JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
An engineered factor Va prevents bleeding induced by anticoagulant wt activated protein C.
PLoS ONE
PUBLISHED: 08-15-2014
An increased risk of bleeding is observed in patients receiving activated protein C (APC), which may be a limiting factor for the application of novel APC therapies. Since APC's therapeutic effects often require its cytoprotective activities on cells but not APC's anticoagulant activities, an agent that specifically antagonizes APC's anticoagulant effects but not its cytoprotective effects could provide an effective means to control concerns for risk of bleeding. We hypothesized that superFVa, an engineered activated FVa-variant that restores hemostasis in hemophilia could reduce APC-induced bleeding.
Authors: Sofia Nordling, Bo Nilsson, Peetra U. Magnusson.
Published: 11-21-2014
ABSTRACT
The majority of all known diseases are accompanied by disorders of the cardiovascular system. Studies into the complexity of the interacting pathways activated during cardiovascular pathologies are, however, limited by the lack of robust and physiologically relevant methods. In order to model pathological vascular events we have developed an in vitro assay for studying the interaction between endothelium and whole blood. The assay consists of primary human endothelial cells, which are placed in contact with human whole blood. The method utilizes native blood with no or very little anticoagulant, enabling study of delicate interactions between molecular and cellular components present in a blood vessel. We investigated functionality of the assay by comparing activation of coagulation by different blood volumes incubated with or without human umbilical vein endothelial cells (HUVEC). Whereas a larger blood volume contributed to an increase in the formation of thrombin antithrombin (TAT) complexes, presence of HUVEC resulted in reduced activation of coagulation. Furthermore, we applied image analysis of leukocyte attachment to HUVEC stimulated with tumor necrosis factor (TNFα) and found the presence of CD16+ cells to be significantly higher on TNFα stimulated cells as compared to unstimulated cells after blood contact. In conclusion, the assay may be applied to study vascular pathologies, where interactions between the endothelium and the blood compartment are perturbed.
27 Related JoVE Articles!
Play Button
Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors
Authors: Saranga Naganathan, Amy Grunbeck, He Tian, Thomas Huber, Thomas P. Sakmar.
Institutions: The Rockefeller University.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Genetics, Issue 79, Receptors, G-Protein-Coupled, Protein Engineering, Signal Transduction, Biochemistry, Unnatural amino acid, site-directed mutagenesis, G protein-coupled receptor, targeted photocrosslinking, bioorthogonal labeling, targeted epitope tagging
50588
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
50890
Play Button
Isolation of Myeloid Dendritic Cells and Epithelial Cells from Human Thymus
Authors: Christina Stoeckle, Ioanna A. Rota, Eva Tolosa, Christoph Haller, Arthur Melms, Eleni Adamopoulou.
Institutions: Hertie Institute for Clinical Brain Research, University of Bern, University Medical Center Hamburg-Eppendorf, University Clinic Tuebingen, University Hospital Erlangen.
In this protocol we provide a method to isolate dendritic cells (DC) and epithelial cells (TEC) from the human thymus. DC and TEC are the major antigen presenting cell (APC) types found in a normal thymus and it is well established that they play distinct roles during thymic selection. These cells are localized in distinct microenvironments in the thymus and each APC type makes up only a minor population of cells. To further understand the biology of these cell types, characterization of these cell populations is highly desirable but due to their low frequency, isolation of any of these cell types requires an efficient and reproducible procedure. This protocol details a method to obtain cells suitable for characterization of diverse cellular properties. Thymic tissue is mechanically disrupted and after different steps of enzymatic digestion, the resulting cell suspension is enriched using a Percoll density centrifugation step. For isolation of myeloid DC (CD11c+), cells from the low-density fraction (LDF) are immunoselected by magnetic cell sorting. Enrichment of TEC populations (mTEC, cTEC) is achieved by depletion of hematopoietic (CD45hi) cells from the low-density Percoll cell fraction allowing their subsequent isolation via fluorescence activated cell sorting (FACS) using specific cell markers. The isolated cells can be used for different downstream applications.
Immunology, Issue 79, Immune System Processes, Biological Processes, immunology, Immune System Diseases, Immune System Phenomena, Life Sciences (General), immunology, human thymus, isolation, dendritic cells, mTEC, cTEC
50951
Play Button
A New Approach for the Comparative Analysis of Multiprotein Complexes Based on 15N Metabolic Labeling and Quantitative Mass Spectrometry
Authors: Kerstin Trompelt, Janina Steinbeck, Mia Terashima, Michael Hippler.
Institutions: University of Münster, Carnegie Institution for Science.
