JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
EZH2 is associated with malignant behavior in pancreatic IPMN via p27Kip1 downregulation.
PLoS ONE
PUBLISHED: 01-01-2014
The epigenetic mechanism of tumorigenesis in pancreatic intraductal papillary mucinous neoplasm (IPMN) remains largely unknown. The aim of this study is to examine the role of enhancer of zeste homologue 2 (EZH2) alteration in pancreatic IPMN progression.
Authors: Ming G. Chai, Corina Kim-Fuchs, Eliane Angst, Erica K. Sloan.
Published: 06-28-2013
ABSTRACT
Pancreatic cancer has an extremely poor five-year survival rate of 4-6%. New therapeutic options are critically needed and depend on improved understanding of pancreatic cancer biology. To better understand the interaction of cancer cells with the pancreatic microenvironment, we demonstrate an orthotopic model of pancreatic cancer that permits non-invasive monitoring of cancer progression. Luciferase-tagged pancreatic cancer cells are resuspended in Matrigel and delivered into the pancreatic tail during laparotomy. Matrigel solidifies at body temperature to prevent leakage of cancer cells during injection. Primary tumor growth and metastasis to distant organs are monitored following injection of the luciferase substrate luciferin, using in vivo imaging of bioluminescence emission from the cancer cells. In vivo imaging also may be used to track primary tumor recurrence after resection. This orthotopic model is suited to both syngeneic and xenograft models and may be used in pre-clinical trials to investigate the impact of novel anti-cancer therapeutics on the growth of the primary pancreatic tumor and metastasis.
22 Related JoVE Articles!
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
50478
Play Button
Isolation and Culture of Mouse Primary Pancreatic Acinar Cells
Authors: Johann Gout, Roxane M. Pommier, David F. Vincent, Bastien Kaniewski, Sylvie Martel, Ulrich Valcourt, Laurent Bartholin.
Institutions: Centre de Recherche en Cancérologie de Lyon, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Lyon 1, Centre Léon Bérard.
This protocol permits rapid isolation (in less than 1 hr) of murine pancreatic acini, making it possible to maintain them in culture for more than one week. More than 20 x 106 acinar cells can be obtained from a single murine pancreas. This protocol offers the possibility to independently process as many as 10 pancreases in parallel. Because it preserves acinar architecture, this model is well suited for studying the physiology of the exocrine pancreas in vitro in contrast to cell lines established from pancreatic tumors, which display many genetic alterations resulting in partial or total loss of their acinar differentiation.
Cancer Biology, Issue 78, Cellular Biology, Molecular Biology, Biomedical Engineering, Medicine, Anatomy, Physiology, Surgery, Oncology, Pancreas, Exocrine, Cells, Cultured, Mice, Primary Cell Culture, Exocrine pancreas, Cell culture, Primary acinar cells, Mouse, pancreatic cancer, cancer, tumor, tissue, animal model
50514
Play Button
Intraductal Injection for Localized Drug Delivery to the Mouse Mammary Gland
Authors: Silva Krause, Amy Brock, Donald E. Ingber.
Institutions: Boston Children's Hospital and Harvard Medical School, Harvard University, Harvard School of Engineering and Applied Sciences.
Herein we describe a protocol to deliver various reagents to the mouse mammary gland via intraductal injections. Localized drug delivery and knock-down of genes within the mammary epithelium has been difficult to achieve due to the lack of appropriate targeting molecules that are independent of developmental stages such as pregnancy and lactation. Herein, we describe a technique for localized delivery of reagents to the mammary gland at any stage in adulthood via intraductal injection into the nipples of mice. The injections can be performed on live mice, under anesthesia, and allow for a non-invasive and localized drug delivery to the mammary gland. Furthermore, the injections can be repeated over several months without damaging the nipple. Vital dyes such as Evans Blue are very helpful to learn the technique. Upon intraductal injection of the blue dye, the entire ductal tree becomes visible to the eye. Furthermore, fluorescently labeled reagents also allow for visualization and distribution within the mammary gland. This technique is adaptable for a variety of compounds including siRNA, chemotherapeutic agents, and small molecules.
