JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Genomic characterization of a circovirus associated with fatal hemorrhagic enteritis in dog, Italy.
PUBLISHED: 08-22-2014
Dog circovirus (DogCV) was identified in an outbreak of enteritis in pups in Italy. The disease was observed in 6 young dachshunds pups of a litter from a breeding kennel and caused the death of 2 dogs. Upon full-genome analysis, the virus detected in one of the dead pups (strain Bari/411-13) was closely related to DogCVs that have been recently isolated in the USA. The present study, if corroborated by further reports, could represent a useful contribution to the knowledge of the pathogenic potential of DogCV and its association with enteritis in dogs.
Authors: Sara E. Gombash Lampe, Brian K. Kaspar, Kevin D. Foust.
Published: 11-11-2014
Intravenous injection is a clinically applicable manner to deliver therapeutics. For adult rodents and larger animals, intravenous injections are technically feasible and routine. However, some mouse models can have early onset of disease with a rapid progression that makes administration of potential therapies difficult. The temporal (or facial) vein is just anterior to the ear bud in mice and is clearly visible for the first two days after birth on either side of the head using a dissecting microscope. During this window, the temporal vein can be injected with volumes up to 50 μl. The injection is safe and well tolerated by both the pups and the dams. A typical injection procedure is completed within 1-2 min, after which the pup is returned to the home cage. By the third postnatal day the vein is difficult to visualize and the injection procedure becomes technically unreliable. This technique has been used for delivery of adeno-associated virus (AAV) vectors, which in turn can provide almost body-wide, stable transgene expression for the life of the animal depending on the viral serotype chosen.
24 Related JoVE Articles!
Play Button
Visualizing the Effects of a Positive Early Experience, Tactile Stimulation, on Dendritic Morphology and Synaptic Connectivity with Golgi-Cox Staining
Authors: Richelle Mychasiuk, Robbin Gibb, Bryan Kolb.
Institutions: University of Lethbridge.
To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity.
Neuroscience, Issue 79, Brain, Prefrontal Cortex, Neurons, Massage, Staining and Labeling, mPFC, spine density, methodology, enrichment
Play Button
Enteric Bacterial Invasion Of Intestinal Epithelial Cells In Vitro Is Dramatically Enhanced Using a Vertical Diffusion Chamber Model
Authors: Neveda Naz, Dominic C. Mills, Brendan W. Wren, Nick Dorrell.
Institutions: London School of Hygiene & Tropical Medicine.
The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions1. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells.
Infection, Issue 80, Gram-Negative Bacteria, Bacterial Infections, Gastrointestinal Diseases, Campylobacter jejuni, bacterial invasion, intestinal epithelial cells, models of infection
Play Button
Milk Collection Methods for Mice and Reeves' Muntjac Deer
Authors: Kassandra Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, Amy Nalls, Candace Mathiason.
Institutions: Colorado State University.
Animal models are commonly used throughout research laboratories to accomplish what would normally be considered impractical in a pathogen’s native host. Milk collection from animals allows scientists the opportunity to study many aspects of reproduction including vertical transmission, passive immunity, mammary gland biology, and lactation. Obtaining adequate volumes of milk for these studies is a challenging task, especially from small animal models. Here we illustrate an inexpensive and facile method for milk collection in mice and Reeves’ muntjac deer that does not require specialized equipment or extensive training. This particular method requires two researchers: one to express the milk and to stabilize the animal, and one to collect the milk in an appropriate container from either a Muntjac or mouse model. The mouse model also requires the use of a P-200 pipetman and corresponding pipette tips. While this method is low cost and relatively easy to perform, researchers should be advised that anesthetizing the animal is required for optimal milk collection.