The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling (14N/15N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions.
Microbiology, Issue 85, Sucrose density gradients, Chlamydomonas, multiprotein complexes, 15N metabolic labeling, thylakoids
51103
Play Button
Assessing the Development of Murine Plasmacytoid Dendritic Cells in Peyer's Patches Using Adoptive Transfer of Hematopoietic Progenitors
Authors: Haiyan S. Li, Stephanie S. Watowich.
Institutions: The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences.
This protocol details a method to analyze the ability of purified hematopoietic progenitors to generate plasmacytoid dendritic cells (pDC) in intestinal Peyer's patch (PP). Common dendritic cell progenitors (CDPs, lin- c-kitlo CD115+ Flt3+) were purified from the bone marrow of C57BL6 mice by FACS and transferred to recipient mice that lack a significant pDC population in PP; in this case, Ifnar-/- mice were used as the transfer recipients. In some mice, overexpression of the dendritic cell growth factor Flt3 ligand (Flt3L) was enforced prior to adoptive transfer of CDPs, using hydrodynamic gene transfer (HGT) of Flt3L-encoding plasmid. Flt3L overexpression expands DC populations originating from transferred (or endogenous) hematopoietic progenitors. At 7-10 days after progenitor transfer, pDCs that arise from the adoptively transferred progenitors were distinguished from recipient cells on the basis of CD45 marker expression, with pDCs from transferred CDPs being CD45.1+ and recipients being CD45.2+. The ability of transferred CDPs to contribute to the pDC population in PP and to respond to Flt3L was evaluated by flow cytometry of PP single cell suspensions from recipient mice. This method may be used to test whether other progenitor populations are capable of generating PP pDCs. In addition, this approach could be used to examine the role of factors that are predicted to affect pDC development in PP, by transferring progenitor subsets with an appropriate knockdown, knockout or overexpression of the putative developmental factor and/or by manipulating circulating cytokines via HGT. This method may also allow analysis of how PP pDCs affect the frequency or function of other immune subsets in PPs. A unique feature of this method is the use of Ifnar-/- mice, which show severely depleted PP pDCs relative to wild type animals, thus allowing reconstitution of PP pDCs in the absence of confounding effects from lethal irradiation.
Immunology, Issue 85, hematopoiesis, dendritic cells, Peyer's patch, cytokines, adoptive transfer
51189
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
51248
Play Button
Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons
Authors: Marisa Karow, Christian Schichor, Ruth Beckervordersandforth, Benedikt Berninger.
Institutions: Ludwig Maximilians University Munich, Ludwig-Maximilians University Munich, Friedrich-Alexander-Universität Erlangen-Nürnberg, Johannes Gutenberg University Mainz.
Direct lineage-reprogramming of non-neuronal cells into induced neurons (iNs) may provide insights into the molecular mechanisms underlying neurogenesis and enable new strategies for in vitro modeling or repairing the diseased brain. Identifying brain-resident non-neuronal cell types amenable to direct conversion into iNs might allow for launching such an approach in situ, i.e. within the damaged brain tissue. Here we describe a protocol developed in the attempt of identifying cells derived from the adult human brain that fulfill this premise. This protocol involves: (1) the culturing of human cells from the cerebral cortex obtained from adult human brain biopsies; (2) the in vitro expansion (approximately requiring 2-4 weeks) and characterization of the culture by immunocytochemistry and flow cytometry; (3) the enrichment by fluorescence-activated cell sorting (FACS) using anti-PDGF receptor-β and anti-CD146 antibodies; (4) the retrovirus-mediated transduction with the neurogenic transcription factors sox2 and ascl1; (5) and finally the characterization of the resultant pericyte-derived induced neurons (PdiNs) by immunocytochemistry (14 days to 8 weeks following retroviral transduction). At this stage, iNs can be probed for their electrical properties by patch-clamp recording. This protocol provides a highly reproducible procedure for the in vitro lineage conversion of brain-resident pericytes into functional human iNs.
Neuroscience, Issue 87, Pericytes, lineage-reprogramming, induced neurons, cerebral cortex
51433
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
A Lateralized Odor Learning Model in Neonatal Rats for Dissecting Neural Circuitry Underpinning Memory Formation
Authors: Christine J. Fontaine, Bandhan Mukherjee, Gillian L. Morrison, Qi Yuan.
Institutions: Faculty of Medicine, Memorial University, University of Victoria.
