JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
The vocal repertoire of the African Penguin (Spheniscus demersus): structure and function of calls.
PLoS ONE
PUBLISHED: 01-01-2014
The African Penguin (Spheniscus demersus) is a highly social and vocal seabird. However, currently available descriptions of the vocal repertoire of African Penguin are mostly limited to basic descriptions of calls. Here we provide, for the first time, a detailed description of the vocal behaviour of this species by collecting audio and video recordings from a large captive colony. We combine visual examinations of spectrograms with spectral and temporal acoustic analyses to determine vocal categories. Moreover, we used a principal component analysis, followed by signal classification with a discriminant function analysis, for statistical validation of the vocalisation types. In addition, we identified the behavioural contexts in which calls were uttered. The results show that four basic vocalisations can be found in the vocal repertoire of adult African Penguin, namely a contact call emitted by isolated birds, an agonistic call used in aggressive interactions, an ecstatic display song uttered by single birds, and a mutual display song vocalised by pairs, at their nests. Moreover, we identified two distinct vocalisations interpreted as begging calls by nesting chicks (begging peep) and unweaned juveniles (begging moan). Finally, we discussed the importance of specific acoustic parameters in classifying calls and the possible use of the source-filter theory of vocal production to study penguin vocalisations.
Authors: Aaron M. Johnson, Emerald J. Doll, Laura M. Grant, Lauren Ringel, Jaime N. Shier, Michelle R. Ciucci.
Published: 08-08-2011
ABSTRACT
Voice deficits are a common complication of both Parkinson disease (PD) and aging; they can significantly diminish quality of life by impacting communication abilities. 1, 2 Targeted training (speech/voice therapy) can improve specific voice deficits,3, 4 although the underlying mechanisms of behavioral interventions are not well understood. Systematic investigation of voice deficits and therapy should consider many factors that are difficult to control in humans, such as age, home environment, age post-onset of disease, severity of disease, and medications. The method presented here uses an animal model of vocalization that allows for systematic study of how underlying sensorimotor mechanisms change with targeted voice training. The ultrasonic recording and analysis procedures outlined in this protocol are applicable to any investigation of rodent ultrasonic vocalizations. The ultrasonic vocalizations of rodents are emerging as a valuable model to investigate the neural substrates of behavior.5-8 Both rodent and human vocalizations carry semiotic value and are produced by modifying an egressive airflow with a laryngeal constriction.9, 10 Thus, rodent vocalizations may be a useful model to study voice deficits in a sensorimotor context. Further, rat models allow us to study the neurobiological underpinnings of recovery from deficits with targeted training. To model PD we use Long-Evans rats (Charles River Laboratories International, Inc.) and induce parkinsonism by a unilateral infusion of 7 μg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle which causes moderate to severe degeneration of presynaptic striatal neurons (for details see Ciucci, 2010).11, 12 For our aging model we use the Fischer 344/Brown Norway F1 (National Institute on Aging). Our primary method for eliciting vocalizations is to expose sexually-experienced male rats to sexually receptive female rats. When the male becomes interested in the female, the female is removed and the male continues to vocalize. By rewarding complex vocalizations with food or water, both the number of complex vocalizations and the rate of vocalizations can be increased (Figure 1). An ultrasonic microphone mounted above the male's home cage records the vocalizations. Recording begins after the female rat is removed to isolate the male calls. Vocalizations can be viewed in real time for training or recorded and analyzed offline. By recording and acoustically analyzing vocalizations before and after vocal training, the effects of disease and restoration of normal function with training can be assessed. This model also allows us to relate the observed behavioral (vocal) improvements to changes in the brain and neuromuscular system.
16 Related JoVE Articles!
Play Button
Investigating the Three-dimensional Flow Separation Induced by a Model Vocal Fold Polyp
Authors: Kelley C. Stewart, Byron D. Erath, Michael W. Plesniak.
Institutions: The George Washington University, Clarkson University.