Basic Protocol, Issue 89, mouse, milk, murine, muntjac, doe
Play Button
2D and 3D Chromosome Painting in Malaria Mosquitoes
Authors: Phillip George, Atashi Sharma, Igor V Sharakhov.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Immunology, Issue 83, Microdissection, whole genome amplification, malaria mosquito, polytene chromosome, mitotic chromosomes, fluorescence in situ hybridization, chromosome painting
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Live Cell Imaging of Primary Rat Neonatal Cardiomyocytes Following Adenoviral and Lentiviral Transduction Using Confocal Spinning Disk Microscopy
Authors: Takashi Sakurai, Anthony Lanahan, Melissa J. Woolls, Na Li, Daniela Tirziu, Masahiro Murakami.
Institutions: Max-Planck-Institute for Molecular Biomedicine and Institute of Cell Biology, Yale Cardiovascular Research Center and Section of Cardiovascular Medicine.
Primary rat neonatal cardiomyocytes are useful in basic in vitro cardiovascular research because they can be easily isolated in large numbers in a single procedure. Due to advances in microscope technology it is relatively easy to capture live cell images for the purpose of investigating cellular events in real time with minimal concern regarding phototoxicity to the cells. This protocol describes how to take live cell timelapse images of primary rat neonatal cardiomyocytes using a confocal spinning disk microscope following lentiviral and adenoviral transduction to modulate properties of the cell. The application of two different types of viruses makes it easier to achieve an appropriate transduction rate and expression levels for two different genes. Well focused live cell images can be obtained using the microscope’s autofocus system, which maintains stable focus for long time periods. Applying this method, the functions of exogenously engineered proteins expressed in cultured primary cells can be analyzed. Additionally, this system can be used to examine the functions of genes through the use of siRNAs as well as of chemical modulators.
Cellular Biology, Issue 88, live cell imaging, cardiomyocyte, primary cell culture, adenovirus, lentivirus, confocal spinning disk microscopy
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Construction of Vapor Chambers Used to Expose Mice to Alcohol During the Equivalent of all Three Trimesters of Human Development
Authors: Russell A. Morton, Marvin R. Diaz, Lauren A. Topper, C. Fernando Valenzuela.
Institutions: University of New Mexico Health Sciences Center.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Medicine, Issue 89, fetal, ethanol, exposure, paradigm, vapor, development, alcoholism, teratogenic, animal, mouse, model
Play Button
Intracerebroventricular Viral Injection of the Neonatal Mouse Brain for Persistent and Widespread Neuronal Transduction
Authors: Ji-Yoen Kim, Stacy D. Grunke, Yona Levites, Todd E. Golde, Joanna L. Jankowsky.
Institutions: Baylor College of Medicine, University of Florida, Baylor College of Medicine.
With the pace of scientific advancement accelerating rapidly, new methods are needed for experimental neuroscience to quickly and easily manipulate gene expression in the mouse brain. Here we describe a technique first introduced by Passini and Wolfe for direct intracranial delivery of virally-encoded transgenes into the neonatal mouse brain. In its most basic form, the procedure requires only an ice bucket and a microliter syringe. However, the protocol can also be adapted for use with stereotaxic frames to improve consistency for researchers new to the technique. The method relies on the ability of adeno-associated virus (AAV) to move freely from the cerebral ventricles into the brain parenchyma while the ependymal lining is still immature during the first 12-24 hr after birth. Intraventricular injection of AAV at this age results in widespread transduction of neurons throughout the brain. Expression begins within days of injection and persists for the lifetime of the animal. Viral titer can be adjusted to control the density of transduced neurons, while co-expression of a fluorescent protein provides a vital label of transduced cells. With the rising availability of viral core facilities to provide both off-the-shelf, pre-packaged reagents and custom viral preparation, this approach offers a timely method for manipulating gene expression in the mouse brain that is fast, easy, and far less expensive than traditional germline engineering.
Neuroscience, Issue 91, AAV, adeno-associated virus, viral transduction, neuronal transduction, intraventricular injection, neonatal injection, brain transgenesis, viral labeling
Play Button
Generation of Recombinant Arenavirus for Vaccine Development in FDA-Approved Vero Cells
Authors: Benson Y.H. Cheng, Emilio Ortiz-Riaño, Juan Carlos de la Torre, Luis Martínez-Sobrido.