Rat pups during a critical postnatal period (≤ 10 days) readily form a preference for an odor that is associated with stimuli mimicking maternal care. Such a preference memory can last from hours, to days, even life-long, depending on training parameters. Early odor preference learning provides us with a model in which the critical changes for a natural form of learning occur in the olfactory circuitry. An additional feature that makes it a powerful tool for the analysis of memory processes is that early odor preference learning can be lateralized via single naris occlusion within the critical period. This is due to the lack of mature anterior commissural connections of the olfactory hemispheres at this early age. This work outlines behavioral protocols for lateralized odor learning using nose plugs. Acute, reversible naris occlusion minimizes tissue and neuronal damages associated with long-term occlusion and more aggressive methods such as cauterization. The lateralized odor learning model permits within-animal comparison, therefore greatly reducing variance compared to between-animal designs. This method has been used successfully to probe the circuit changes in the olfactory system produced by training. Future directions include exploring molecular underpinnings of odor memory using this lateralized learning model; and correlating physiological change with memory strength and durations.
Neuroscience, Issue 90, lateralized odor learning, rats, memory, nose plug, olfactory bulb, piriform cortex, phosphorylated CREB
51808
Play Button
Killer Artificial Antigen Presenting Cells (KaAPC) for Efficient In Vitro Depletion of Human Antigen-specific T Cells
Authors: Christian Schütz, Martin Fleck, Jonathan P. Schneck, Mathias Oelke.
Institutions: Johns Hopkins University, University of Regensburg, Asklepios Medical Center.
Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion.
Immunology, Issue 90, Autoimmunity, Apoptosis, antigen-specific CD8+ T cells, HLA-A2-Ig, Fas/FasL, KaAPC
51859
Play Button
Real-time Imaging of Myeloid Cells Dynamics in ApcMin/+ Intestinal Tumors by Spinning Disk Confocal Microscopy
Authors: Caroline Bonnans, Marja Lohela, Zena Werb.
Institutions: INSERM U661, Functional Genomic Institute, University of California.
Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. ApcMin/+ mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.
Cancer Biology, Issue 92, intravital imaging, spinning disk confocal, ApcMin/+ mice, colorectal cancer, tumor, myeloid cells
51916
Play Button
Sequence-specific Labeling of Nucleic Acids and Proteins with Methyltransferases and Cofactor Analogues
Authors: Gisela Maria Hanz, Britta Jung, Anna Giesbertz, Matyas Juhasz, Elmar Weinhold.
Institutions: RWTH Aachen University.
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5’-ATCGAT-3’ sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.
Biochemistry, Issue 93, S-adenosyl-l-methionine, AdoMet, SAM, aziridine cofactor, double activated cofactor, methyltransferase, DNA methylation, protein methylation, biotin labeling, fluorescence labeling, SMILing, mTAG
52014
Play Button
A Novel High-resolution In vivo Imaging Technique to Study the Dynamic Response of Intracranial Structures to Tumor Growth and Therapeutics
Authors: Kelly Burrell, Sameer Agnihotri, Michael Leung, Ralph DaCosta, Richard Hill, Gelareh Zadeh.
Institutions: Hospital for Sick Children, Toronto Medical Discovery Tower, Princess Margaret Hospital, Toronto Western Hospital.
We have successfully integrated previously established Intracranial window (ICW) technology 1-4 with intravital 2-photon confocal microscopy to develop a novel platform that allows for direct long-term visualization of tissue structure changes intracranially. Imaging at a single cell resolution in a real-time fashion provides supplementary dynamic information beyond that provided by standard end-point histological analysis, which looks solely at 'snap-shot' cross sections of tissue. Establishing this intravital imaging technique in fluorescent chimeric mice, we are able to image four fluorescent channels simultaneously. By incorporating fluorescently labeled cells, such as GFP+ bone marrow, it is possible to track the fate of these cells studying their long-term migration, integration and differentiation within tissue. Further integration of a secondary reporter cell, such as an mCherry glioma tumor line, allows for characterization of cell:cell interactions. Structural changes in the tissue microenvironment can be highlighted through the addition of intra-vital dyes and antibodies, for example CD31 tagged antibodies and Dextran molecules. Moreover, we describe the combination of our ICW imaging model with a small animal micro-irradiator that provides stereotactic irradiation, creating a platform through which the dynamic tissue changes that occur following the administration of ionizing irradiation can be assessed. Current limitations of our model include penetrance of the microscope, which is limited to a depth of up to 900 μm from the sub cortical surface, limiting imaging to the dorsal axis of the brain. The presence of the skull bone makes the ICW a more challenging technical procedure, compared to the more established and utilized chamber models currently used to study mammary tissue and fat pads 5-7. In addition, the ICW provides many challenges when optimizing the imaging.
