JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
99mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency.
PUBLISHED: 01-01-2014
(99m)Tc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, (99m)Tc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a (99m)Tc-labeled HYNIC-DAPI compound with that of (99m)Tc pertechnetate ((99m)TcO4(-)). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by (99m)TcO4(-) (0.51), and the number of DSBs increased fivefold in the (99m)Tc-HYNIC-DAPI-treated sample compared with the (99m)TcO4(-) treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the (99m)TcO4(-) treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the (99m)Tc-HYNIC-DAPI-treated samples. These results indicated that (99m)Tc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the (99m)Tc-labeled compound with DNA. In contrast to these results, (99m)TcO4(-) induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of (99m)Tc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by approximately 10-fold in terms of inducing DSBs.
Authors: Marten B. Maeß, Berith Wittig, Stefan Lorkowski.
Published: 09-02-2014
Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings.
27 Related JoVE Articles!
Play Button
CometChip: A High-throughput 96-Well Platform for Measuring DNA Damage in Microarrayed Human Cells
Authors: Jing Ge, Somsak Prasongtanakij, David K. Wood, David M. Weingeist, Jessica Fessler, Panida Navasummrit, Mathuros Ruchirawat, Bevin P. Engelward.
Institutions: Massachusetts Institute of Technology, Chulabhorn Graduate Institute, University of Minnesota.
DNA damaging agents can promote aging, disease and cancer and they are ubiquitous in the environment and produced within human cells as normal cellular metabolites. Ironically, at high doses DNA damaging agents are also used to treat cancer. The ability to quantify DNA damage responses is thus critical in the public health, pharmaceutical and clinical domains. Here, we describe a novel platform that exploits microfabrication techniques to pattern cells in a fixed microarray. The ‘CometChip’ is based upon the well-established single cell gel electrophoresis assay (a.k.a. the comet assay), which estimates the level of DNA damage by evaluating the extent of DNA migration through a matrix in an electrical field. The type of damage measured by this assay includes abasic sites, crosslinks, and strand breaks. Instead of being randomly dispersed in agarose in the traditional assay, cells are captured into an agarose microwell array by gravity. The platform also expands from the size of a standard microscope slide to a 96-well format, enabling parallel processing. Here we describe the protocols of using the chip to evaluate DNA damage caused by known genotoxic agents and the cellular repair response followed after exposure. Through the integration of biological and engineering principles, this method potentiates robust and sensitive measurements of DNA damage in human cells and provides the necessary throughput for genotoxicity testing, drug development, epidemiological studies and clinical assays.
Bioengineering, Issue 92, comet assay, electrophoresis, microarray, DNA damage, DNA repair
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells
Authors: M. Brittany Johnson, Alison K. Criss.
Institutions: University of Virginia Health Sciences Center.
Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells.
Microbiology, Issue 79, Immunology, Infection, Cancer Biology, Genetics, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Microscopy, Confocal, Microscopy, Fluorescence, Bacteria, Bacterial Infections and Mycoses, bacteria, infection, viability, fluorescence microscopy, cell, imaging
Play Button
In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors
Authors: Açelya Yilmazer, Irene de Lázaro, Cyrill Bussy, Kostas Kostarelos.
Institutions: University College London, University of Manchester.
Induced pluripotent stem (iPS) cells that result from the reprogramming of somatic cells to a pluripotent state by forced expression of defined factors are offering new opportunities for regenerative medicine. Such clinical applications of iPS cells have been limited so far, mainly due to the poor efficiency of the existing reprogramming methodologies and the risk of the generated iPS cells to form tumors upon implantation. We hypothesized that the reprogramming of somatic cells towards pluripotency could be achieved in vivo by gene transfer of reprogramming factors. In order to efficiently reprogram cells in vivo, high levels of the Yamanaka (OKSM) transcription factors need to be expressed at the target tissue. This can be achieved by using different viral or nonviral gene vectors depending on the target tissue. In this particular study, hydrodynamic tail-vein (HTV) injection of plasmid DNA was used to deliver the OKSM factors to mouse hepatocytes. This provided proof-of-evidence of in vivo reprogramming of adult, somatic cells towards a pluripotent state with high efficiency and fast kinetics. Furthermore no tumor or teratoma formation was observed in situ. It can be concluded that reprogramming somatic cells in vivo may offer a potential approach to induce enhanced pluripotency rapidly, efficiently, and safely compared to in vitro performed protocols and can be applied to different tissue types in the future.