Institutions: University of Rochester School of Medicine and Dentistry, The Scripps Research Institute.
The development and implementation of arenavirus reverse genetics represents a significant breakthrough in the arenavirus field 4. The use of cell-based arenavirus minigenome systems together with the ability to generate recombinant infectious arenaviruses with predetermined mutations in their genomes has facilitated the investigation of the contribution of viral determinants to the different steps of the arenavirus life cycle, as well as virus-host interactions and mechanisms of arenavirus pathogenesis 1, 3, 11 . In addition, the development of trisegmented arenaviruses has permitted the use of the arenavirus genome to express additional foreign genes of interest, thus opening the possibility of arenavirus-based vaccine vector applications 5 . Likewise, the development of single-cycle infectious arenaviruses capable of expressing reporter genes provides a new experimental tool to improve the safety of research involving highly pathogenic human arenaviruses 16 . The generation of recombinant arenaviruses using plasmid-based reverse genetics techniques has so far relied on the use of rodent cell lines 7,19 , which poses some barriers for the development of Food and Drug Administration (FDA)-licensed vaccine or vaccine vectors. To overcome this obstacle, we describe here the efficient generation of recombinant arenaviruses in FDA-approved Vero cells.
Virology, Issue 78, Infection, Infectious Diseases, Microbiology, Molecular Biology, Cellular Biology, Medicine, Biomedical Engineering, Viruses, arenaviruses, plasmid transfection, recombinant virus, reverse genetics techniques, vaccine/vaccine vector seed development, clinical applications
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
The Hypoxic Ischemic Encephalopathy Model of Perinatal Ischemia
Authors: Hidetoshi Taniguchi, Katrin Andreasson.
Institutions: Stanford University School of Medicine.
Hypoxic-Ischemic Encephalopathy (HIE) is the consequence of systemic asphyxia occurring at birth. Twenty five percent of neonates with HIE develop severe and permanent neuropsychological sequelae, including mental retardation, cerebral palsy, and epilepsy. The outcomes of HIE are devastating and permanent, making it critical to identify and develop therapeutic strategies to reduce brain injury in newborns with HIE. To that end, the neonatal rat model for hypoxic-ischemic brain injury has been developed to model this human condition. The HIE model was first validated by Vannucci et al 1 and has since been extensively used to identify mechanisms of brain injury resulting from perinatal hypoxia-ischemia 2 and to test potential therapeutic interventions 3,4. The HIE model is a two step process and involves the ligation of the left common carotid artery followed by exposure to a hypoxic environment. Cerebral blood flow (CBF) in the hemisphere ipsilateral to the ligated carotid artery does not decrease because of the collateral blood flow via the circle of Willis; however with lower oxygen tension, the CBF in the ipsilateral hemisphere decreases significantly and results in unilateral ischemic injury. The use of 2,3,5-triphenyltetrazolium chloride (TTC) to stain and identify ischemic brain tissue was originally developed for adult models of rodent cerebral ischemia 5, and is used to evaluate the extent of cerebral infarctin at early time points up to 72 hours after the ischemic event 6. In this video, we demonstrate the hypoxic-ischemic injury model in postnatal rat brain and the evaluation of the infarct size using TTC staining.
Neuroscience, Issue 21, Hypoxic-ischemic encephalopathy (HIE), 2 3 5-triphenyltetrazolium chloride (TTC), brain infarct
Play Button
Fixed Volume or Fixed Pressure: A Murine Model of Hemorrhagic Shock
Authors: Lauryn K. Kohut, Sophie S. Darwiche, John M. Brumfield, Alicia M. Frank, Timothy R. Billiar.
Institutions: University of Pittsburgh.