Cancer Biology, Issue 76, Medicine, Biomedical Engineering, Cellular Biology, Molecular Biology, Genetics, Neuroscience, Neurobiology, Biophysics, Anatomy, Physiology, Surgery, Intracranial Window, In vivo imaging, Stereotactic radiation, Bone Marrow Derived Cells, confocal microscopy, two-photon microscopy, drug-cell interactions, drug kinetics, brain, imaging, tumors, animal model
50363
Play Button
Cell Co-culture Patterning Using Aqueous Two-phase Systems
Authors: John P. Frampton, Joshua B. White, Abin T. Abraham, Shuichi Takayama.
Institutions: University of Michigan , University of Michigan .
Cell patterning technologies that are fast, easy to use and affordable will be required for the future development of high throughput cell assays, platforms for studying cell-cell interactions and tissue engineered systems. This detailed protocol describes a method for generating co-cultures of cells using biocompatible solutions of dextran (DEX) and polyethylene glycol (PEG) that phase-separate when combined above threshold concentrations. Cells can be patterned in a variety of configurations using this method. Cell exclusion patterning can be performed by printing droplets of DEX on a substrate and covering them with a solution of PEG containing cells. The interfacial tension formed between the two polymer solutions causes cells to fall around the outside of the DEX droplet and form a circular clearing that can be used for migration assays. Cell islands can be patterned by dispensing a cell-rich DEX phase into a PEG solution or by covering the DEX droplet with a solution of PEG. Co-cultures can be formed directly by combining cell exclusion with DEX island patterning. These methods are compatible with a variety of liquid handling approaches, including manual micropipetting, and can be used with virtually any adherent cell type.
Bioengineering, Issue 73, Biomedical Engineering, Microbiology, Molecular Biology, Cellular Biology, Biochemistry, Biotechnology, Cell Migration Assays, Culture Techniques, bioengineering (general), Patterning, Aqueous Two-Phase System, Co-Culture, cell, Dextran, Polyethylene glycol, media, PEG, DEX, colonies, cell culture
50304
Play Button
Generation of Human CD40-activated B cells
Authors: Tanja M. Liebig, Anne Fiedler, Shahram Zoghi, Alexander Shimabukuro-Vornhagen, Michael S. von Bergwelt-Baildon.
Institutions: University Hospital of Cologne, Department I of Internal Medicine.
CD40-activated B cells (CD40-B cells) have been identified as an alternative source of immuno-stimulatory antigen-presenting cells (APC) for cancer immunotherapy 1-3. Compared to Dendritic cells (DCs), the best characterized APC, CD40-B cells have several distinct biological and technical properties. Similar to DCs, B cells show an increased expression of MHC and co-stimulatory molecules (Fig.1b), exhibit a strong migratory capacity and present antigen presentation efficiently to T cells, after stimulation with interleukin-4 and CD40 ligand (CD40L). However, in contrast to immature or mature DCs, CD40-B cells express the full lymph node homing triad consisting of CD62L, CCR7/CXCR4, and leukocyte function antigen-1 (LFA1, CD11a/CD18), necessary for homing to secondary lymphoid organs (Fig.1a) 3. CD40-B cells can be generated without difficulties from very small amounts of peripheral blood which can be further expanded in vitro to very large amounts of highly-pure CD40-B cells (>109 cells per patient) from healthy donors as well as cancer patients (Fig.1c,d) 1,4. In this protocol we demonstrate how to obtain fully activated CD40-B cells from human PBMC. Key molecules for the cell culture are CD40 ligand, interleukin-4 (IL-4) and cyclosporin A (CsA), which are replenished in a 3-4 day culture cycle. For laboratory purposes CD40-stimulation is provided by NIH/3T3 cells expressing recombinant human CD40 ligand (tCD40L NIH/3T3) 5. To avoid contamination with non-transfected cells, expression of the human CD40 ligand on the transfectants has to be checked regularly (Fig.2). After 14 days CD40-B cell cultures consist of more than 95% pure B cells and an expansion of CD40-B cells over 65 days is frequently possible without any loss of function 1, 4. CD40-B cells efficiently take up, process and present antigens to T cells 6. They do not only prime naϊve, but also expand memory T cells 7,8. CD40-activated B cells can be used to study B-cell activation, differentiation and function. Moreover, they represent a promising tool for therapeutic or preventive vaccination against tumors 9.
Immunology, Issue 32, CD40-activated B cell, B cell, antigen presentation, APC, immunotherapy, cancer vaccine
1373
Play Button
Murine Model of CD40-activation of B cells
Authors: Tanja M. Liebig, Anne Fiedler, Nela Klein-Gonzalez, Alexander Shimabukuro-Vornhagen, Michael von Bergwelt-Baildon.