Stem Cell Biology, Issue 82, Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Transcription Factors, General, Gene Therapy, Gene Expression, iPS, OKSM, regenerative medicine
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
2D and 3D Chromosome Painting in Malaria Mosquitoes
Authors: Phillip George, Atashi Sharma, Igor V Sharakhov.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Immunology, Issue 83, Microdissection, whole genome amplification, malaria mosquito, polytene chromosome, mitotic chromosomes, fluorescence in situ hybridization, chromosome painting
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Affinity-based Isolation of Tagged Nuclei from Drosophila Tissues for Gene Expression Analysis
Authors: Jingqun Ma, Vikki Marie Weake.
Institutions: Purdue University.
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as transcriptional profiling and chromatin immunoprecipitation. However, the irregular cellular morphology in tissues such as the central nervous system, coupled with the rare population of specific cell types in these tissues, can pose challenges for traditional methods of cell isolation such as laser microdissection and fluorescence-activated cell sorting (FACS). Here, an alternative approach to characterizing cell-specific gene expression profiles using affinity-based isolation of tagged nuclei, rather than whole cells, is described. Nuclei in the specific cell type of interest are genetically labeled with a nuclear envelope-localized EGFP tag using the Gal4/UAS binary expression system. These EGFP-tagged nuclei can be isolated using antibodies against GFP that are coupled to magnetic beads. The approach described in this protocol enables consistent isolation of nuclei from specific cell types in the Drosophila larval central nervous system at high purity and at sufficient levels for expression analysis, even when these cell types comprise less than 2% of the total cell population in the tissue. This approach can be used to isolate nuclei from a wide variety of Drosophila embryonic and larval cell types using specific Gal4 drivers, and may be useful for isolating nuclei from cell types that are not suitable for FACS or laser microdissection.
Biochemistry, Issue 85, Gene Expression, nuclei isolation, Drosophila, KASH, GFP, cell-type specific
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
Magnetic Tweezers for the Measurement of Twist and Torque
Authors: Jan Lipfert, Mina Lee, Orkide Ordu, Jacob W. J. Kerssemakers, Nynke H. Dekker.
Institutions: Delft University of Technology.
Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a “conventional” magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the “conventional” magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.
Bioengineering, Issue 87, magnetic tweezers, magnetic torque tweezers, freely-orbiting magnetic tweezers, twist, torque, DNA, single-molecule techniques
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
Play Button
Two- and Three-Dimensional Live Cell Imaging of DNA Damage Response Proteins
Authors: Jason M. Beckta, Scott C. Henderson, Kristoffer Valerie.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University, Virginia Commonwealth University, Virginia Commonwealth University.