It is common knowledge that severe blood loss and traumatic injury can lead to a cascade of detrimental signaling events often resulting in mortality. 1, 2, 3, 4, 5 These signaling events can also lead to sepsis and/or multiple organ dysfunction (MOD). 6, 7, 8, 9 It is critical then to investigate the causes of suppressed immune function and detrimental signaling cascades in order to develop more effective ways to help patients who suffer from traumatic injuries. 10 This fixed pressure Hemorrhagic Shock (HS) procedure, although technically challenging, is an excellent resource for investigation of these pathophysiologic conditions. 11, 12, 13 Advances in the assessment of biological systems, i.e. Systems Biology have enabled the scientific community to further understand complex physiologic networks and cellular communication patterns. 14 Hemorrhagic Shock has proven to be a vital tool for unveiling these cellular communication patterns as they relate to immune function. 15, 16, 17, 18 This procedure can be mastered! This procedure can also be used as either a fixed volume or fixed pressure approach. We adapted this technique in the murine model to enhance research in innate and adaptive immune function. 19, 20, 21 Due to their small size HS in mice presents unique challenges. However due to the many available mouse strains, this species represents an unparalleled resource for the study of the biologic responses. The HS model is an important model for studying cellular communication patterns and the responses of systems such as hormonal and inflammatory mediator systems, and danger signals, i.e. DAMP and PAMP upregulation as it elicits distinct responses that differ from other forms of shock. 22, 23, 24, 25 The development of transgenic murine strains and the induction of biologic agents to inhibit specific signaling have presented valuable opportunities to further elucidate our understanding of the up and down regulation of signal transduction after severe blood loss, i.e. HS and trauma 26, 27, 28, 29, 30. There are numerous resuscitation methods (R) in association with HS and trauma. 31, 32, 33, 34 A fixed volume resuscitation method of solely lactated ringer solution (LR), equal to three times the shed blood volume, is used in this model to study endogenous mechanisms such as remote organ injury and systemic inflammation. 35, 36, 38 This method of resuscitation is proven to be effective in evaluating the effects of HS and trauma 38, 39.
Medicine, Issue 52, trauma, shock, hemorrhage, inflammation, immunology, murine
Play Button
Pseudofracture: An Acute Peripheral Tissue Trauma Model
Authors: Sophie S. Darwiche, Philipp Kobbe, Roman Pfeifer, Lauryn Kohut, Hans-Christoph Pape, Timothy Billiar.
Institutions: University of Pittsburgh, University of Aachen Medical Center.
Following trauma there is an early hyper-reactive inflammatory response that can lead to multiple organ dysfunction and high mortality in trauma patients; this response is often accompanied by a delayed immunosuppression that adds the clinical complications of infection and can also increase mortality.1-9 Many studies have begun to assess these changes in the reactivity of the immune system following trauma.10-15 Immunologic studies are greatly supported through the wide variety of transgenic and knockout mice available for in vivo modeling; these strains aid in detailed investigations to assess the molecular pathways involved in the immunologic responses.16-21 The challenge in experimental murine trauma modeling is long term investigation, as fracture fixation techniques in mice, can be complex and not easily reproducible.22-30 This pseudofracture model, an easily reproduced trauma model, overcomes these difficulties by immunologically mimicking an extremity fracture environment, while allowing freedom of movement in the animals and long term survival without the continual, prolonged use of anaesthesia. The intent is to recreate the features of long bone fracture; injured muscle and soft tissue are exposed to damaged bone and bone marrow without breaking the native bone. The pseudofracture model consists of two parts: a bilateral muscle crush injury to the hindlimbs, followed by injection of a bone solution into these injured muscles. The bone solution is prepared by harvesting the long bones from both hindlimbs of an age- and weight-matched syngeneic donor. These bones are then crushed and resuspended in phosphate buffered saline to create the bone solution. Bilateral femur fracture is a commonly used and well-established model of extremity trauma, and was the comparative model during the development of the pseudofracture model. Among the variety of available fracture models, we chose to use a closed method of fracture with soft tissue injury as our comparison to the pseudofracture, as we wanted a sterile yet proportionally severe peripheral tissue trauma model. 31 Hemorrhagic shock is a common finding in the setting of severe trauma, and the global hypoperfusion adds a very relevant element to a trauma model. 32-36 The pseudofracture model can be easily combined with a hemorrhagic shock model for a multiple trauma model of high severity. 37
Medicine, Issue 50, Trauma, musculoskeletal, mouse, extremity, inflammation, immunosuppression, immune response.