The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. Our laboratory has reported particle image velocimetry (PIV) measurements, within an investigation of a model polyp located on the medial surface of an in vitro driven vocal fold model, which show that such a geometric abnormality considerably disrupts the glottal jet behavior. This flow field adjustment is a likely reason for the severe degradation of the vocal quality in patients with polyps. A more complete understanding of the formation and propagation of vortical structures from a geometric protuberance, such as a vocal fold polyp, and the resulting influence on the aerodynamic loadings that drive the vocal fold dynamics, is necessary for advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp, using an oil-film visualization technique. Unsteady, three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements.
Bioengineering, Issue 84, oil-flow visualization, vocal fold polyp, three-dimensional flow separation, aerodynamic pressure loadings
51080
Play Button
A Lightweight, Headphones-based System for Manipulating Auditory Feedback in Songbirds
Authors: Lukas A. Hoffmann, Conor W. Kelly, David A. Nicholson, Samuel J. Sober.
Institutions: Emory University, Emory University, Emory University.
Experimental manipulations of sensory feedback during complex behavior have provided valuable insights into the computations underlying motor control and sensorimotor plasticity1. Consistent sensory perturbations result in compensatory changes in motor output, reflecting changes in feedforward motor control that reduce the experienced feedback error. By quantifying how different sensory feedback errors affect human behavior, prior studies have explored how visual signals are used to recalibrate arm movements2,3 and auditory feedback is used to modify speech production4-7. The strength of this approach rests on the ability to mimic naturalistic errors in behavior, allowing the experimenter to observe how experienced errors in production are used to recalibrate motor output. Songbirds provide an excellent animal model for investigating the neural basis of sensorimotor control and plasticity8,9. The songbird brain provides a well-defined circuit in which the areas necessary for song learning are spatially separated from those required for song production, and neural recording and lesion studies have made significant advances in understanding how different brain areas contribute to vocal behavior9-12. However, the lack of a naturalistic error-correction paradigm - in which a known acoustic parameter is perturbed by the experimenter and then corrected by the songbird - has made it difficult to understand the computations underlying vocal learning or how different elements of the neural circuit contribute to the correction of vocal errors13. The technique described here gives the experimenter precise control over auditory feedback errors in singing birds, allowing the introduction of arbitrary sensory errors that can be used to drive vocal learning. Online sound-processing equipment is used to introduce a known perturbation to the acoustics of song, and a miniaturized headphones apparatus is used to replace a songbird's natural auditory feedback with the perturbed signal in real time. We have used this paradigm to perturb the fundamental frequency (pitch) of auditory feedback in adult songbirds, providing the first demonstration that adult birds maintain vocal performance using error correction14. The present protocol can be used to implement a wide range of sensory feedback perturbations (including but not limited to pitch shifts) to investigate the computational and neurophysiological basis of vocal learning.
Neuroscience, Issue 69, Anatomy, Physiology, Zoology, Behavior, Songbird, psychophysics, auditory feedback, biology, sensorimotor learning
50027
Play Button
Synthetic, Multi-Layer, Self-Oscillating Vocal Fold Model Fabrication
Authors: Preston R. Murray, Scott L. Thomson.
Institutions: Brigham Young University.