Developmental Biology, Issue 80, Mammary Glands, Animal, Drug Administration Routes, intraductal injection, local drug delivery, siRNA
50692
Play Button
Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters
Authors: Ana D. Lopez, Ayse G. Kayali, Alberto Hayek, Charles C. King.
Institutions: University of California, San Diego.
For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.
Medicine, Issue 87, human fetal pancreas, islet cell cluster (ICC), transplantation, immunofluorescence, endocrine cell proliferation, differentiation, C-peptide
50796
Play Button
A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies
Authors: Mukti R. Parikh, Andrew R. Belch, Linda M Pilarski, Julia Kirshner.
Institutions: Purdue University, University of Alberta, Cross Cancer Institute.
Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions.
Medicine, Issue 85, extracellular matrix, 3D culture, bone marrow, hematological malignancies, primary cell culture, tumor microenvironment
50947
Play Button
Simulating Pancreatic Neuroplasticity: In Vitro Dual-neuron Plasticity Assay
Authors: Ihsan Ekin Demir, Elke Tieftrunk, Karl-Herbert Schäfer, Helmut Friess, Güralp O. Ceyhan.
Institutions: Technische Universität München, University of Applied Sciences Kaiserslautern/Zweibrücken.
Neuroplasticity is an inherent feature of the enteric nervous system and gastrointestinal (GI) innervation under pathological conditions. However, the pathophysiological role of neuroplasticity in GI disorders remains unknown. Novel experimental models which allow simulation and modulation of GI neuroplasticity may enable enhanced appreciation of the contribution of neuroplasticity in particular GI diseases such as pancreatic cancer (PCa) and chronic pancreatitis (CP). Here, we present a protocol for simulation of pancreatic neuroplasticity under in vitro conditions using newborn rat dorsal root ganglia (DRG) and myenteric plexus (MP) neurons. This dual-neuron approach not only permits monitoring of both organ-intrinsic and -extrinsic neuroplasticity, but also represents a valuable tool to assess neuronal and glial morphology and electrophysiology. Moreover, it allows functional modulation of supplied microenvironmental contents for studying their impact on neuroplasticity. Once established, the present neuroplasticity assay bears the potential of being applicable to the study of neuroplasticity in any GI organ.
Medicine, Issue 86, Autonomic Nervous System Diseases, Digestive System Neoplasms, Gastrointestinal Diseases, Pancreatic Diseases, Pancreatic Neoplasms, Pancreatitis, Pancreatic neuroplasticity, dorsal root ganglia, myenteric plexus, Morphometry, neurite density, neurite branching, perikaryonal hypertrophy, neuronal plasticity
51049
Play Button
Initiation of Metastatic Breast Carcinoma by Targeting of the Ductal Epithelium with Adenovirus-Cre: A Novel Transgenic Mouse Model of Breast Cancer
Authors: Melanie R. Rutkowski, Michael J. Allegrezza, Nikolaos Svoronos, Amelia J. Tesone, Tom L. Stephen, Alfredo Perales-Puchalt, Jenny Nguyen, Paul J. Zhang, Steven N. Fiering, Julia Tchou, Jose R. Conejo-Garcia.
Institutions: Wistar Institute, University of Pennsylvania, Geisel School of Medicine at Dartmouth, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.
Medicine, Issue 85, Transgenic mice, breast cancer, metastasis, intraductal injection, latent mutations, adenovirus-Cre
51171
Play Button
Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology
Authors: Dustin P. Jones, William Hanna, Hamid El-Hamidi, Jonathan P. Celli.
Institutions: University of Massachusetts Boston.
The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic screening assays or molecular imaging to gain new insights into impact of treatments or biochemical stimuli on the mechanical microenvironment.
Bioengineering, Issue 88, viscoelasticity, mechanobiology, extracellular matrix (ECM), matrix remodeling, 3D tumor models, tumor microenvironment, stroma, matrix metalloprotease (MMP), epithelial-mesenchymal transition (EMT)
51302
Play Button
Three Dimensional Cultures: A Tool To Study Normal Acinar Architecture vs. Malignant Transformation Of Breast Cells
Authors: Anupama Pal, Celina G. Kleer.
Institutions: University of Michigan Comprehensive Cancer Center, University of Michigan Comprehensive Cancer Center.