Double-strand breaks (DSBs) are the most deleterious DNA lesions a cell can encounter. If left unrepaired, DSBs harbor great potential to generate mutations and chromosomal aberrations1. To prevent this trauma from catalyzing genomic instability, it is crucial for cells to detect DSBs, activate the DNA damage response (DDR), and repair the DNA. When stimulated, the DDR works to preserve genomic integrity by triggering cell cycle arrest to allow for repair to take place or force the cell to undergo apoptosis. The predominant mechanisms of DSB repair occur through nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR) (reviewed in2). There are many proteins whose activities must be precisely orchestrated for the DDR to function properly. Herein, we describe a method for 2- and 3-dimensional (D) visualization of one of these proteins, 53BP1. The p53-binding protein 1 (53BP1) localizes to areas of DSBs by binding to modified histones3,4, forming foci within 5-15 minutes5. The histone modifications and recruitment of 53BP1 and other DDR proteins to DSB sites are believed to facilitate the structural rearrangement of chromatin around areas of damage and contribute to DNA repair6. Beyond direct participation in repair, additional roles have been described for 53BP1 in the DDR, such as regulating an intra-S checkpoint, a G2/M checkpoint, and activating downstream DDR proteins7-9. Recently, it was discovered that 53BP1 does not form foci in response to DNA damage induced during mitosis, instead waiting for cells to enter G1 before localizing to the vicinity of DSBs6. DDR proteins such as 53BP1 have been found to associate with mitotic structures (such as kinetochores) during the progression through mitosis10. In this protocol we describe the use of 2- and 3-D live cell imaging to visualize the formation of 53BP1 foci in response to the DNA damaging agent camptothecin (CPT), as well as 53BP1's behavior during mitosis. Camptothecin is a topoisomerase I inhibitor that primarily causes DSBs during DNA replication. To accomplish this, we used a previously described 53BP1-mCherry fluorescent fusion protein construct consisting of a 53BP1 protein domain able to bind DSBs11. In addition, we used a histone H2B-GFP fluorescent fusion protein construct able to monitor chromatin dynamics throughout the cell cycle but in particular during mitosis12. Live cell imaging in multiple dimensions is an excellent tool to deepen our understanding of the function of DDR proteins in eukaryotic cells.
Genetics, Issue 67, Molecular Biology, Cellular Biology, Biochemistry, DNA, Double-strand breaks, DNA damage response, proteins, live cell imaging, 3D cell imaging, confocal microscopy
Play Button
Quantification of γH2AX Foci in Response to Ionising Radiation
Authors: Li-Jeen Mah, Raja S. Vasireddy, Michelle M. Tang, George T. Georgiadis, Assam El-Osta, Tom C. Karagiannis.
Institutions: The Alfred Medical Research and Education Precinct, The University of Melbourne, The Alfred Medical Research and Education Precinct.
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX1. Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB2,3. This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning ~2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete γH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy2. The loss of γH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary4-8. The disappearence of γH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C5,6. Further, removal of γH2AX by redistribution involving histone exchange with H2A.Z has been implicated7,8. Importantly, the quantitative analysis of γH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of γH2AX foci in γ-irradiated adherent human keratinocytes9.
Medicine, Issue 38, H2AX, DNA double-strand break, DNA damage, chromatin modification, repair, ionising radiation
Play Button
Analysis of DNA Double-strand Break (DSB) Repair in Mammalian Cells
Authors: Andrei Seluanov, Zhiyong Mao, Vera Gorbunova.
Institutions: University of Rochester.
DNA double-strand breaks are the most dangerous DNA lesions that may lead to massive loss of genetic information and cell death. Cells repair DSBs using two major pathways: nonhomologous end joining (NHEJ) and homologous recombination (HR). Perturbations of NHEJ and HR are often associated with premature aging and tumorigenesis, hence it is important to have a quantitative way of measuring each DSB repair pathway. Our laboratory has developed fluorescent reporter constructs that allow sensitive and quantitative measurement of NHEJ and HR. The constructs are based on an engineered GFP gene containing recognition sites for a rare-cutting I-SceI endonuclease for induction of DSBs. The starting constructs are GFP negative as the GFP gene is inactivated by an additional exon, or by mutations. Successful repair of the I-SceI-induced breaks by NHEJ or HR restores the functional GFP gene. The number of GFP positive cells counted by flow cytometry provides quantitative measure of NHEJ or HR efficiency.
Cellular Biology, Issue 43, DNA repair, HR, NHEJ, mammalian cells
Play Button
Quantitation of γH2AX Foci in Tissue Samples
Authors: Michelle M. Tang, Li-Jeen Mah, Raja S. Vasireddy, George T. Georgiadis, Assam El-Osta, Simon G. Royce, Tom C. Karagiannis.