Play Button
The Production of C. elegans Transgenes via Recombineering with the galK Selectable Marker
Authors: Yue Zhang, Luv Kashyap, Annabel A. Ferguson, Alfred L. Fisher.
Institutions: Beth Israel Deaconess Medical Center, Harvard Medical School, University of Pittsburgh.
The creation of transgenic animals is widely utilized in C. elegans research including the use of GFP fusion proteins to study the regulation and expression pattern of genes of interest or generation of tandem affinity purification (TAP) tagged versions of specific genes to facilitate their purification. Typically transgenes are generated by placing a promoter upstream of a GFP reporter gene or cDNA of interest, and this often produces a representative expression pattern. However, critical elements of gene regulation, such as control elements in the 3' untranslated region or alternative promoters, could be missed by this approach. Further only a single splice variant can be usually studied by this means. In contrast, the use of worm genomic DNA carried by fosmid DNA clones likely includes most if not all elements involved in gene regulation in vivo which permits the greater ability to capture the genuine expression pattern and timing. To facilitate the generation of transgenes using fosmid DNA, we describe an E. coli based recombineering procedure to insert GFP, a TAP-tag, or other sequences of interest into any location in the gene. The procedure uses the galK gene as the selection marker for both the positive and negative selection steps in recombineering which results in obtaining the desired modification with high efficiency. Further, plasmids containing the galK gene flanked by homology arms to commonly used GFP and TAP fusion genes are available which reduce the cost of oligos by 50% when generating a GFP or TAP fusion protein. These plasmids use the R6K replication origin which precludes the need for extensive PCR product purification. Finally, we also demonstrate a technique to integrate the unc-119 marker on to the fosmid backbone which allows the fosmid to be directly injected or bombarded into worms to generate transgenic animals. This video demonstrates the procedures involved in generating a transgene via recombineering using this method.
Genetics, Issue 47, C. elegans, transgenes, fosmid clone, galK, recombineering, homologous recombination, E. coli
Play Button
In Vivo Canine Muscle Function Assay
Authors: Martin K. Childers, Robert W. Grange, Joe N. Kornegay.
Institutions: Wake Forest University, Virginia Polytechnic Institute and State University, University of North Carolina-Chapel Hill.
We describe a minimally-invasive and reproducible method to measure canine pelvic limb muscle strength and muscle response to repeated eccentric contractions. The pelvic limb of an anesthetized dog is immobilized in a stereotactic frame to align the tibia at a right angle to the femur. Adhesive wrap affixes the paw to a pedal mounted on the shaft of a servomotor to measure torque. Percutaneous nerve stimulation activates pelvic limb muscles of the paw to either push (extend) or pull (flex) against the pedal to generate isometric torque. Percutaneous tibial nerve stimulation activates tibiotarsal extensor muscles. Repeated eccentric (lengthening) contractions are induced in the tibiotarsal flexor muscles by percutaneous peroneal nerve stimulation. The eccentric protocol consists of an initial isometric contraction followed by a forced stretch imposed by the servomotor. The rotation effectively lengthens the muscle while it contracts, e.g., an eccentric contraction. During stimulation flexor muscles are subjected to an 800 msec isometric and 200 msec eccentric contraction. This procedure is repeated every 5 sec. To avoid fatigue, 4 min rest follows every 10 contractions with a total of 30 contractions performed.