Invasive breast carcinomas are a group of malignant epithelial tumors characterized by the invasion of adjacent tissues and propensity to metastasize. The interplay of signals between cancer cells and their microenvironment exerts a powerful influence on breast cancer growth and biological behavior1. However, most of these signals from the extracellular matrix are lost or their relevance is understudied when cells are grown in two dimensional culture (2D) as a monolayer. In recent years, three dimensional (3D) culture on a reconstituted basement membrane has emerged as a method of choice to recapitulate the tissue architecture of benign and malignant breast cells. Cells grown in 3D retain the important cues from the extracellular matrix and provide a physiologically relevant ex vivo system2,3. Of note, there is growing evidence suggesting that cells behave differently when grown in 3D as compared to 2D4. 3D culture can be effectively used as a means to differentiate the malignant phenotype from the benign breast phenotype and for underpinning the cellular and molecular signaling involved3. One of the distinguishing characteristics of benign epithelial cells is that they are polarized so that the apical cytoplasm is towards the lumen and the basal cytoplasm rests on the basement membrane. This apico-basal polarity is lost in invasive breast carcinomas, which are characterized by cellular disorganization and formation of anastomosing and branching tubules that haphazardly infiltrates the surrounding stroma. These histopathological differences between benign gland and invasive carcinoma can be reproduced in 3D6,7. Using the appropriate read-outs like the quantitation of single round acinar structures, or differential expression of validated molecular markers for cell proliferation, polarity and apoptosis in combination with other molecular and cell biology techniques, 3D culture can provide an important tool to better understand the cellular changes during malignant transformation and for delineating the responsible signaling.
Medicine, Issue 86, pathological conditions, signs and symptoms, neoplasms, three dimensional cultures, Matrigel, breast cells, malignant phenotype, signaling
51311
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors
Authors: Chiara Greggio, Filippo De Franceschi, Manuel Figueiredo-Larsen, Anne Grapin-Botton.
Institutions: Swiss Institute for Experimental Cancer Research, University of Copenhagen.
The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells 1. The whole embryonic organ can be cultured at multiple stages of development 2-4. These culture methods have been useful to test drugs and to image developmental processes. However the expansion of the organ is very limited and morphogenesis is not faithfully recapitulated since the organ flattens. We propose three-dimensional (3D) culture conditions that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess the response to mechanical cues of the niche such as stiffness and the effects on cell´s tensegrity.
Developmental Biology, Issue 89, Pancreas, Progenitors, Branching Epithelium, Development, Organ Culture, 3D Culture, Diabetes, Differentiation, Morphogenesis, Cell organization, Beta Cell.
51725
Play Button
A Zebrafish Model of Diabetes Mellitus and Metabolic Memory
Authors: Robert V. Intine, Ansgar S. Olsen, Michael P. Sarras Jr..
Institutions: Rosalind Franklin University of Medicine and Science, Rosalind Franklin University of Medicine and Science.
Diabetes mellitus currently affects 346 million individuals and this is projected to increase to 400 million by 2030. Evidence from both the laboratory and large scale clinical trials has revealed that diabetic complications progress unimpeded via the phenomenon of metabolic memory even when glycemic control is pharmaceutically achieved. Gene expression can be stably altered through epigenetic changes which not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters once the stimulus is removed. As such, the roles that these mechanisms play in the metabolic memory phenomenon are currently being examined. We have recently reported the development of a zebrafish model of type I diabetes mellitus and characterized this model to show that diabetic zebrafish not only display the known secondary complications including the changes associated with diabetic retinopathy, diabetic nephropathy and impaired wound healing but also exhibit impaired caudal fin regeneration. This model is unique in that the zebrafish is capable to regenerate its damaged pancreas and restore a euglycemic state similar to what would be expected in post-transplant human patients. Moreover, multiple rounds of caudal fin amputation allow for the separation and study of pure epigenetic effects in an in vivo system without potential complicating factors from the previous diabetic state. Although euglycemia is achieved following pancreatic regeneration, the diabetic secondary complication of fin regeneration and skin wound healing persists indefinitely. In the case of impaired fin regeneration, this pathology is retained even after multiple rounds of fin regeneration in the daughter fin tissues. These observations point to an underlying epigenetic process existing in the metabolic memory state. Here we present the methods needed to successfully generate the diabetic and metabolic memory groups of fish and discuss the advantages of this model.