Institutions: The Alfred Medical Research and Education Precinct, The Alfred Medical Research and Education Precinct, The University of Melbourne, Royal Children's Hospital, The University of Melbourne.
DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.
Cellular Biology, Issue 40, immunofluorescence, DNA double-strand breaks, histone variant, H2AX, DNA damage, ionising radiation, reactive oxygen species
Play Button
Evaluation of the Spatial Distribution of γH2AX following Ionizing Radiation
Authors: Raja S. Vasireddy, Michelle M. Tang, Li-Jeen Mah, George T. Georgiadis, Assam El-Osta, Tom C. Karagiannis.
Institutions: The Alfred Medical Research and Education Precinct, The Alfred Medical Research and Education Precinct, University of Melbourne.
An early molecular response to DNA double-strand breaks (DSBs) is phosphorylation of the Ser-139 residue within the terminal SQEY motif of the histone H2AX1,2. This phosphorylation of H2AX is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)3. The phosphorylated form of H2AX, referred to as γH2AX, spreads to adjacent regions of chromatin from the site of the DSB, forming discrete foci, which are easily visualized by immunofluorecence microscopy3. Analysis and quantitation of γH2AX foci has been widely used to evaluate DSB formation and repair, particularly in response to ionizing radiation and for evaluating the efficacy of various radiation modifying compounds and cytotoxic compounds4. Given the exquisite specificity and sensitivity of this de novo marker of DSBs, it has provided new insights into the processes of DNA damage and repair in the context of chromatin. For example, in radiation biology the central paradigm is that the nuclear DNA is the critical target with respect to radiation sensitivity. Indeed, the general consensus in the field has largely been to view chromatin as a homogeneous template for DNA damage and repair. However, with the use of γH2AX as molecular marker of DSBs, a disparity in γ-irradiation-induced γH2AX foci formation in euchromatin and heterochromatin has been observed5-7. Recently, we used a panel of antibodies to either mono-, di- or tri- methylated histone H3 at lysine 9 (H3K9me1, H3K9me2, H3K9me3) which are epigenetic imprints of constitutive heterochromatin and transcriptional silencing and lysine 4 (H3K4me1, H3K4me2, H3K4me3), which are tightly correlated actively transcribing euchromatic regions, to investigate the spatial distribution of γH2AX following ionizing radiation8. In accordance with the prevailing ideas regarding chromatin biology, our findings indicated a close correlation between γH2AX formation and active transcription9. Here we demonstrate our immunofluorescence method for detection and quantitation of γH2AX foci in non-adherent cells, with a particular focus on co-localization with other epigenetic markers, image analysis and 3D-modeling.
Cellular Biology, Issue 42, H2AX, radiation, euchromatin, heterochromatin, immunofluorescence, 3D-modeling
Play Button
Streamlined Purification of Plasmid DNA From Prokaryotic Cultures
Authors: Laura Pueschel, Hongshan Li, Matthew Hymes.
Institutions: Pall Life Sciences .
We describe the complete process of AcroPrep Advance Filter Plates for 96 plasmid preparations, starting from prokaryotic culture and ending with high purity DNA. Based on multi-well filtration for bacterial lysate clearance and DNA purification, this method creates a streamlined process for plasmid preparation. Filter plates containing silica-based media can easily be processed by vacuum filtration or centrifuge to yield appreciable quantities of plasmid DNA. Quantitative analyses determine the purified plasmid DNA is consistently of high quality with average OD260/280 ratios of 1.97. Overall, plasmid yields offer more pure DNA for downstream applications, such as sequencing and cloning. This streamlined method of using AcroPrep Advance Filter Plates allows for manual, semi-automated or fully-automated processing.
Molecular Biology, Issue 47, Plasmid purification, High-throughput, miniprep, filter plates
Play Button
In vitro Reconstitution of the Active T. castaneum Telomerase
Authors: Anthony P. Schuller, Michael J. Harkisheimer, Emmanuel Skordalakes.
Institutions: University of Pennsylvania.
