JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Step-by-step instructions for retina recordings with perforated multi electrode arrays.
PLoS ONE
PUBLISHED: 08-28-2014
Multi-electrode arrays are a state-of-the-art tool in electrophysiology, also in retina research. The output cells of the retina, the retinal ganglion cells, form a monolayer in many species and are well accessible due to their proximity to the inner retinal surface. This structure has allowed the use of multi-electrode arrays for high-throughput, parallel recordings of retinal responses to presented visual stimuli, and has led to significant new insights into retinal organization and function. However, using conventional arrays where electrodes are embedded into a glass or ceramic plate can be associated with three main problems: (1) low signal-to-noise ratio due to poor contact between electrodes and tissue, especially in the case of strongly curved retinas from small animals, e.g. rodents; (2) insufficient oxygen and nutrient supply to cells located on the bottom of the recording chamber; and (3) displacement of the tissue during recordings. Perforated multi-electrode arrays (pMEAs) have been found to alleviate all three issues in brain slice recordings. Over the last years, we have been using such perforated arrays to study light evoked activity in the retinas of various species including mouse, pig, and human. In this article, we provide detailed step-by-step instructions for the use of perforated MEAs to record visual responses from the retina, including spike recordings from retinal ganglion cells and in vitro electroretinograms (ERG). In addition, we provide in-depth technical and methodological troubleshooting information, and show example recordings of good quality as well as examples for the various problems which might be encountered. While our description is based on the specific equipment we use in our own lab, it may also prove useful when establishing retinal MEA recordings with other equipment.
Authors: Elena Dossi, Thomas Blauwblomme, Rima Nabbout, Gilles Huberfeld, Nathalie Rouach.
Published: 10-26-2014
ABSTRACT
Epilepsy, affecting about 1% of the population, comprises a group of neurological disorders characterized by the periodic occurrence of seizures, which disrupt normal brain function. Despite treatment with currently available antiepileptic drugs targeting neuronal functions, one third of patients with epilepsy are pharmacoresistant. In this condition, surgical resection of the brain area generating seizures remains the only alternative treatment. Studying human epileptic tissues has contributed to understand new epileptogenic mechanisms during the last 10 years. Indeed, these tissues generate spontaneous interictal epileptic discharges as well as pharmacologically-induced ictal events which can be recorded with classical electrophysiology techniques. Remarkably, multi-electrode arrays (MEAs), which are microfabricated devices embedding an array of spatially arranged microelectrodes, provide the unique opportunity to simultaneously stimulate and record field potentials, as well as action potentials of multiple neurons from different areas of the tissue. Thus MEAs recordings offer an excellent approach to study the spatio-temporal patterns of spontaneous interictal and evoked seizure-like events and the mechanisms underlying seizure onset and propagation. Here we describe how to prepare human cortical slices from surgically resected tissue and to record with MEAs interictal and ictal-like events ex vivo.
23 Related JoVE Articles!
Play Button
Simultaneous Whole-cell Recordings from Photoreceptors and Second-order Neurons in an Amphibian Retinal Slice Preparation
Authors: Matthew J. Van Hook, Wallace B. Thoreson.
Institutions: University of Nebraska Medical Center , University of Nebraska Medical Center .
One of the central tasks in retinal neuroscience is to understand the circuitry of retinal neurons and how those connections are responsible for shaping the signals transmitted to the brain. Photons are detected in the retina by rod and cone photoreceptors, which convert that energy into an electrical signal, transmitting it to other retinal neurons, where it is processed and communicated to central targets in the brain via the optic nerve. Important early insights into retinal circuitry and visual processing came from the histological studies of Cajal1,2 and, later, from electrophysiological recordings of the spiking activity of retinal ganglion cells - the output cells of the retina3,4. A detailed understanding of visual processing in the retina requires an understanding of the signaling at each step in the pathway from photoreceptor to retinal ganglion cell. However, many retinal cell types are buried deep in the tissue and therefore relatively inaccessible for electrophysiological recording. This limitation can be overcome by working with vertical slices, in which cells residing within each of the retinal layers are clearly visible and accessible for electrophysiological recording. Here, we describe a method for making vertical sections of retinas from larval tiger salamanders (Ambystoma tigrinum). While this preparation was originally developed for recordings with sharp microelectrodes5,6, we describe a method for dual whole-cell voltage clamp recordings from photoreceptors and second-order horizontal and bipolar cells in which we manipulate the photoreceptor's membrane potential while simultaneously recording post-synaptic responses in horizontal or bipolar cells. The photoreceptors of the tiger salamander are considerably larger than those of mammalian species, making this an ideal preparation in which to undertake this technically challenging experimental approach. These experiments are described with an eye toward probing the signaling properties of the synaptic ribbon - a specialized synaptic structure found in a only a handful of neurons, including rod and cone photoreceptors, that is well suited for maintaining a high rate of tonic neurotransmitter release7,8 - and how it contributes to the unique signaling properties of this first retinal synapse.