Medicine, Issue 72, Genetics, Genomics, Physiology, Anatomy, Biomedical Engineering, Metabolomics, Zebrafish, diabetes, metabolic memory, tissue regeneration, streptozocin, epigenetics, Danio rerio, animal model, diabetes mellitus, diabetes, drug discovery, hyperglycemia
50232
Play Button
Creation of Murine Experimental Abdominal Aortic Aneurysms with Elastase
Authors: Junya Azuma, Tomoko Asagami, Ronald Dalman, Philip S. Tsao.
Institutions: Stanford University School of Medicine, Stanford University School of Medicine.
Transient intraluminal infusion of porcine pancreatic elastase into the infrarenal segment of the abdominal aorta is the most widely used animal model of abdominal aortic aneurysm (AAA) ever since it was first described in rats by Anidjar and colleagues.1 The rationale for its development was based on the disrupted nature of elastin observed in AAAs. This rat model has been modified to produce AAAs in the infrarenal aortic region of mice.2 The model has the ability to add broad insight into the pathobiology of AAA due to the emergence of numerous transgenic and gene knockout mice. Moreover, it is a viable platform to test potential therapeutic agents for AAA. In this video, we demonstrate the elastase infusion AAA procedure used in our laboratory. Mice are anesthetized using 2.5% isoflurane, and a laparotomy is performed under sterile conditions. The abdominal aortais isolated with the assistance of an operating stereomicroscope (Leica). After placing temporary ligatures around the proximal and distal aorta, an aortotomy is created at the bifurcation with the tip of a 30-gauge needle. A heat-tapered segment of PE-10 polyethylene tubing is introduced through the aortotomy and secured. The aortic lumen is subsequently perfused for 5-15 minutes at 100 mm Hg with saline containing type I porcine pancreatic elastase (4.5 U/mL; Sigma Chemical Co.). After removing the perfusion catheter, the aortotomy is repaired without constriction of the lumen.
Medicine, Issue 29, abdominal aortic aneurysm, AAA, mouse, elastase
1280
Play Button
Human Pancreatic Islet Isolation: Part II: Purification and Culture of Human Islets
Authors: Meirigeng Qi, Barbara Barbaro, Shusen Wang, Yong Wang, Mike Hansen, Jose Oberholzer.
Institutions: University of Illinois, Chicago.
Management of Type 1 diabetes is burdensome, both to the individual and society, costing over 100 billion dollars annually. Despite the widespread use of glucose monitoring and new insulin formulations, many individuals still develop devastating secondary complications. Pancreatic islet transplantation can restore near normal glucose control in diabetic patients 1, without the risk of serious hypoglycemic episodes that are associated with intensive insulin therapy. Providing sufficient islet mass is important for successful islet transplantation. However, donor characteristics, organ procurement and preservation affect the isolation outcome 2. At University of Illinois at Chicago (UIC) we developed a successful isolation protocol with an improved purification gradient 3. The program started in January 2004 and more than 300 isolations were performed up to November 2008. The pancreata were sent in cold preservation solutions (UW, University of Wisconsin or HTK, Histidine-Tryptophan Ketoglutarate) 4-7 to the Cell Isolation Laboratory at UIC for islet isolation. Pancreatic islets were isolated using the UIC method, which is a modified version of the method originally described by Ricordi et al 8. As described in Part I: Digestion and Collection of Pancreatic Tissue, human pancreas was trimmed, cannulated, perfused, and digested. After collection and at least 30 minutes of incubation in UW solution, the tissue was loaded in the cell separator (COBE 2991, Cobe, Lakewood, CO) for purification 3. Following purification, islet yield (expressed as islet equivalents, IEQ), tissue volume, and purity was determined according to standard methods 9. Isolated islets were cultured in CMRL-1066 media (Mediatech, Herndon, VA), supplemented with 1.5% human albumin, 0.1% insulin-transferrin-selenium (ITS), 1 ml of Ciprofloxacin, 5 ml o f 1M HEPES, and 14.5 ml of 7.5% Sodium Bicarbonate in T175 flasks at 37°C overnight culture before islets were transplanted or used for research.