Institutions: University Hospital of Cologne.
Research on B cells has shown that CD40 activation improves their antigen presentation capacity. When stimulated with interleukin-4 and CD40 ligand (CD40L), human B cells can be expanded without difficulties from small amounts of peripheral blood within 14 days to very large amounts of highly-pure CD40-B cells (>109 cells per patient) from healthy donors as well as cancer patients1-4. CD40-B cells express important lymph node homing molecules and can attract T cells in vitro5. Furthermore they efficiently take up, process and present antigens to T cells6,7. CD40-B cells were shown to not only prime naíve, but also expand memory T cells8,9. Therefore CD40-activated B cells (CD40-B cells) have been studied as an alternative source of immuno-stimulatory antigen-presenting cells (APC) for cell-based immunotherapy1,5,10. In order to further study whether CD40-B cells induce effective T cell responses in vivo and to study the underlying mechanism we established a cell culture system for the generation of murine CD40-activated B cells. Using splenocytes or purified B cells from C57BL/6 mice for CD40-activation, optimal conditions were identified as follows: Starting from splenocytes of C57BL/6 mice (haplotype H-2b) lymphocytes are purified by density gradient centrifugation and co-cultured with HeLa cells expressing recombinant murine CD40 ligand (tmuCD40L HeLa)11. Cells are recultured every 3-4 days and key components such as CD40L, interleukin-4, -Mercaptoethanol and cyclosporin A are replenished. In this protocol we demonstrate how to obtain fully activated murine CD40-B cells (mCD40B) with similar APC-phenotype to human CD40-B cells (Fig 1a,b). CD40-stimulation leads to a rapid outgrowth and expansion of highly pure (>90%) CD19+ B cells within 14 days of cell culture (Fig 1c,d). To avoid contamination with non-transfected cells, expression of the murine CD40 ligand on the transfectants has to be controlled regularly (Fig 2). Murine CD40-activated B cells can be used to study B-cell activation and differentiation as well as to investigate their potential to function as APC in vitro and in vivo. Moreover, they represent a promising tool for establishing therapeutic or preventive vaccination against tumors and will help to answer questions regarding safety and immunogenicity of this approach12.
JoVE Immunology, Issue 37, murine CD40-activated B cell, B cell, antigen presentation, APC, immunotherapy, cancer vaccine
1734
Play Button
Isolation of Stem Cells from Human Pancreatic Cancer Xenografts
Authors: Zeshaan Rasheed, Qiuju Wang, William Matsui.
Institutions: Johns Hopkins University School of Medicine.
Cancer stem cells (CSCs) have been identified in a growing number of malignancies and are functionally defined by their ability to undergo self-renewal and produce differentiated progeny1. These properties allow CSCs to recapitulate the original tumor when injected into immunocompromised mice. CSCs within an epithelial malignancy were first described in breast cancer and found to display specific cell surface antigen expression (CD44+CD24low/-)2. Since then, CSCs have been identified in an increasing number of other human malignancies using CD44 and CD24 as well as a number of other surface antigens. Physiologic properties, including aldehyde dehydrogenase (ALDH) activity, have also been used to isolate CSCs from malignant tissues3-5. Recently, we and others identified CSCs from pancreatic adenocarcinoma based on ALDH activity and the expression of the cell surface antigens CD44 and CD24, and CD1336-8. These highly tumorigenic populations may or may not be overlapping and display other functions. We found that ALDH+ and CD44+CD24+ pancreatic CSCs are similarly tumorigenic, but ALDH+ cells are relatively more invasive8. In this protocol we describe a method to isolate viable pancreatic CSCs from low-passage human xenografts9. Xenografted tumors are harvested from mice and made into a single-cell suspension. Tissue debris and dead cells are separated from live cells and then stained using antibodies against CD44 and CD24 and using the ALDEFLUOR reagent, a fluorescent substrate of ALDH10. CSCs are then isolated by fluorescence activated cell sorting. Isolated CSCs can then be used for analytical or functional assays requiring viable cells.
Cellular Biology, Issue 43, mouse models, pancreatic cancer, cancer stem cell, xenograft, fluorescent activated cell sorting, aldehyde dehydrogenase, CD44, CD24
2169
Play Button
Purification of Progenitors from Skeletal Muscle
Authors: Lin Yi, Fabio Rossi.
Institutions: University of British Columbia.