Neuroscience, Issue 76, Molecular Biology, Cellular Biology, Anatomy, Physiology, Ophthalmology, Retina, electrophysiology, paired recording, patch clamp, synaptic ribbon, photoreceptor, bipolar cell, horizontal cell, tiger salamander, animal model
50007
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
50189
Play Button
Implementing Dynamic Clamp with Synaptic and Artificial Conductances in Mouse Retinal Ganglion Cells
Authors: Jin Y. Huang, Klaus M. Stiefel, Dario A. Protti.
Institutions: University of Sydney , University of Western Sydney, University of Sydney .
Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp 1, 2, 3 and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.
Neuroscience, Issue 75, Neurobiology, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Cellular Biology, Neurons, Retinal Neurons, Retinal Ganglion Cells, Eye, Retina, Neurosciences, retina, ganglion cells, synaptic conductance, artificial conductance, tetrodotoxin (TTX), patch clamp, dynamic clamp, conductance clamp, electrophysiology, mouse, animal model
50400
Play Button
Techniques for Processing Eyes Implanted With a Retinal Prosthesis for Localized Histopathological Analysis
Authors: David A. X. Nayagam, Ceara McGowan, Joel Villalobos, Richard A. Williams, Cesar Salinas-LaRosa, Penny McKelvie, Irene Lo, Meri Basa, Justin Tan, Chris E. Williams.
Institutions: Bionics Institute, St Vincent's Hospital Melbourne, University of Melbourne, University of Melbourne.
With the recent development of retinal prostheses, it is important to develop reliable techniques for assessing the safety of these devices in preclinical studies. However, the standard fixation, preparation, and automated histology procedures are not ideal. Here we describe new procedures for evaluating the health of the retina directly adjacent to an implant. Retinal prostheses feature electrode arrays in contact with eye tissue. Previous methods have not been able to spatially localize the ocular tissue adjacent to individual electrodes within the array. In addition, standard histological processing often results in gross artifactual detachment of the retinal layers when assessing implanted eyes. Consequently, it has been difficult to assess localized damage, if present, caused by implantation and stimulation of an implanted electrode array. Therefore, we developed a method for identifying and localizing the ocular tissue adjacent to implanted electrodes using a (color-coded) dye marking scheme, and we modified an eye fixation technique to minimize artifactual retinal detachment. This method also rendered the sclera translucent, enabling localization of individual electrodes and specific parts of an implant. Finally, we used a matched control to increase the power of the histopathological assessments. In summary, this method enables reliable and efficient discrimination and assessment of the retinal cytoarchitecture in an implanted eye.
Medicine, Issue 78, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Surgery, Ophthalmology, Pathology, Tissue Engineering, Prosthesis Implantation, Implantable Neurostimulators, Implants, Experimental, Histology, bionics, Retina, Prosthesis, Bionic Eye, Retinal, Implant, Suprachoroidal, Fixation, Localization, Safety, Preclinical, dissection, embedding, staining, tissue, surgical techniques, clinical techniques
50411
Play Button
A Procedure for Implanting Organized Arrays of Microwires for Single-unit Recordings in Awake, Behaving Animals
Authors: David J. Barker, David H. Root, Kevin R. Coffey, Sisi Ma, Mark O. West.