Medicine, Issue 27, Human islets, Type 1 diabetes, human islet purification, human islet transplantation
1343
Play Button
Isolation of Stem Cells from Human Pancreatic Cancer Xenografts
Authors: Zeshaan Rasheed, Qiuju Wang, William Matsui.
Institutions: Johns Hopkins University School of Medicine.
Cancer stem cells (CSCs) have been identified in a growing number of malignancies and are functionally defined by their ability to undergo self-renewal and produce differentiated progeny1. These properties allow CSCs to recapitulate the original tumor when injected into immunocompromised mice. CSCs within an epithelial malignancy were first described in breast cancer and found to display specific cell surface antigen expression (CD44+CD24low/-)2. Since then, CSCs have been identified in an increasing number of other human malignancies using CD44 and CD24 as well as a number of other surface antigens. Physiologic properties, including aldehyde dehydrogenase (ALDH) activity, have also been used to isolate CSCs from malignant tissues3-5. Recently, we and others identified CSCs from pancreatic adenocarcinoma based on ALDH activity and the expression of the cell surface antigens CD44 and CD24, and CD1336-8. These highly tumorigenic populations may or may not be overlapping and display other functions. We found that ALDH+ and CD44+CD24+ pancreatic CSCs are similarly tumorigenic, but ALDH+ cells are relatively more invasive8. In this protocol we describe a method to isolate viable pancreatic CSCs from low-passage human xenografts9. Xenografted tumors are harvested from mice and made into a single-cell suspension. Tissue debris and dead cells are separated from live cells and then stained using antibodies against CD44 and CD24 and using the ALDEFLUOR reagent, a fluorescent substrate of ALDH10. CSCs are then isolated by fluorescence activated cell sorting. Isolated CSCs can then be used for analytical or functional assays requiring viable cells.
Cellular Biology, Issue 43, mouse models, pancreatic cancer, cancer stem cell, xenograft, fluorescent activated cell sorting, aldehyde dehydrogenase, CD44, CD24
2169
Play Button
Endothelial Cell Co-culture Mediates Maturation of Human Embryonic Stem Cell to Pancreatic Insulin Producing Cells in a Directed Differentiation Approach
Authors: Maria Jaramillo, Ipsita Banerjee.
Institutions: University of Pittsburgh, University of Pittsburgh.
Embryonic stem cells (ESC) have two main characteristics: they can be indefinitely propagated in vitro in an undifferentiated state and they are pluripotent, thus having the potential to differentiate into multiple lineages. Such properties make ESCs extremely attractive for cell based therapy and regenerative treatment applications 1. However for its full potential to be realized the cells have to be differentiated into mature and functional phenotypes, which is a daunting task. A promising approach in inducing cellular differentiation is to closely mimic the path of organogenesis in the in vitro setting. Pancreatic development is known to occur in specific stages 2, starting with endoderm, which can develop into several organs, including liver and pancreas. Endoderm induction can be achieved by modulation of the nodal pathway through addition of Activin A 3 in combination with several growth factors 4-7. Definitive endoderm cells then undergo pancreatic commitment by inhibition of sonic hedgehog inhibition, which can be achieved in vitro by addition of cyclopamine 8. Pancreatic maturation is mediated by several parallel events including inhibition of notch signaling; aggregation of pancreatic progenitors into 3-dimentional clusters; induction of vascularization; to name a few. By far the most successful in vitro maturation of ESC derived pancreatic progenitor cells have been achieved through inhibition of notch signaling by DAPT supplementation 9. Although successful, this results in low yield of the mature phenotype with reduced functionality. A less studied area is the effect of endothelial cell signaling in pancreatic maturation, which is increasingly being appreciated as an important contributing factor in in-vivo pancreatic islet maturation 10,11. The current study explores such effect of endothelial cell signaling in maturation of human ESC derived pancreatic progenitor cells into insulin producing islet-like cells. We report a multi-stage directed differentiation protocol where the human ESCs are first induced towards endoderm by Activin A along with inhibition of PI3K pathway. Pancreatic specification of endoderm cells is achieved by inhibition of sonic hedgehog signaling by Cyclopamine along with retinoid induction by addition of Retinoic Acid. The final stage of maturation is induced by endothelial cell signaling achieved by a co-culture configuration. While several endothelial cells have been tested in the co-culture, herein we present our data with rat heart microvascular endothelial Cells (RHMVEC), primarily for the ease of analysis.