Skeletal muscle contains multiple progenitor populations of distinct embryonic origins and developmental potential. Myogenic progenitors, usually residing in a "satellite cell position" between the myofiber plasma membrane and the laminin-rich basement membrane that ensheaths it, are self-renewing cells that are solely committed to the myogenic lineage1,2. We have recently described a second class of vessel associated progenitors that can generate myofibroblasts and white adipocytes, which responds to damage by efficiently entering proliferation and provides trophic support to myogenic cells during tissue regeneration3,4. One of the most trusted assays to determine the developmental and regenerative potential of a given cell population relies on their isolation and transplantation5-7. To this end we have optimized protocols for their purification by flow cytometry from enzymatically dissociated muscle, which we will outline in this article. The populations obtained using this method will contain either myogenic or fibro/adipogenic colony forming cells: no other cell types are capable of expanding in vitro or surviving in vivo delivery. However, when these populations are used immediately after the sort for molecular analysis (e.g qRT-PCR) one must keep in mind that the freshly sorted subsets may contain other contaminant cells that lack the ability of forming colonies or engrafting recipients.
Cellular Biology, Issue 49, Muscle, white adipose, stem cells, flow cytometry, purification
2476
Play Button
Finger-stick Blood Sampling Methodology for the Determination of Exercise-induced Lymphocyte Apoptosis
Authors: James Navalta, Brian McFarlin, Richard Simpson, Elizabeth Fedor, Holly Kell, Scott Lyons, Scott Arnett, Mark Schafer.
Institutions: Western Kentucky University, University of Houston.
Exercise is a physiological stimulus capable of inducing apoptosis in immune cells. To date, various limitations have been identified with the measurement of this phenomenon, particularly relating to the amount of time required to isolate and treat a blood sample prior to the assessment of cell death. Because of this, it is difficult to determine whether reported increases in immune cell apoptosis can be contributed to the actual effect of exercise on the system, or are a reflection of the time and processing necessary to eventually obtain this measurement. In this article we demonstrate a rapid and minimally invasive procedure for the analysis of exercise-induced lymphocyte apoptosis. Unlike other techniques, whole blood is added to an antibody panel immediately upon obtaining a sample. Following the incubation period, red blood cells are lysed and samples are ready to be analyzed. The use of a finger-stick sampling procedure reduces the volume of blood required, and minimizes the discomfort to subjects.
Immunology, Issue 48, Leukocyte phenotyping, programmed cell death, muscular activity, technique development
2595
Play Button
Human In Vitro Suppression as Screening Tool for the Recognition of an Early State of Immune Imbalance
Authors: Jill Waukau, Jeffrey Woodliff, Sanja Glisic.
Institutions: Medical College of Wisconsin , Medical College of Wisconsin , Medical College of Wisconsin .
Regulatory T cells (Tregs) are critical mediators of immune tolerance to self-antigens. In addition, they are crucial regulators of the immune response following an infection. Despite efforts to identify unique surface marker on Tregs, the only unique feature is their ability to suppress the proliferation and function of effector T cells. While it is clear that only in vitro assays can be used in assessing human Treg function, this becomes problematic when assessing the results from cross-sectional studies where healthy cells and cells isolated from subjects with autoimmune diseases (like Type 1 Diabetes-T1D) need to be compared. There is a great variability among laboratories in the number and type of responder T cells, nature and strength of stimulation, Treg:responder ratios and the number and type of antigen-presenting cells (APC) used in human in vitro suppression assays. This variability makes comparison between studies measuring Treg function difficult. The Treg field needs a standardized suppression assay that will work well with both healthy subjects and those with autoimmune diseases. We have developed an in vitro suppression assay that shows very little intra-assay variability in the stimulation of T cells isolated from healthy volunteers compared to subjects with underlying autoimmune destruction of pancreatic β-cells. The main goal of this piece is to describe an in vitro human suppression assay that allows comparison between different subject groups. Additionally, this assay has the potential to delineate a small loss in nTreg function and anticipate further loss in the future, thus identifying subjects who could benefit from preventive immunomodulatory therapy1. Below, we provide thorough description of the steps involved in this procedure. We hope to contribute to the standardization of the in vitro suppression assay used to measure Treg function. In addition, we offer this assay as a tool to recognize an early state of immune imbalance and a potential functional biomarker for T1D.
Immunology, Issue 53, suppression, regulatory T cells, Tregs, activated T cells, autoimmune disease, Type 1 Diabetes (T1D)
3071
Play Button
Therapeutic Gene Delivery and Transfection in Human Pancreatic Cancer Cells using Epidermal Growth Factor Receptor-targeted Gelatin Nanoparticles
Authors: Jing Xu, Mansoor Amiji.
Institutions: Northeastern University.