Sound for the human voice is produced via flow-induced vocal fold vibration. The vocal folds consist of several layers of tissue, each with differing material properties 1. Normal voice production relies on healthy tissue and vocal folds, and occurs as a result of complex coupling between aerodynamic, structural dynamic, and acoustic physical phenomena. Voice disorders affect up to 7.5 million annually in the United States alone 2 and often result in significant financial, social, and other quality-of-life difficulties. Understanding the physics of voice production has the potential to significantly benefit voice care, including clinical prevention, diagnosis, and treatment of voice disorders. Existing methods for studying voice production include in vivo experimentation using human and animal subjects, in vitro experimentation using excised larynges and synthetic models, and computational modeling. Owing to hazardous and difficult instrument access, in vivo experiments are severely limited in scope. Excised larynx experiments have the benefit of anatomical and some physiological realism, but parametric studies involving geometric and material property variables are limited. Further, they are typically only able to be vibrated for relatively short periods of time (typically on the order of minutes). Overcoming some of the limitations of excised larynx experiments, synthetic vocal fold models are emerging as a complementary tool for studying voice production. Synthetic models can be fabricated with systematic changes to geometry and material properties, allowing for the study of healthy and unhealthy human phonatory aerodynamics, structural dynamics, and acoustics. For example, they have been used to study left-right vocal fold asymmetry 3,4, clinical instrument development 5, laryngeal aerodynamics 6-9, vocal fold contact pressure 10, and subglottal acoustics 11 (a more comprehensive list can be found in Kniesburges et al. 12) Existing synthetic vocal fold models, however, have either been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds 1 that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages 3,6,8 such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration). In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers 1. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave.
Bioengineering, Issue 58, Vocal folds, larynx, voice, speech, artificial biomechanical models
3498
Play Button
A Simple Method of Mouse Lung Intubation
Authors: Sandhya Das, Kelvin MacDonald, Herng-Yu Sucie Chang, Wayne Mitzner.
Institutions: Johns Hopkins Bloomberg School of Public Health, Oregon Health Sciences University.
A simple procedure to intubate mice for pulmonary function measurements would have several advantages in longitudinal studies with limited numbers or expensive animal. One of the reasons that this is not done more routinely is that it is relatively difficult, despite there being several published studies that describe ways to achieve it. In this paper we demonstrate a procedure that eliminates one of the major hurdles associated with this intubation, that of visualizing the trachea during the entire time of intubation. The approach uses a 0.5 mm fiberoptic light source that serves as an introducer to direct the intubation cannula into the mouse trachea. We show that it is possible to use this procedure to measure lung mechanics in individual mice over a time course of at least several weeks. The technique can be set up with relatively little expense and expertise, and it can be routinely accomplished with relatively little training. This should make it possible for any laboratory to routinely carry out this intubation, thereby allowing longitudinal studies in individual mice, thereby minimizing the number of mice needed and increasing the statistical power by using each mouse as its own control.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Surgery, Respiratory System, Respiratory Tract Diseases, pulmonary function, chronic, longitudinal studies, airway resistance, trachea, lung, clinical techniques, intubation, cannula, animal model
50318
Play Button
A Novel Rescue Technique for Difficult Intubation and Difficult Ventilation
Authors: Maria M. Zestos, Dima Daaboul, Zulfiqar Ahmed, Nasser Durgham, Roland Kaddoum.
Institutions: Children’s Hospital of Michigan, St. Jude Children’s Research Hospital.
We describe a novel non surgical technique to maintain oxygenation and ventilation in a case of difficult intubation and difficult ventilation, which works especially well with poor mask fit. Can not intubate, can not ventilate" (CICV) is a potentially life threatening situation. In this video we present a simulation of the technique we used in a case of CICV where oxygenation and ventilation were maintained by inserting an endotracheal tube (ETT) nasally down to the level of the naso-pharynx while sealing the mouth and nares for successful positive pressure ventilation. A 13 year old patient was taken to the operating room for incision and drainage of a neck abcess and direct laryngobronchoscopy. After preoxygenation, anesthesia was induced intravenously. Mask ventilation was found to be extremely difficult because of the swelling of the soft tissue. The face mask could not fit properly on the face due to significant facial swelling as well. A direct laryngoscopy was attempted with no visualization of the larynx. Oxygen saturation was difficult to maintain, with saturations falling to 80%. In order to oxygenate and ventilate the patient, an endotracheal tube was then inserted nasally after nasal spray with nasal decongestant and lubricant. The tube was pushed gently and blindly into the hypopharynx. The mouth and nose of the patient were sealed by hand and positive pressure ventilation was possible with 100% O2 with good oxygen saturation during that period of time. Once the patient was stable and well sedated, a rigid bronchoscope was introduced by the otolaryngologist showing extensive subglottic and epiglottic edema, and a mass effect from the abscess, contributing to the airway compromise. The airway was secured with an ETT tube by the otolaryngologist.This video will show a simulation of the technique on a patient undergoing general anesthesia for dental restorations.
