational Research
635
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.