Efforts to isolate the catalytic subunit of telomerase, TERT, in sufficient quantities for structural studies, have been met with limited success for more than a decade. Here, we present methods for the isolation of the recombinant Tribolium castaneum TERT (TcTERT) and the reconstitution of the active T. castaneum telomerase ribonucleoprotein (RNP) complex in vitro. Telomerase is a specialized reverse transcriptase1 that adds short DNA repeats, called telomeres, to the 3' end of linear chromosomes2 that serve to protect them from end-to-end fusion and degradation. Following DNA replication, a short segment is lost at the end of the chromosome3 and without telomerase, cells continue dividing until eventually reaching their Hayflick Limit4. Additionally, telomerase is dormant in most somatic cells5 in adults, but is active in cancer cells6 where it promotes cell immortality7. The minimal telomerase enzyme consists of two core components: the protein subunit (TERT), which comprises the catalytic subunit of the enzyme and an integral RNA component (TER), which contains the template TERT uses to synthesize telomeres8,9. Prior to 2008, only structures for individual telomerase domains had been solved10,11. A major breakthrough in this field came from the determination of the crystal structure of the active12, catalytic subunit of T. castaneum telomerase, TcTERT1. Here, we present methods for producing large quantities of the active, soluble TcTERT for structural and biochemical studies, and the reconstitution of the telomerase RNP complex in vitro for telomerase activity assays. An overview of the experimental methods used is shown in Figure 1.
Molecular Biology, Issue 53, Telomerase, protein expression, purification, chromatography, RNA isolation, TRAP
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Quantitation and Analysis of the Formation of HO-Endonuclease Stimulated Chromosomal Translocations by Single-Strand Annealing in Saccharomyces cerevisiae
Authors: Lauren Liddell, Glenn Manthey, Nicholas Pannunzio, Adam Bailis.
Institutions: Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center and Beckman Research Institute, University of Southern California, Norris Comprehensive Cancer Center.
Genetic variation is frequently mediated by genomic rearrangements that arise through interaction between dispersed repetitive elements present in every eukaryotic genome. This process is an important mechanism for generating diversity between and within organisms1-3. The human genome consists of approximately 40% repetitive sequence of retrotransposon origin, including a variety of LINEs and SINEs4. Exchange events between these repetitive elements can lead to genome rearrangements, including translocations, that can disrupt gene dosage and expression that can result in autoimmune and cardiovascular diseases5, as well as cancer in humans6-9. Exchange between repetitive elements occurs in a variety of ways. Exchange between sequences that share perfect (or near-perfect) homology occurs by a process called homologous recombination (HR). By contrast, non-homologous end joining (NHEJ) uses little-or-no sequence homology for exchange10,11. The primary purpose of HR, in mitotic cells, is to repair double-strand breaks (DSBs) generated endogenously by aberrant DNA replication and oxidative lesions, or by exposure to ionizing radiation (IR), and other exogenous DNA damaging agents. In the assay described here, DSBs are simultaneously created bordering recombination substrates at two different chromosomal loci in diploid cells by a galactose-inducible HO-endonuclease (Figure 1). The repair of the broken chromosomes generates chromosomal translocations by single strand annealing (SSA), a process where homologous sequences adjacent to the chromosome ends are covalently joined subsequent to annealing. One of the substrates, his3-Δ3', contains a 3' truncated HIS3 allele and is located on one copy of chromosome XV at the native HIS3 locus. The second substrate, his3-Δ5', is located at the LEU2 locus on one copy of chromosome III, and contains a 5' truncated HIS3 allele. Both substrates are flanked by a HO endonuclease recognition site that can be targeted for incision by HO-endonuclease. HO endonuclease recognition sites native to the MAT locus, on both copies of chromosome III, have been deleted in all strains. This prevents interaction between the recombination substrates and other broken chromosome ends from interfering in the assay. The KAN-MX-marked galactose-inducible HO endonuclease expression cassette is inserted at the TRP1 locus on chromosome IV. The substrates share 311 bp or 60 bp of the HIS3 coding sequence that can be used by the HR machinery for repair by SSA. Cells that use these substrates to repair broken chromosomes by HR form an intact HIS3 allele and a tXV::III chromosomal translocation that can be selected for by the ability to grow on medium lacking histidine (Figure 2A). Translocation frequency by HR is calculated by dividing the number of histidine prototrophic colonies that arise on selective medium by the total number of viable cells that arise after plating appropriate dilutions onto non-selective medium (Figure 2B). A variety of DNA repair mutants have been used to study the genetic control of translocation formation by SSA using this system12-14.