Institutions: Rutgers, the State University of New Jersey, National Institute on Drug Abuse.
In vivo electrophysiological recordings in the awake, behaving animal provide a powerful method for understanding neural signaling at the single-cell level. The technique allows experimenters to examine temporally and regionally specific firing patterns in order to correlate recorded action potentials with ongoing behavior. Moreover, single-unit recordings can be combined with a plethora of other techniques in order to produce comprehensive explanations of neural function. In this article, we describe the anesthesia and preparation for microwire implantation. Subsequently, we enumerate the necessary equipment and surgical steps to accurately insert a microwire array into a target structure. Lastly, we briefly describe the equipment used to record from each individual electrode in the array. The fixed microwire arrays described are well-suited for chronic implantation and allow for longitudinal recordings of neural data in almost any behavioral preparation. We discuss tracing electrode tracks to triangulate microwire positions as well as ways to combine microwire implantation with immunohistochemical techniques in order to increase the anatomical specificity of recorded results.
Neuroscience, Issue 84, Single-unit Recordings, Electrophysiology, Microwire, Neurophysiology, Neural signaling
51004
Play Button
A Method for Systematic Electrochemical and Electrophysiological Evaluation of Neural Recording Electrodes
Authors: Alexander R. Harris, Simeon J. Morgan, Gordon G. Wallace, Antonio G. Paolini.
Institutions: La Trobe University, University of Wollongong, ARC Centre of Excellence for Electromaterials Science, RMIT University.
New materials and designs for neural implants are typically tested separately, with a demonstration of performance but without reference to other implant characteristics. This precludes a rational selection of a particular implant as optimal for a particular application and the development of new materials based on the most critical performance parameters. This article develops a protocol for in vitro and in vivo testing of neural recording electrodes. Recommended parameters for electrochemical and electrophysiological testing are documented with the key steps and potential issues discussed. This method eliminates or reduces the impact of many systematic errors present in simpler in vivo testing paradigms, especially variations in electrode/neuron distance and between animal models. The result is a strong correlation between the critical in vitro and in vivo responses, such as impedance and signal-to-noise ratio. This protocol can easily be adapted to test other electrode materials and designs. The in vitro techniques can be expanded to any other nondestructive method to determine further important performance indicators. The principles used for the surgical approach in the auditory pathway can also be modified to other neural regions or tissue.
Neuroscience, Issue 85, Electrochemistry, Electrophysiology, Neural Recording, Neural Implant, Electrode Coating, Bionics
51084
Play Button
Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility
Authors: Robert Szulcek, Harm Jan Bogaard, Geerten P. van Nieuw Amerongen.
Institutions: Institute for Cardiovascular Research, VU University Medical Center, Institute for Cardiovascular Research, VU University Medical Center.
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.
Bioengineering, Issue 85, ECIS, Impedance Spectroscopy, Resistance, TEER, Endothelial Barrier, Cell Adhesions, Focal Adhesions, Proliferation, Migration, Motility, Wound Healing
51300
Play Button
Immunohistochemical and Calcium Imaging Methods in Wholemount Rat Retina
Authors: Allison Sargoy, Steven Barnes, Nicholas C. Brecha, Luis Pérez De Sevilla Müller.
Institutions: University of California, Los Angeles, Veterans Administration Greater Los Angeles Healthcare System, Dalhousie University, University of California, Los Angeles.
In this paper we describe the tools, reagents, and the practical steps that are needed for: 1) successful preparation of wholemount retinas for immunohistochemistry and, 2) calcium imaging for the study of voltage gated calcium channel (VGCC) mediated calcium signaling in retinal ganglion cells. The calcium imaging method we describe circumvents issues concerning non-specific loading of displaced amacrine cells in the ganglion cell layer.
Neuroscience, Issue 92, immunohistochemistry, antibody, fluo-4, calcium imaging, ganglion cells, retina, rat
51396
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Simultaneous Long-term Recordings at Two Neuronal Processing Stages in Behaving Honeybees
Authors: Martin Fritz Brill, Maren Reuter, Wolfgang Rössler, Martin Fritz Strube-Bloss.