Stem Cell Biology, Issue 61, Human embryonic stem cells, Endothelial cells, Pancreatic differentiation, Co-culture
3759
Play Button
Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples
Authors: Chen Lu, Joshua L. Wonsidler, Jianwei Li, Yanming Du, Timothy Block, Brian Haab, Songming Chen.
Institutions: Institute for Hepatitis and Virus Research, Thomas Jefferson University , Drexel University College of Medicine, Van Andel Research Institute, Serome Biosciences Inc..
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies the physical, chemical, and biological properties of a protein, and plays a fundamental role in various biological processes1-6. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases 7-12. In fact, most current cancer biomarkers, such as the L3 fraction of α-1 fetoprotein (AFP) for hepatocellular carcinoma 13-15, and CA199 for pancreatic cancer 16, 17 are all aberrant glycan moieties on glycoproteins. However, methods to study protein glycosylation have been complicated, and not suitable for routine laboratory and clinical settings. Chen et al. has recently invented a chemically blocked antibody microarray with a glycan-binding protein (GBP) detection method for high-throughput and multiplexed profile glycosylation of native glycoproteins in a complex sample 18. In this affinity based microarray method, multiple immobilized glycoprotein-specific antibodies capture and isolate glycoproteins from the complex mixture directly on the microarray slide, and the glycans on each individual captured protein are measured by GBPs. Because all normal antibodies contain N-glycans which could be recognized by most GBPs, the critical step of this method is to chemically block the glycans on the antibodies from binding to GBP. In the procedure, the cis-diol groups of the glycans on the antibodies were first oxidized to aldehyde groups by using NaIO4 in sodium acetate buffer avoiding light. The aldehyde groups were then conjugated to the hydrazide group of a cross-linker, 4-(4-N-MaleimidoPhenyl)butyric acid Hydrazide HCl (MPBH), followed by the conjugation of a dipeptide, Cys-Gly, to the maleimide group of the MPBH. Thus, the cis-diol groups on glycans of antibodies were converted into bulky none hydroxyl groups, which hindered the lectins and other GBPs bindings to the capture antibodies. This blocking procedure makes the GBPs and lectins bind only to the glycans of captured proteins. After this chemically blocking, serum samples were incubated with the antibody microarray, followed by the glycans detection by using different biotinylated lectins and GBPs, and visualized with Cy3-streptavidin. The parallel use of an antibody panel and multiple lectin probing provides discrete glycosylation profiles of multiple proteins in a given sample 18-20. This method has been used successfully in multiple different labs 1, 7, 13, 19-31. However, stability of MPBH and Cys-Gly, complicated and extended procedure in this method affect the reproducibility, effectiveness and efficiency of the method. In this new protocol, we replaced both MPBH and Cys-Gly with one much more stable reagent glutamic acid hydrazide (Glu-hydrazide), which significantly improved the reproducibility of the method, simplified and shorten the whole procedure so that the it can be completed within one working day. In this new protocol, we describe the detailed procedure of the protocol which can be readily adopted by normal labs for routine protein glycosylation study and techniques which are necessary to obtain reproducible and repeatable results.
Molecular Biology, Issue 63, Glycoproteins, glycan-binding protein, specific protein glycosylation, multiplexed high-throughput glycan blocked antibody microarray
3791
Play Button
A System for ex vivo Culturing of Embryonic Pancreas
Authors: Kristin M. Petzold, Francesca M. Spagnoli.
Institutions: Max-Delbrück-Center for Molecular Medicine.