Genetics, Issue 55, translocation formation, HO-endonuclease, Genomic Southern blot, Chromosome blot, Pulsed-field gel electrophoresis, Homologous recombination, DNA double-strand breaks, Single-strand annealing
Play Button
Following Cell-fate in E. coli After Infection by Phage Lambda
Authors: Lanying Zeng, Ido Golding.
Institutions: University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, Baylor College of Medicine.
The system comprising bacteriophage (phage) lambda and the bacterium E. coli has long served as a paradigm for cell-fate determination1,2. Following the simultaneous infection of the cell by a number of phages, one of two pathways is chosen: lytic (virulent) or lysogenic (dormant)3,4. We recently developed a method for fluorescently labeling individual phages, and were able to examine the post-infection decision in real-time under the microscope, at the level of individual phages and cells5. Here, we describe the full procedure for performing the infection experiments described in our earlier work5. This includes the creation of fluorescent phages, infection of the cells, imaging under the microscope and data analysis. The fluorescent phage is a "hybrid", co-expressing wild- type and YFP-fusion versions of the capsid gpD protein. A crude phage lysate is first obtained by inducing a lysogen of the gpD-EYFP (Enhanced Yellow Fluorescent Protein) phage, harboring a plasmid expressing wild type gpD. A series of purification steps are then performed, followed by DAPI-labeling and imaging under the microscope. This is done in order to verify the uniformity, DNA packaging efficiency, fluorescence signal and structural stability of the phage stock. The initial adsorption of phages to bacteria is performed on ice, then followed by a short incubation at 35°C to trigger viral DNA injection6. The phage/bacteria mixture is then moved to the surface of a thin nutrient agar slab, covered with a coverslip and imaged under an epifluorescence microscope. The post-infection process is followed for 4 hr, at 10 min interval. Multiple stage positions are tracked such that ~100 cell infections can be traced in a single experiment. At each position and time point, images are acquired in the phase-contrast and red and green fluorescent channels. The phase-contrast image is used later for automated cell recognition while the fluorescent channels are used to characterize the infection outcome: production of new fluorescent phages (green) followed by cell lysis, or expression of lysogeny factors (red) followed by resumed cell growth and division. The acquired time-lapse movies are processed using a combination of manual and automated methods. Data analysis results in the identification of infection parameters for each infection event (e.g. number and positions of infecting phages) as well as infection outcome (lysis/lysogeny). Additional parameters can be extracted if desired.
Immunology, Issue 56, Systems biology, Microbiology, fluorescently labeled bacteriophage lambda, E. coli, live-cell imaging
Play Button
Therapeutic Gene Delivery and Transfection in Human Pancreatic Cancer Cells using Epidermal Growth Factor Receptor-targeted Gelatin Nanoparticles
Authors: Jing Xu, Mansoor Amiji.
Institutions: Northeastern University.