Institutions: University of Würzburg.
In both mammals and insects neuronal information is processed in different higher and lower order brain centers. These centers are coupled via convergent and divergent anatomical connections including feed forward and feedback wiring. Furthermore, information of the same origin is partially sent via parallel pathways to different and sometimes into the same brain areas. To understand the evolutionary benefits as well as the computational advantages of these wiring strategies and especially their temporal dependencies on each other, it is necessary to have simultaneous access to single neurons of different tracts or neuropiles in the same preparation at high temporal resolution. Here we concentrate on honeybees by demonstrating a unique extracellular long term access to record multi unit activity at two subsequent neuropiles1, the antennal lobe (AL), the first olfactory processing stage and the mushroom body (MB), a higher order integration center involved in learning and memory formation, or two parallel neuronal tracts2 connecting the AL with the MB. The latter was chosen as an example and will be described in full. In the supporting video the construction and permanent insertion of flexible multi channel wire electrodes is demonstrated. Pairwise differential amplification of the micro wire electrode channels drastically reduces the noise and verifies that the source of the signal is closely related to the position of the electrode tip. The mechanical flexibility of the used wire electrodes allows stable invasive long term recordings over many hours up to days, which is a clear advantage compared to conventional extra and intracellular in vivo recording techniques.
Neuroscience, Issue 89, honeybee brain, olfaction, extracellular long term recordings, double recordings, differential wire electrodes, single unit, multi-unit recordings
51750
Play Button
An In Vitro Preparation for Eliciting and Recording Feeding Motor Programs with Physiological Movements in Aplysia californica
Authors: Jeffrey M. McManus, Hui Lu, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
Multifunctionality, the ability of one peripheral structure to generate multiple, distinct behaviors1, allows animals to rapidly adapt their behaviors to changing environments. The marine mollusk Aplysia californica provides a tractable system for the study of multifunctionality. During feeding, Aplysia generates several distinct types of behaviors using the same feeding apparatus, the buccal mass. The ganglia that control these behaviors contain a number of large, identified neurons that are accessible to electrophysiological study. The activity of these neurons has been described in motor programs that can be divided into two types, ingestive and egestive programs, based on the timing of neural activity that closes the food grasper relative to the neural activity that protracts or retracts the grasper2. However, in isolated ganglia, the muscle movements that would produce these behaviors are absent, making it harder to be certain whether the motor programs observed are correlates of real behaviors. In vivo, nerve and muscle recordings have been obtained corresponding to feeding programs2,3,4, but it is very difficult to directly record from individual neurons5. Additionally, in vivo, ingestive programs can be further divided into bites and swallows1,2, a distinction that is difficult to make in most previously described in vitro preparations. The suspended buccal mass preparation (Figure 1) bridges the gap between isolated ganglia and intact animals. In this preparation, ingestive behaviors - including both biting and swallowing - and egestive behaviors (rejection) can be elicited, at the same time as individual neurons can be recorded from and stimulated using extracellular electrodes6. The feeding movements associated with these different behaviors can be recorded, quantified, and related directly to the motor programs. The motor programs in the suspended buccal mass preparation appear to be more similar to those observed in vivo than are motor programs elicited in isolated ganglia. Thus, the motor programs in this preparation can be more directly related to in vivo behavior; at the same time, individual neurons are more accessible to recording and stimulation than in intact animals. Additionally, as an intermediate step between isolated ganglia and intact animals, findings from the suspended buccal mass can aid in interpretation of data obtained in both more reduced and more intact settings. The suspended buccal mass preparation is a useful tool for characterizing the neural control of multifunctionality in Aplysia.
Neuroscience, Issue 70, Physiology, Biomedical Engineering, Anatomy, Marine Biology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, neurobiology, buccal mass, semi-intact preparation, extracellular electrodes, extracellular recording, neurons, animal model
4320
Play Button
Transretinal ERG Recordings from Mouse Retina: Rod and Cone Photoresponses
Authors: Alexander V. Kolesnikov, Vladimir J. Kefalov.
Institutions: Washington University School of Medicine.