Medicine, Issue 50, dog, muscle strength, muscle force, exercise, eccentric contraction, muscle damage, stretch
Play Button
Intraductal Injection of LPS as a Mouse Model of Mastitis: Signaling Visualized via an NF-κB Reporter Transgenic
Authors: Whitney Barham, Taylor Sherrill, Linda Connelly, Timothy S. Blackwell, Fiona E. Yull.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, University of Hawaii at Hilo College of Pharmacy.
Animal models of human disease are necessary in order to rigorously study stages of disease progression and associated mechanisms, and ultimately, as pre-clinical models to test interventions. In these methods, we describe a technique in which lipopolysaccharide (LPS) is injected into the lactating mouse mammary gland via the nipple, effectively modeling mastitis, or inflammation, of the gland. This simulated infection results in increased nuclear factor kappa B (NF-κB) signaling, as visualized through bioluminescent imaging of an NF-κB luciferase reporter mouse1. Our ultimate goal in developing these methods was to study the inflammation associated with mastitis in the lactating gland, which often includes redness, swelling, and immune cell infiltration2,3. Therefore, we were keenly aware that incision or any type of wounding of the skin, the nipple, or the gland in order to introduce the LPS could not be utilized in our methods since the approach would likely confound the read-out of inflammation. We also desired a straight-forward method that did not require specially made hand-drawn pipettes or the use of micromanipulators to hold these specialized tools in place. Thus, we determined to use a commercially available insulin syringe and to inject the agent into the mammary duct of an intact nipple. This method was successful and allowed us to study the inflammation associated with LPS injection without any additional effects overlaid by the process of injection. In addition, this method also utilized an NF-κB luciferase reporter transgenic mouse and bioluminescent imaging technology to visually and quantitatively show increased NF-κB signaling within the LPS-injected gland4. These methods are of interest to researchers of many disciplines who wish to model disease within the lactating mammary gland, as ultimately, the technique described here could be utilized for injection of a number of substances, and is not limited to only LPS.
Medicine, Issue 67, mastitis, intraductal injection, NF-kappaB, reporter transgenic, LPS, bioluminescent imaging, lactation
Play Button
A Novel Surgical Approach for Intratracheal Administration of Bioactive Agents in a Fetal Mouse Model
Authors: Marianne S. Carlon, Jaan Toelen, Marina Mori da Cunha, Dragana Vidović, Anke Van der Perren, Steffi Mayer, Lourenço Sbragia, Johan Nuyts, Uwe Himmelreich, Zeger Debyser, Jan Deprest.
Institutions: KU Leuven, KU Leuven, KU Leuven, KU Leuven, KU Leuven.
Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome1,2 or hyperoxic injuries of the neonatal lung3. Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)4, genetic variants of surfactant deficiencies5 and α1-antitrypsin deficiency6. Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies7. In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep8, and even in a clinical setting9, but has to date not been performed before in a mouse model. When studying the potential of fetal gene therapy for genetic diseases such as CF, the mouse model is very useful as a first proof-of-concept because of the wide availability of different transgenic mouse strains, the well documented embryogenesis and fetal development, less stringent ethical regulations, short gestation and the large litter size. Different access routes have been described to target the fetal rodent lung, including intra-amniotic injection10-12, (ultrasound-guided) intrapulmonary injection13,14 and intravenous administration into the yolk sac vessels15,16 or umbilical vein17. Our novel surgical procedure enables researchers to inject the agent of choice directly into the fetal mouse trachea which allows for a more efficient delivery to the airways than existing techniques18.
Medicine, Issue 68, Fetal, intratracheal, intra-amniotic, cross-fostering, lung, microsurgery, gene therapy, mice, rAAV
Play Button
Modeling Intracerebral Hemorrhage in Mice: Injection of Autologous Blood or Bacterial Collagenase
Authors: Paul R. Krafft, William B. Rolland, Kamil Duris, Tim Lekic, Aaron Campbell, Jiping Tang, John H. Zhang.