More than 32,000 patients are diagnosed with pancreatic cancer in the United States per year and the disease is associated with very high mortality 1. Urgent need exists to develop novel clinically-translatable therapeutic strategies that can improve on the dismal survival statistics of pancreatic cancer patients. Although gene therapy in cancer has shown a tremendous promise, the major challenge is in the development of safe and effective delivery system, which can lead to sustained transgene expression. Gelatin is one of the most versatile natural biopolymer, widely used in food and pharmaceutical products. Previous studies from our laboratory have shown that type B gelatin could physical encapsulate DNA, which preserved the supercoiled structure of the plasmid and improved transfection efficiency upon intracellular delivery. By thiolation of gelatin, the sulfhydryl groups could be introduced into the polymer and would form disulfide bond within nanoparticles, which stabilizes the whole complex and once disulfide bond is broken due to the presence of glutathione in cytosol, payload would be released 2-5. Poly(ethylene glycol) (PEG)-modified GENS, when administered into the systemic circulation, provides long-circulation times and preferentially targets to the tumor mass due to the hyper-permeability of the neovasculature by the enhanced permeability and retention effect 6. Studies have shown over-expression of the epidermal growth factor receptor (EGFR) on Panc-1 human pancreatic adenocarcinoma cells 7. In order to actively target pancreatic cancer cell line, EGFR specific peptide was conjugated on the particle surface through a PEG spacer.8 Most anti-tumor gene therapies are focused on administration of the tumor suppressor genes, such as wild-type p53 (wt-p53), to restore the pro-apoptotic function in the cells 9. The p53 mechanism functions as a critical signaling pathway in cell growth, which regulates apoptosis, cell cycle arrest, metabolism and other processes 10. In pancreatic cancer, most cells have mutations in p53 protein, causing the loss of apoptotic activity. With the introduction of wt-p53, the apoptosis could be repaired and further triggers cell death in cancer cells 11. Based on the above rationale, we have designed EGFR targeting peptide-modified thiolated gelatin nanoparticles for wt-p53 gene delivery and evaluated delivery efficiency and transfection in Panc-1 cells.
Bioengineering, Issue 59, Gelatin Nanoparticle, Gene Therapy, Targeted Delivery, Pancreatic Cancer, Epidermal Growth Factor Receptor, EGFR
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
Play Button
Transformation of Plasmid DNA into E. coli Using the Heat Shock Method
Authors: Alexandrine Froger, James E. Hall.
Institutions: University of California, Irvine (UCI).
Transformation of plasmid DNA into E. coli using the heat shock method is a basic technique of molecular biology. It consists of inserting a foreign plasmid or ligation product into bacteria. This video protocol describes the traditional method of transformation using commercially available chemically competent bacteria from Genlantis. After a short incubation in ice, a mixture of chemically competent bacteria and DNA is placed at 42°C for 45 seconds (heat shock) and then placed back in ice. SOC media is added and the transformed cells are incubated at 37°C for 30 min with agitation. To be assured of isolating colonies irrespective of transformation efficiency, two quantities of transformed bacteria are plated. This traditional protocol can be used successfully to transform most commercially available competent bacteria. The turbocells from Genlantis can also be used in a novel 3-minute transformation protocol, described in the instruction manual.
Issue 6, Basic Protocols, DNA, transformation, plasmid, cloning
Play Button
Purifying Plasmid DNA from Bacterial Colonies Using the Qiagen Miniprep Kit
Authors: Shenyuan Zhang, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
Plasmid DNA purification from E. coli is a core technique for molecular cloning. Small scale purification (miniprep) from less than 5 ml of bacterial culture is a quick way for clone verification or DNA isolation, followed by further enzymatic reactions (polymerase chain reaction and restriction enzyme digestion). Here, we video-recorded the general procedures of miniprep through the QIAGEN's QIAprep 8 Miniprep Kit, aiming to introducing this highly efficient technique to the general beginners for molecular biology techniques. The whole procedure is based on alkaline lysis of E. coli cells followed by adsorption of DNA onto silica in the presence of high salt. It consists of three steps: 1) preparation and clearing of a bacterial lysate, 2) adsorption of DNA onto the QIAprep membrane, 3) washing and elution of plasmid DNA. All steps are performed without the use of phenol, chloroform, CsCl, ethidium bromide, and without alcohol precipitation. It usually takes less than 2 hours to finish the entire procedure.
Issue 6, Basic Protocols, plasmid, DNA, purification, Qiagen
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.