There are two distinct classes of image-forming photoreceptors in the vertebrate retina: rods and cones. Rods are able to detect single photons of light whereas cones operate continuously under rapidly changing bright light conditions. Absorption of light by rod- and cone-specific visual pigments in the outer segments of photoreceptors triggers a phototransduction cascade that eventually leads to closure of cyclic nucleotide-gated channels on the plasma membrane and cell hyperpolarization. This light-induced change in membrane current and potential can be registered as a photoresponse, by either classical suction electrode recording technique1,2 or by transretinal electroretinogram recordings (ERG) from isolated retinas with pharmacologically blocked postsynaptic response components3-5. The latter method allows drug-accessible long-lasting recordings from mouse photoreceptors and is particularly useful for obtaining stable photoresponses from the scarce and fragile mouse cones. In the case of cones, such experiments can be performed both in dark-adapted conditions and following intense illumination that bleaches essentially all visual pigment, to monitor the process of cone photosensitivity recovery during dark adaptation6,7. In this video, we will show how to perform rod- and M/L-cone-driven transretinal recordings from dark-adapted mouse retina. Rod recordings will be carried out using retina of wild type (C57Bl/6) mice. For simplicity, cone recordings will be obtained from genetically modified rod transducin α-subunit knockout (-/-) mice which lack rod signaling8.
Neuroscience, Issue 61, Rod and cone photoreceptors, retina, phototransduction, electrophysiology, vision, mouse
3424
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
2910
Play Button
An Isolated Retinal Preparation to Record Light Response from Genetically Labeled Retinal Ganglion Cells
Authors: Tiffany M Schmidt, Paulo Kofuji.
Institutions: University of Minnesota.
The first steps in vertebrate vision take place when light stimulates the rod and cone photoreceptors of the retina 1. This information is then segregated into what are known as the ON and OFF pathways. The photoreceptors signal light information to the bipolar cells (BCs), which depolarize in response to increases (On BCs) or decreases (Off BCs) in light intensity. This segregation of light information is maintained at the level of the retinal ganglion cells (RGCs), which have dendrites stratifying in either the Off sublamina of the inner plexiform layer (IPL), where they receive direct excitatory input from Off BCs, or stratifying in the On sublamina of the IPL, where they receive direct excitatory input from On BCs. This segregation of information regarding increases or decreases in illumination (the On and Off pathways) is conserved and signaled to the brain in parallel. The RGCs are the output cells of the retina, and are thus an important cell to study in order to understand how light information is signaled to visual nuclei in the brain. Advances in mouse genetics over recent decades have resulted in a variety of fluorescent reporter mouse lines where specific RGC populations are labeled with a fluorescent protein to allow for identification of RGC subtypes 2 3 4 and specific targeting for electrophysiological recording. Here, we present a method for recording light responses from fluorescently labeled ganglion cells in an intact, isolated retinal preparation. This isolated retinal preparation allows for recordings from RGCs where the dendritic arbor is intact and the inputs across the entire RGC dendritic arbor are preserved. This method is applicable across a variety of ganglion cell subtypes and is amenable to a wide variety of single-cell physiological techniques.
Neuroscience, Issue 47, isolated, retina, ganglion cell, electrophysiology, patch clamp, transgenic, mouse, fluorescent
2367
Play Button
How to Culture, Record and Stimulate Neuronal Networks on Micro-electrode Arrays (MEAs)
Authors: Chadwick M. Hales, John D. Rolston, Steve M. Potter.
Institutions: Emory University School of Medicine, University School of Medicine, Emory University School of Medicine.
For the last century, many neuroscientists around the world have dedicated their lives to understanding how neuronal networks work and why they stop working in various diseases. Studies have included neuropathological observation, fluorescent microscopy with genetic labeling, and intracellular recording in both dissociated neurons and slice preparations. This protocol discusses another technology, which involves growing dissociated neuronal cultures on micro-electrode arrays (also called multi-electrode arrays, MEAs). There are multiple advantages to using this system over other technologies. Dissociated neuronal cultures on MEAs provide a simplified model in which network activity can be manipulated with electrical stimulation sequences through the array's multiple electrodes. Because the network is small, the impact of stimulation is limited to observable areas, which is not the case in intact preparations. The cells grow in a monolayer making changes in morphology easy to monitor with various imaging techniques. Finally, cultures on MEAs can survive for over a year in vitro which removes any clear time limitations inherent with other culturing techniques.1 Our lab and others around the globe are utilizing this technology to ask important questions about neuronal networks. The purpose of this protocol is to provide the necessary information for setting up, caring for, recording from and electrically stimulating cultures on MEAs. In vitro networks provide a means for asking physiologically relevant questions at the network and cellular levels leading to a better understanding of brain function and dysfunction.