The pancreas controls vital functions of our body, including the production of digestive enzymes and regulation of blood sugar levels1. Although in the past decade many studies have contributed to a solid foundation for understanding pancreatic organogenesis, important gaps persist in our knowledge of early pancreas formation2. A complete understanding of these early events will provide insight into the development of this organ, but also into incurable diseases that target the pancreas, such as diabetes or pancreatic cancer. Finally, this information will generate a blueprint for developing cell-replacement therapies in the context of diabetes. During embryogenesis, the pancreas originates from distinct embryonic outgrowths of the dorsal and ventral foregut endoderm at embryonic day (E) 9.5 in the mouse embryo3,4. Both outgrowths evaginate into the surrounding mesenchyme as solid epithelial buds, which undergo proliferation, branching and differentiation to generate a fully mature organ2,5,6. Recent evidences have suggested that growth and differentiation of pancreatic cell lineages, including the insulin-producing β-cells, depends on proper tissue-architecture, epithelial remodeling and cell positioning within the branching pancreatic epithelium7,8. However, how branching morphogenesis occurs and is coordinated with proliferation and differentiation in the pancreas is largely unknown. This is in part due to the fact that current knowledge about these developmental processes has relied almost exclusively on analysis of fixed specimens, while morphogenetic events are highly dynamic. Here, we report a method for dissecting and culturing mouse embryonic pancreatic buds ex vivo on glass bottom dishes, which allow direct visualization of the developing pancreas (Figure 1). This culture system is ideally devised for confocal laser scanning microscopy and, in particular, live-cell imaging. Pancreatic explants can be prepared not only from wild-type mouse embryos, but also from genetically engineered mouse strains (e.g. transgenic or knockout), allowing real-time studies of mutant phenotypes. Moreover, this ex vivo culture system is valuable to study the effects of chemical compounds on pancreatic development, enabling to obtain quantitative data about proliferation and growth, elongation, branching, tubulogenesis and differentiation. In conclusion, the development of an ex vivo pancreatic explant culture method combined with high-resolution imaging provides a strong platform for observing morphogenetic and differentiation events as they occur within the developing mouse embryo.
Developmental Biology, Issue 66, Molecular Biology, Cellular Biology, Medicine, Physiology, pancreas, organ culture, epithelial morphogenesis, confocal microscopy, live imaging
3979
Play Button
Immunohistochemical Staining of B7-H1 (PD-L1) on Paraffin-embedded Slides of Pancreatic Adenocarcinoma Tissue
Authors: Elaine Bigelow, Katherine M. Bever, Haiying Xu, Allison Yager, Annie Wu, Janis Taube, Lieping Chen, Elizabeth M. Jaffee, Robert A. Anders, Lei Zheng.
Institutions: The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, Yale School of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine.
B7-H1/PD-L1, a member of the B7 family of immune-regulatory cell-surface proteins, plays an important role in the negative regulation of cell-mediated immune responses through its interaction with its receptor, programmed death-1 (PD-1) 1,2. Overexpression of B7-H1 by tumor cells has been noted in a number of human cancers, including melanoma, glioblastoma, and carcinomas of the lung, breast, colon, ovary, and renal cells, and has been shown to impair anti-tumor T-cell immunity3-8. Recently, B7-H1 expression by pancreatic adenocarcinoma tissues has been identified as a potential prognostic marker9,10. Additionally, blockade of B7-H1 in a mouse model of pancreatic cancer has been shown to produce an anti-tumor response11. These data suggest the importance of B7-H1 as a potential therapeutic target. Anti-B7-H1 blockade antibodies are therefore being tested in clinical trials for multiple human solid tumors including melanoma and cancers of lung, colon, kidney, stomach and pancreas12. In order to eventually be able to identify the patients who will benefit from B7-H1 targeting therapies, it is critical to investigate the correlation between expression and localization of B7-H1 and patient response to treatment with B7-H1 blockade antibodies. Examining the expression of B7-H1 in human pancreatic adenocarcinoma tissues through immunohistochemistry will give a better understanding of how this co-inhibitory signaling molecule contributes to the suppression of antitumor immunity in the tumor's microenvironment. The anti-B7-H1 monoclonal antibody (clone 5H1) developed by Chen and coworkers has been shown to produce reliable staining results in cryosections of multiple types of human neoplastic tissues4,8, but staining on paraffin-embedded slides had been a challenge until recently13-18. We have developed the B7-H1 staining protocol for paraffin-embedded slides of pancreatic adenocarcinoma tissues. The B7-H1 staining protocol described here produces consistent membranous and cytoplasmic staining of B7-H1 with little background.