More than 32,000 patients are diagnosed with pancreatic cancer in the United States per year and the disease is associated with very high mortality 1. Urgent need exists to develop novel clinically-translatable therapeutic strategies that can improve on the dismal survival statistics of pancreatic cancer patients. Although gene therapy in cancer has shown a tremendous promise, the major challenge is in the development of safe and effective delivery system, which can lead to sustained transgene expression. Gelatin is one of the most versatile natural biopolymer, widely used in food and pharmaceutical products. Previous studies from our laboratory have shown that type B gelatin could physical encapsulate DNA, which preserved the supercoiled structure of the plasmid and improved transfection efficiency upon intracellular delivery. By thiolation of gelatin, the sulfhydryl groups could be introduced into the polymer and would form disulfide bond within nanoparticles, which stabilizes the whole complex and once disulfide bond is broken due to the presence of glutathione in cytosol, payload would be released 2-5. Poly(ethylene glycol) (PEG)-modified GENS, when administered into the systemic circulation, provides long-circulation times and preferentially targets to the tumor mass due to the hyper-permeability of the neovasculature by the enhanced permeability and retention effect 6. Studies have shown over-expression of the epidermal growth factor receptor (EGFR) on Panc-1 human pancreatic adenocarcinoma cells 7. In order to actively target pancreatic cancer cell line, EGFR specific peptide was conjugated on the particle surface through a PEG spacer.8 Most anti-tumor gene therapies are focused on administration of the tumor suppressor genes, such as wild-type p53 (wt-p53), to restore the pro-apoptotic function in the cells 9. The p53 mechanism functions as a critical signaling pathway in cell growth, which regulates apoptosis, cell cycle arrest, metabolism and other processes 10. In pancreatic cancer, most cells have mutations in p53 protein, causing the loss of apoptotic activity. With the introduction of wt-p53, the apoptosis could be repaired and further triggers cell death in cancer cells 11. Based on the above rationale, we have designed EGFR targeting peptide-modified thiolated gelatin nanoparticles for wt-p53 gene delivery and evaluated delivery efficiency and transfection in Panc-1 cells.
Bioengineering, Issue 59, Gelatin Nanoparticle, Gene Therapy, Targeted Delivery, Pancreatic Cancer, Epidermal Growth Factor Receptor, EGFR
3612
Play Button
Rapid Point-of-Care Assay of Enoxaparin Anticoagulant Efficacy in Whole Blood
Authors: Mario A. Inchiosa Jr., Suryanarayana Pothula, Keshar Kubal, Vajubhai T. Sanchala, Iris Navarro.
Institutions: New York Medical College , New York Medical College .
There is the need for a clinical assay to determine the extent to which a patient's blood is effectively anticoagulated by the low-molecular-weight-heparin (LMWH), enoxaparin. There are also urgent clinical situations where it would be important if this could be determined rapidly. The present assay is designed to accomplish this. We only assayed human blood samples that were spiked with known concentrations of enoxaparin. The essential feature of the present assay is the quantification of the efficacy of enoxaparin in a patient's blood sample by degrading it to complete inactivity with heparinase. Two blood samples were drawn into Vacutainer tubes (Becton-Dickenson; Franklin Lakes, NJ) that were spiked with enoxaparin; one sample was digested with heparinase for 5 min at 37 °C, the other sample represented the patient's baseline anticoagulated status. The percent shortening of clotting time in the heparinase-treated sample, as compared to the baseline state, yielded the anticoagulant contribution of enoxaparin. We used the portable, battery operated Hemochron 801 apparatus for measurements of clotting times (International Technidyne Corp., Edison, NJ). The apparatus has 2 thermostatically controlled (37 °C) assay tube wells. We conducted the assays in two types of assay cartridges that are available from the manufacturer of the instrument. One cartridge was modified to increase its sensitivity. We removed the kaolin from the FTK-ACT cartridge by extensive rinsing with distilled water, leaving only the glass surface of the tube, and perhaps the detection magnet, as activators. We called this our minimally activated assay (MAA). The use of a minimally activated assay has been studied by us and others. 2-4 The second cartridge that was studied was an activated partial thromboplastin time (aPTT) assay (A104). This was used as supplied from the manufacturer. The thermostated wells of the instrument were used for both the heparinase digestion and coagulation assays. The assay can be completed within 10 min. The MAA assay showed robust changes in clotting time after heparinase digestion of enoxaparin over a typical clinical concentration range. At 0.2 anti-Xa I.U. of enoxaparin per ml of blood sample, heparinase digestion caused an average decrease of 9.8% (20.4 sec) in clotting time; at 1.0 I.U. per ml of enoxaparin there was a 41.4% decrease (148.8 sec). This report only presents the experimental application of the assay; its value in a clinical setting must still be established.