Neuroscience, Issue 39, micro-electrode, multi-electrode, neural, MEA, network, plasticity, spike, stimulation, recording, rat
2056
Play Button
Using the Horseshoe Crab, Limulus Polyphemus, in Vision Research
Authors: Jiahui S. Liu, Christopher L. Passaglia.
Institutions: Boston University.
The American horseshoe crab, Limulus Polyphemus is one of the oldest creatures on earth, and the animal continues to play an indispensable role in biomedical research. Not only does their blood contain special cells that scientists use to detect bacteriotoxins in our medicines, but their eyes also contain a neural network that has provided much insight about physiological processes operating in our visual system, such as light adaptation and lateral inhibition. The horseshoe crab remains an attractive model for vision research because the animal is large and hardy for an invertebrate, its retinal neurons are big and easily accessible, its visual system is compact and extensively studied, and its visual behavior is well defined. Moreover, the structure and function of the eyes are modulated on a daily basis by a circadian clock in the animal s brain. In short, the visual system of horseshoe crabs is simple enough to be understood yet complex enough to be interesting. In this video we present three electrophysiological paradigms for investigating the neural basis of vision that can be performed in vivo with Limulus. They are electroretinogram recording, optic nerve recording, and intraretinal recording. Electroretinogram (ERG) recordings measure with a surface electrode the summed electrical response of all cells in the eye to a flash of light. They can be used to monitor the overall sensitivity of the eye for prolong periods of time. Optic nerve recordings measure the spiking activity of single nerve fibers with an extracellular microsuction electrode. They can be used to study visual messages conveyed from the eye to the brain as well as circadian-clock messages fed back from the brain to the eye. Intraretinal recordings measure with an intracellular microelectrode the voltage fluctuations induced by light in individual cells of the eye. They can be used to elucidate cellular mechanisms of retinal processing.
Neuroscience, Issue 29, electroretinogram, intracellular recording, extracellular recording, retina
1384
Play Button
Whole-cell Recordings of Light Evoked Excitatory Synaptic Currents in the Retinal Slice
Authors: Birgit Werner, Paul B. Cook, Christopher L. Passaglia.
Institutions: Boston University, Boston University, Boston University.
We use the whole-cell patch clamp technique to study the synaptic circuitry that underlies visual information processing in the retina. In this video, we will guide you through the process of performing whole-cell recordings of light evoked currents of individual cells in the retinal slice preparation. We use the aquatic tiger salamander as an animal model. We begin by describing the dissection of the eye and show how slices are mounted for electrophysiological recordings. Once the slice is placed in the recording chamber, we demonstrate how to perform whole-cell voltage clamp recordings. We then project visual stimuli onto the photoreceptors in the slice to elicit light-evoked current responses. During the recording we perfuse the slice with pharmacological agents, whereby an 8-channel perfusion system allows us to quickly switch between different agents. The retinal slice preparation is widely used for patch clamp recordings in the retina, in particular to study amacrine or bipolar cells, which are not accessible in a whole-mount preparation.
Neuroscience, Issue 17, Retina, Whole-cell recording, Tiger salamander, Light-evoked currents
771
Play Button
Retrograde Labeling of Retinal Ganglion Cells by Application of Fluoro-Gold on the Surface of Superior Colliculus
Authors: Kin Chiu, Wui-Man Lau, Sze-chun Yeung, Raymond Chuen-Chung Chang, Kwok-Fai So.
Institutions: The University of Hong Kong - HKU.