Cancer Biology, Issue 71, Medicine, Immunology, Biochemistry, Molecular Biology, Cellular Biology, Chemistry, Oncology, immunohistochemistry, B7-H1 (PD-L1), pancreatic adenocarcinoma, pancreatic cancer, pancreas, tumor, T-cell immunity, cancer
4059
Play Button
Staining Protocols for Human Pancreatic Islets
Authors: Martha L. Campbell-Thompson, Tiffany Heiple, Emily Montgomery, Li Zhang, Lynda Schneider.
Institutions: University of Florida .
Estimates of islet area and numbers and endocrine cell composition in the adult human pancreas vary from several hundred thousand to several million and beta mass ranges from 500 to 1500 mg 1-3. With this known heterogeneity, a standard processing and staining procedure was developed so that pancreatic regions were clearly defined and islets characterized using rigorous histopathology and immunolocalization examinations. Standardized procedures for processing human pancreas recovered from organ donors are described in part 1 of this series. The pancreas is processed into 3 main regions (head, body, tail) followed by transverse sections. Transverse sections from the pancreas head are further divided, as indicated based on size, and numbered alphabetically to denote subsections. This standardization allows for a complete cross sectional analysis of the head region including the uncinate region which contains islets composed primarily of pancreatic polypeptide cells to the tail region. The current report comprises part 2 of this series and describes the procedures used for serial sectioning and histopathological characterization of the pancreatic paraffin sections with an emphasis on islet endocrine cells, replication, and T-cell infiltrates. Pathology of pancreatic sections is intended to characterize both exocrine, ductular, and endocrine components. The exocrine compartment is evaluated for the presence of pancreatitis (active or chronic), atrophy, fibrosis, and fat, as well as the duct system, particularly in relationship to the presence of pancreatic intraductal neoplasia4. Islets are evaluated for morphology, size, and density, endocrine cells, inflammation, fibrosis, amyloid, and the presence of replicating or apoptotic cells using H&E and IHC stains. The final component described in part 2 is the provision of the stained slides as digitized whole slide images. The digitized slides are organized by case and pancreas region in an online pathology database creating a virtual biobank. Access to this online collection is currently provided to over 200 clinicians and scientists involved in type 1 diabetes research. The online database provides a means for rapid and complete data sharing and for investigators to select blocks for paraffin or frozen serial sections.
Medicine, Issue 63, Physiology, type 1 diabetes, histology, H&E, immunohistochemistry, insulin, beta-cells, glucagon, alpha-cells, pancreatic polypeptide, islet, pancreas, spleen, organ donor
4068
Play Button
Regulatory T cells: Therapeutic Potential for Treating Transplant Rejection and Type I Diabetes
Authors: Jeffry A. Bluestone.
Institutions: University of California, San Francisco - UCSF.
Issue 7, Immunology, Pancreatic Islets, Cell Culture, Diabetes, Ficoll Gradient, Translational Research
257
Play Button
A Rapid Technique for the Visualization of Live Immobilized Yeast Cells
Authors: Karl Zawadzki, James Broach.
Institutions: Princeton University.
We present here a simple, rapid, and extremely flexible technique for the immobilization and visualization of growing yeast cells by epifluorescence microscopy. The technique is equally suited for visualization of static yeast populations, or time courses experiments up to ten hours in length. My microscopy investigates epigenetic inheritance at the silent mating loci in S. cerevisiae. There are two silent mating loci, HML and HMR, which are normally not expressed as they are packaged in heterochromatin. In the sir1 mutant background silencing is weakened such that each locus can either be in the expressed or silenced epigenetic state, so in the population as a whole there is a mix of cells of different epigenetic states for both HML and HMR. My microscopy demonstrated that there is no relationship between the epigenetic state of HML and HMR in an individual cell. sir1 cells stochastically switch epigenetic states, establishing silencing at a previously expressed locus or expressing a previously silenced locus. My time course microscopy tracked individual sir1 cells and their offspring to score the frequency of each of the four possible epigenetic switches, and thus the stability of each of the epigenetic states in sir1 cells. See also Xu et al., Mol. Cell 2006.
Microbiology, Issue 1, yeast, HML, HMR, epigenetic, loci, silencing, cerevisiae
84
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.