Medicine, Issue 47, difficult ventilation, difficult intubation, nasal, saturation
1421
Play Button
Assessment of Ultrasonic Vocalizations During Drug Self-administration in Rats
Authors: Esther Y. Maier, Sean T. Ma, Allison Ahrens, Timothy J. Schallert, Christine L. Duvauchelle.
Institutions: University of Texas at Austin, University of Texas at Austin, University of Michigan, University of Texas at Austin, University of Texas at Austin.
Drug self-administration procedures are commonly used to study behavioral and neurochemical changes associated with human drug abuse, addiction and relapse. Various types of behavioral activity are commonly utilized as measures of drug motivation in animals. However, a crucial component of drug abuse relapse in abstinent cocaine users is "drug craving", which is difficult to model in animals, as it often occurs in the absence of overt behaviors. Yet, it is possible that a class of ultrasonic vocalizations (USVs) in rats may be a useful marker for affective responses to drug administration, drug anticipation and even drug craving. Rats vocalize in ultrasonic frequencies that serve as a communicatory function and express subjective emotional states. Several studies have shown that different call frequency ranges are associated with negative and positive emotional states. For instance, high frequency calls ("50-kHz") are associated with positive affect, whereas low frequency calls ("22-kHz") represent a negative emotional state. This article describes a procedure to assess rat USVs associated with daily cocaine self-administration. For this procedure, we utilized standard single-lever operant chambers housed within sound-attenuating boxes for cocaine self-administration sessions and utilized ultrasonic microphones, multi-channel recording hardware and specialized software programs to detect and analyze USVs. USVs measurements reflect emotionality of rats before, during and after drug availability and can be correlated with commonly assessed drug self-administration behavioral data such lever responses, inter-response intervals and locomotor activity. Since USVs can be assessed during intervals prior to drug availability (e.g., anticipatory USVs) and during drug extinction trials, changes in affect associated with drug anticipation and drug abstinence can also be determined. In addition, determining USV changes over the course of short- and long-term drug exposure can provide a more detailed interpretation of drug exposure effects on affective functioning.
JoVE Neuroscience, Issue 41, ultrasound, behavior, self-administration, emotionality, anticipation, reward
2041
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
Endotracheal Intubation in Mice via Direct Laryngoscopy Using an Otoscope
Authors: Joanna L. Thomas, Justin Dumouchel, Jinghong Li, Jenna Magat, Dana Balitzer, Timothy D. Bigby.
Institutions: VA San Diego Healthcare System, University of California, San Diego, University of California, San Diego.
Mice, both wildtype and transgenic, are the principal mammalian model in biomedical research currently. Intubation and mechanical ventilation are necessary for whole animal experiments that require surgery under deep anesthesia or measurements of lung function. Tracheostomy has been the standard for intubating the airway in these mice to allow mechanical ventilation. Orotracheal intubation has been reported but has not been successfully used in many studies because of the substantial technical difficulty or a requirement for highly specialized and expensive equipment. Here we report a technique of direct laryngoscopy using an otoscope fitted with a 2.0 mm speculum and using a 20 G intravenous catheter as an endotracheal tube. We have used this technique extensively and reliably to intubate and conduct accurate assessments of lung function in mice. This technique has proven safe, with essentially no animal loss in experienced hands. Moreover, this technique can be used for repeated studies of mice in chronic models.
Medicine, Issue 86, lung physiology, endotracheal intubation, laryngoscopy, airway resistance, intubation technique
50269
Play Button
Dissection and Downstream Analysis of Zebra Finch Embryos at Early Stages of Development
Authors: Jessica R. Murray, Monika E. Stanciauskas, Tejas S. Aralere, Margaret S. Saha.