Retinal ganglion cell (RGC) counting is essential to evaluate retinal degeneration especially in glaucoma. Reliable RGC labeling is fundamental for evaluating the effects of any treatment. In rat, about 98% of RGCs is known to project to the contralateral superior colliculus (SC) (Forrester and Peters, 1967). Applying fluoro-gold (FG) on the surface of SC can label almost all the RGCs, so that we can focus on this most vulnerable retinal neuron in glaucoma. FG is taken up by the axon terminals of retinal ganglion cells and bilaterally transported retrogradely to its somas in the retina. Compare with retrograde labeling of RGC by putting FG at stump of transected optic nerve for 2 days, the interference of RGC survival is minimized. Compare with cresyl violet staining that stains RGCs, amacrine cells and endothelium of the blood vessel in the retinal ganglion cell layer, this labeling method is more specific to the RGC. This video describes the method of retrograde labeling of RGC by applying FG on the surface of SC. The surgical procedures include drilling the skull; aspirating the cortex to expose the SC and applying gelatin sponge over entire dorsal surface of SC are shown. Useful tips for avoiding massive intracranial bleeding and aspiration of the SC have been given.
Neuroscience, Issue 16, Retrograde labeling, retinal ganglion cells, ophthalmology research, superior colliculus, experimental glaucoma
819
Play Button
Single-cell Suction Recordings from Mouse Cone Photoreceptors
Authors: Jin-Shan Wang, Vladimir J Kefalov.
Institutions: Washington University in St. Louis, School of Medicine.
Rod and cone photoreceptors in the retina are responsible for light detection. In darkness, cyclic nucleotide-gated (CNG) channels in the outer segment are open and allow cations to flow steadily inwards across the membrane, depolarizing the cell. Light exposure triggers the closure of the CNG channels, blocks the inward cation current flow, and thus results in cell hyperpolarization. Based on the polarity of photoreceptors, a suction recording method was developed in 1970s that, unlike the classic patch-clamp technique, does not require penetrating the plasma membrane 1. Drawing the outer segment into a tightly-fitting glass pipette filled with extracellular solution allows recording the current changes in individual cells upon test-flash exposure. However, this well-established "outer-segment-in (OS-in)" suction recording is not suitable for mouse cone recordings, because of the low percentage of cones in the mouse retina (3%) and the difficulties in identifying the cone outer segments. Recently, an inner-segment-in (IS-in) recording configuration was developed to draw the inner segment/nuclear region of the photoreceptor into the recording pipette 2,3. In this video, we will show how to record from individual mouse cone photoresponses using single-cell suction electrode.
Cellular Biology, Issue 35, mouse, cone photoreceptor, electrophysiology, suction-recording, CNG channels, retina, murine, IS-in
1681
Play Button
Single-unit In vivo Recordings from the Optic Chiasm of Rat
Authors: Daniel K. Freeman, Walter F. Heine, Christopher L. Passaglia.
Institutions: Boston University.
Information about the visual world is transmitted to the brain in sequences of action potentials in retinal ganglion cell axons that make up the optic nerve. In vivo recordings of ganglion cell spike trains in several animal models have revealed much of what is known about how the early visual system processes and encodes visual information. However, such recordings have been rare in one of the most common animal models, the rat, possibly owing to difficulty in detecting spikes fired by small diameter axons. The many retinal disease models involving rats motivate a need for characterizing the functional properties of ganglion cells without disturbing the eye, as with intraocular or in vitro recordings. Here, we demonstrate a method for recording ganglion cell spike trains from the optic chiasm of the anesthetized rat. We first show how to fabricate tungsten-in-glass electrodes that can pick up electrical activity from single ganglion cell axons in rat. The electrodes outperform all commercial ones that we have tried. We then illustrate our custom-designed stereotaxic system for in vivo visual neurophysiology experiments and our procedures for animal preparation and reliable and stable electrode placement in the optic chiasm.
JoVE Neuroscience, Issue 38, retina, optic chiasm, tungsten electrodes, spike trains
1887
Play Button
Patch Clamp Recordings from Mouse Retinal Neurons in a Dark-adapted Slice Preparation
Authors: A. Cyrus Arman, Alapakkam P. Sampath.