Institutions: Loma Linda University School of Medicine, University of California, Riverside , Loma Linda University School of Medicine, Loma Linda University School of Medicine.
Spontaneous intracerebral hemorrhage (ICH) defines a potentially life-threatening neurological malady that accounts for 10-15% of all stroke-related hospitalizations and for which no effective treatments are available to date1,2. Because of the heterogeneity of ICH in humans, various preclinical models are needed to thoroughly explore prospective therapeutic strategies3. Experimental ICH is commonly induced in rodents by intraparenchymal injection of either autologous blood or bacterial collagenase4. The appropriate model is selected based on the pathophysiology of hemorrhage induction and injury progression. The blood injection model mimics a rapidly progressing hemorrhage. Alternatively, bacterial collagenase enzymatically disrupts the basal lamina of brain capillaries, causing an active bleed that generally evolves over several hours5. Resultant perihematomal edema and neurofunctional deficits can be quantified from both models. In this study, we described and evaluated a modified double injection model of autologous whole blood6 as well as an ICH injection model of bacterial collagenase7, both of which target the basal ganglia (corpus striatum) of male CD-1 mice. We assessed neurofunctional deficits and brain edema at 24 and 72 hr after ICH induction. Intrastriatal injection of autologous blood (30 μl) or bacterial collagenase (0.075U) caused reproducible neurofunctional deficits in mice and significantly increased brain edema at 24 and 72 hr after surgery (p<0.05). In conclusion, both models yield consistent hemorrhagic infarcts and represent basic methods for preclinical ICH research.
Medicine, Issue 67, Physiology, Neuroscience, Immunology, experimental stroke, animal model, autologous blood, collagenase, intracerebral hemorrhage, basal ganglia, brain injury, edema, behavior, mouse
Play Button
Generation of Topically Transgenic Rats by In utero Electroporation and In vivo Bioluminescence Screening
Authors: Sandra Vomund, Tamar Sapir, Orly Reiner, Maria A. de Souza Silva, Carsten Korth.
Institutions: Medical School Düsseldorf, Weizmann Institute for Science, University of Düsseldorf.
In utero electroporation (IUE) is a technique which allows genetic modification of cells in the brain for investigating neuronal development. So far, the use of IUE for investigating behavior or neuropathology in the adult brain has been limited by insufficient methods for monitoring of IUE transfection success by non-invasive techniques in postnatal animals. For the present study, E16 rats were used for IUE. After intraventricular injection of the nucleic acids into the embryos, positioning of the tweezer electrodes was critical for targeting either the developing cortex or the hippocampus. Ventricular co-injection and electroporation of a luciferase gene allowed monitoring of the transfected cells postnatally after intraperitoneal luciferin injection in the anesthetized live P7 pup by in vivo bioluminescence, using an IVIS Spectrum device with 3D quantification software. Area definition by bioluminescence could clearly differentiate between cortical and hippocampal electroporations and detect a signal longitudinally over time up to 5 weeks after birth. This imaging technique allowed us to select pups with a sufficient number of transfected cells assumed necessary for triggering biological effects and, subsequently, to perform behavioral investigations at 3 month of age. As an example, this study demonstrates that IUE with the human full length DISC1 gene into the rat cortex led to amphetamine hypersensitivity. Co-transfected GFP could be detected in neurons by post mortem fluorescence microscopy in cryosections indicating gene expression present at ≥6 months after birth. We conclude that postnatal bioluminescence imaging allows evaluating the success of transient transfections with IUE in rats. Investigations on the influence of topical gene manipulations during neurodevelopment on the adult brain and its connectivity are greatly facilitated. For many scientific questions, this technique can supplement or even replace the use of transgenic rats and provide a novel technology for behavioral neuroscience.
Neuroscience, Issue 79, Hippocampus, Memory, Schizophrenia, In utero electroporation, in vivo bioluminescence imaging, Luciferase, Disrupted-in-schizophrenia-1 (DISC1)
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.