Medicine, Issue 68, Immunology, Physiology, Pharmacology, low-molecular-weight-heparin, low-molecular-weight-heparin assay, LMWH point-of-care assay, anti-Factor-Xa activity, enoxaparin, heparinase, whole blood, assay
3852
Play Button
Optimized Staining and Proliferation Modeling Methods for Cell Division Monitoring using Cell Tracking Dyes
Authors: Joseph D. Tario Jr., Kristen Humphrey, Andrew D. Bantly, Katharine A. Muirhead, Jonni S. Moore, Paul K. Wallace.
Institutions: Roswell Park Cancer Institute, University of Pennsylvania , SciGro, Inc., University of Pennsylvania .
Fluorescent cell tracking dyes, in combination with flow and image cytometry, are powerful tools with which to study the interactions and fates of different cell types in vitro and in vivo.1-5 Although there are literally thousands of publications using such dyes, some of the most commonly encountered cell tracking applications include monitoring of: stem and progenitor cell quiescence, proliferation and/or differentiation6-8 antigen-driven membrane transfer9 and/or precursor cell proliferation3,4,10-18 and immune regulatory and effector cell function1,18-21. Commercially available cell tracking dyes vary widely in their chemistries and fluorescence properties but the great majority fall into one of two classes based on their mechanism of cell labeling. "Membrane dyes", typified by PKH26, are highly lipophilic dyes that partition stably but non-covalently into cell membranes1,2,11. "Protein dyes", typified by CFSE, are amino-reactive dyes that form stable covalent bonds with cell proteins4,16,18. Each class has its own advantages and limitations. The key to their successful use, particularly in multicolor studies where multiple dyes are used to track different cell types, is therefore to understand the critical issues enabling optimal use of each class2-4,16,18,24. The protocols included here highlight three common causes of poor or variable results when using cell-tracking dyes. These are: Failure to achieve bright, uniform, reproducible labeling. This is a necessary starting point for any cell tracking study but requires attention to different variables when using membrane dyes than when using protein dyes or equilibrium binding reagents such as antibodies. Suboptimal fluorochrome combinations and/or failure to include critical compensation controls. Tracking dye fluorescence is typically 102 - 103 times brighter than antibody fluorescence. It is therefore essential to verify that the presence of tracking dye does not compromise the ability to detect other probes being used. Failure to obtain a good fit with peak modeling software. Such software allows quantitative comparison of proliferative responses across different populations or stimuli based on precursor frequency or other metrics. Obtaining a good fit, however, requires exclusion of dead/dying cells that can distort dye dilution profiles and matching of the assumptions underlying the model with characteristics of the observed dye dilution profile. Examples given here illustrate how these variables can affect results when using membrane and/or protein dyes to monitor cell proliferation.
Cellular Biology, Issue 70, Molecular Biology, Cell tracking, PKH26, CFSE, membrane dyes, dye dilution, proliferation modeling, lymphocytes
4287
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
50201
Play Button
New Tools to Expand Regulatory T Cells from HIV-1-infected Individuals
Authors: Mathieu Angin, Melanie King, Marylyn Martina Addo.
Institutions: Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied. Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals. Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.
Infection, Issue 75, Infectious Diseases, Medicine, Immunology, Virology, Cellular Biology, Molecular Biology, Lymphocytes, T-Lymphocytes, Regulatory, HIV, Culture Techniques, flow cytometry, cell culture, Treg expansion, regulatory T cells, CD4+ T cells, Tregs, HIV-1, virus, HIV-1 infection, AIDS, clinical techniques
50244
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
50290
Play Button
Standardized Preparation of Single-Cell Suspensions from Mouse Lung Tissue using the gentleMACS Dissociator
Authors: Melanie Jungblut, Karen Oeltze, Irene Zehnter, Doris Hasselmann, Andreas Bosio.
Institutions: Miltenyi Biotec,GmbH.
The preparation of single-cell suspensions from tissues is an important prerequisite for many experiments in cellular research. The process of dissociating whole organs requires specific parameters in order to obtain a high number of viable cells in a reproducible manner. The gentleMACS Dissociator optimizes this task with a simple, practical protocol. The instrument contains pre-programmed settings that are optimized for the efficient but gentle dissociation of a variety of tissue types, including mouse lungs. In this publication the use of the gentleMACS Dissociator on lung tissue derived from mice is demonstrated.
Cell Biology, Issue 29, cell culture, cell dissociation, lung, mouse
1266
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.