Institutions: University of Southern California, University of Southern California Keck School of Medicine.
Our visual experience is initiated when the visual pigment in our retinal photoreceptors absorbs photons of light energy and initiates a cascade of intracellular events that lead to closure of cyclic-nucleotide-gated channels in the cell membrane. The resulting change in membrane potential leads in turn to reductions in the amount of neurotransmitter release from both rod and cone synaptic terminals. To measure how the light-evoked change in photoreceptor membrane potential leads to downstream activity in the retina, scientists have made electrophysiological recordings from retinal slice preparations for decades1,2. In the past these slices have been cut manually with a razor blade on retinal tissue that is attached to filter paper; in recent years another method of slicing has been developed whereby retinal tissue is embedded in low gelling temperature agar and sliced in cool solution with a vibrating microtome3,4. This preparation produces retinal slices with less surface damage and very robust light-evoked responses. Here we document how this procedure can be done under infrared light to avoid bleaching the visual pigment.
Neuroscience, Issue 43, vision, mice, retina, photoreceptor, bipolar cell, slice preparation, patch clamp
2107
Play Button
Multifocal Electroretinograms
Authors: Donnell J. Creel.
Institutions: University of Utah.
A limitation of traditional full-field electroretinograms (ERG) for the diagnosis of retinopathy is lack of sensitivity. Generally, ERG results are normal unless more than approximately 20% of the retina is affected. In practical terms, a patient might be legally blind as a result of macular degeneration or other scotomas and still appear normal, according to traditional full field ERG. An important development in ERGs is the multifocal ERG (mfERG). Erich Sutter adapted the mathematical sequences called binary m-sequences enabling the isolation from a single electrical signal an electroretinogram representing less than each square millimeter of retina in response to a visual stimulus1. Results that are generated by mfERG appear similar to those generated by flash ERG. In contrast to flash ERG, which best generates data appropriate for whole-eye disorders. The basic mfERG result is based on the calculated mathematical average of an approximation of the positive deflection component of traditional ERG response, known as the b-wave1. Multifocal ERG programs measure electrical activity from more than a hundred retinal areas per eye, in a few minutes. The enhanced spatial resolution enables scotomas and retinal dysfunction to be mapped and quantified. In the protocol below, we describe the recording of mfERGs using a bipolar speculum contact lens. Components of mfERG systems vary between manufacturers. For the presentation of visible stimulus, some suitable CRT monitors are available but most systems have adopted the use of flat-panel liquid crystal displays (LCD). The visual stimuli depicted here, were produced by a LCD microdisplay subtending 35 - 40 degrees horizontally and 30 - 35 degrees vertically of visual field, and calibrated to produce multifocal flash intensities of 2.7 cd s m-2. Amplification was 50K. Lower and upper bandpass limits were 10 and 300 Hz. The software packages used were VERIS versions 5 and 6.
Medicine, Issue 58, Multifocal electroretinogram, mfERG, electroretinogram, ERG
3176
Play Button
Horizontal Slice Preparation of the Retina
Authors: Ryosuke Enoki, Tatjana C. Jakobs, Amane Koizumi.
Institutions: Dalhousie University, Harvard Medical School.
Traditionally the vertical slice and the whole-mount preparation of the retina have been used to study the function of retinal circuits. However, many of retinal neurons, such as amacrine cells, expand their dendrites horizontally, so that the morphology of the cells is supposed to be severely damaged in the vertical slices. In the whole-mount preparation, especially for patch-clamp recordings, retinal neurons in the middle layer are not easily accessible due to the extensive coverage of glial cell (Mueller cell) s endfeets. Here, we describe the novel slicing method to preserve the dendritic morphology of retinal neurons intact. The slice was made horizontally at the inner layer of the retina using a vibratome slicer after the retina was embedded in the low-temperature melting agarose gel. In this horizontal slice preparation of the retina, we studied the function of retinal neurons compared with their morphology, by using patch-clamp recording, calcium imaging technique, immunocytochemistry, and single-cell RT-PCR.
Neuroscience, Issue 1, retina, dissection
108
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.