Institutions: College of William and Mary.
The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access.
Developmental Biology, Issue 88, zebra finch (Taeniopygiaguttata), dissection, embryo, development, in situ hybridization, 5-ethynyl-2’-deoxyuridine (EdU)
51596
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
51242
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
51047
Play Button
Construction and Characterization of a Novel Vocal Fold Bioreactor
Authors: Aidan B. Zerdoum, Zhixiang Tong, Brendan Bachman, Xinqiao Jia.
Institutions: University of Delaware, University of Delaware.
In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.
Bioengineering, Issue 90, vocal fold; bioreactor; speaker; silicone membrane; fibrous scaffold; mesenchymal stem cells; vibration; extracellular matrix
51594
Play Button
Transient Expression of Proteins by Hydrodynamic Gene Delivery in Mice
Authors: Daniella Kovacsics, Jayne Raper.
Institutions: Hunter College, CUNY.
Efficient expression of transgenes in vivo is of critical importance in studying gene function and developing treatments for diseases. Over the past years, hydrodynamic gene delivery (HGD) has emerged as a simple, fast, safe and effective method for delivering transgenes into rodents. This technique relies on the force generated by the rapid injection of a large volume of physiological solution to increase the permeability of cell membranes of perfused organs and thus deliver DNA into cells. One of the main advantages of HGD is the ability to introduce transgenes into mammalian cells using naked plasmid DNA (pDNA). Introducing an exogenous gene using a plasmid is minimally laborious, highly efficient and, contrary to viral carriers, remarkably safe. HGD was initially used to deliver genes into mice, it is now used to deliver a wide range of substances, including oligonucleotides, artificial chromosomes, RNA, proteins and small molecules into mice, rats and, to a limited degree, other animals. This protocol describes HGD in mice and focuses on three key aspects of the method that are critical to performing the procedure successfully: correct insertion of the needle into the vein, the volume of injection and the speed of delivery. Examples are given to show the application of this method to the transient expression of two genes that encode secreted, primate-specific proteins, apolipoprotein L-I (APOL-I) and haptoglobin-related protein (HPR).
Genetics, Issue 87, hydrodynamic gene delivery, hydrodynamics-based transfection, mouse, gene therapy, plasmid DNA, transient gene expression, tail vein injection
51481
Play Button
Determining 3D Flow Fields via Multi-camera Light Field Imaging
Authors: Tadd T. Truscott, Jesse Belden, Joseph R. Nielson, David J. Daily, Scott L. Thomson.
Institutions: Brigham Young University, Naval Undersea Warfare Center, Newport, RI.
In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture 1. Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet.
Physics, Issue 73, Mechanical Engineering, Fluid Mechanics, Engineering, synthetic aperture imaging, light field, camera array, particle image velocimetry, three dimensional, vector fields, image processing, auto calibration, vocal chords, bubbles, flow, fluids
4325
Play Button
The Resident-intruder Paradigm: A Standardized Test for Aggression, Violence and Social Stress
Authors: Jaap M. Koolhaas, Caroline M. Coppens, Sietse F. de Boer, Bauke Buwalda, Peter Meerlo, Paul J.A. Timmermans.
Institutions: University Groningen, Radboud University Nijmegen.
This video publication explains in detail the experimental protocol of the resident-intruder paradigm in rats. This test is a standardized method to measure offensive aggression and defensive behavior in a semi natural setting. The most important behavioral elements performed by the resident and the intruder are demonstrated in the video and illustrated using artistic drawings. The use of the resident intruder paradigm for acute and chronic social stress experiments is explained as well. Finally, some brief tests and criteria are presented to distinguish aggression from its more violent and pathological forms.
Behavior, Issue 77, Neuroscience, Medicine, Anatomy, Physiology, Genetics, Basic Protocols, Psychology, offensive aggression, defensive behavior, aggressive behavior, pathological, violence, social stress, rat, Wistar rat, animal model
4367
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.