JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model.
PUBLISHED: 01-01-2014
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein-coupled receptors (S1P1-5). Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO)) mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT) mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF) collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF) levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1) or transforming growth factor ?1 (TGF-?1) levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.
The host immune response to pathogens is a complex biological process. The majority of in vivo studies classically employed to characterize host-pathogen interactions take advantage of intraperitoneal injections of select bacteria or pathogen associated molecular patterns (PAMPs) in mice. While these techniques have yielded tremendous data associated with infectious disease pathobiology, intraperitoneal injection models are not always appropriate for host-pathogen interaction studies in the lung. Utilizing an acute lung inflammation model in mice, it is possible to conduct a high resolution analysis of the host innate immune response utilizing lipopolysaccharide (LPS). Here, we describe the methods to administer LPS using nonsurgical oropharyngeal intratracheal administration, monitor clinical parameters associated with disease pathogenesis, and utilize bronchoalveolar lavage fluid to evaluate the host immune response. The techniques that are described are widely applicable for studying the host innate immune response to a diverse range of PAMPs and pathogens. Likewise, with minor modifications, these techniques can also be applied in studies evaluating allergic airway inflammation and in pharmacological applications.
22 Related JoVE Articles!
Play Button
Heterotopic Heart Transplantation in Mice
Authors: Fengchun Liu, Sang Mo Kang.
Institutions: University of California, San Francisco - UCSF.
The mouse heterotopic heart transplantation has been used widely since it was introduced by Drs. Corry and Russell in 1973. It is particularly valuable for studying rejection and immune response now that newer transgenic and gene knockout mice are available, and a large number of immunologic reagents have been developed. The heart transplant model is less stringent than the skin transplant models, although technically more challenging. We have developed a modified technique and have completed over 1000 successful cases of heterotopic heart transplantation in mice. When making anastomosis of the ascending aorta and abdominal aorta, two stay sutures are placed at the proximal and distal apexes of recipient abdominal aorta with the donor s ascending aorta, then using 11-0 suture for anastomosis on both side of aorta with continuing sutures. The stay sutures make the anastomosis easier and 11-0 is an ideal suture size to avoid bleeding and thrombosis. When making anastomosis of pulmonary artery and inferior vena cava, two stay sutures are made at the proximal apex and distal apex of the recipient s inferior vena cava with the donor s pulmonary artery. The left wall of the inferior vena cava and donor s pulmonary artery is closed with continuing sutures in the inside of the inferior vena cava after, one knot with the proximal apex stay suture the right wall of the inferior vena cava and the donor s pulmonary artery are closed with continuing sutures outside the inferior vena cave with 10-0 sutures. This method is easier to perform because anastomosis is made just on the one side of the inferior vena cava and 10-0 sutures is the right size to avoid bleeding and thrombosis. In this article, we provide details of the technique to supplement the video.
Developmental Biology, Issue 6, Microsurgical Techniques, Heart Transplant, Allograft Rejection Model
Play Button
Isolation of Pulmonary Artery Smooth Muscle Cells from Neonatal Mice
Authors: Keng Jin Lee, Lyubov Czech, Gregory B. Waypa, Kathryn N. Farrow.
Institutions: Northwestern University Feinberg School of Medicine.
Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al.26 that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.
Basic Protocol, Issue 80, Muscle, Smooth, Vascular, Cardiovascular Abnormalities, Hypertension, Pulmonary, vascular smooth muscle, pulmonary hypertension, development, phosphodiesterases, cGMP, immunostaining
Play Button
Establishment of a Surgically-induced Model in Mice to Investigate the Protective Role of Progranulin in Osteoarthritis
Authors: Yunpeng Zhao, Ben Liu, Chuan-ju Liu.
Institutions: NYU Hospital for Joint Diseases, New York University Medical Center.
Destabilization of medial meniscus (DMM) model is an important tool for studying the pathophysiological roles of numerous arthritis associated molecules in the pathogenesis of osteoarthritis (OA) in vivo. However, the detailed, especially the visualized protocol for establishing this complicated model in mice, is not available. Herein we took advantage of wildtype and progranulin (PGRN)-/- mice as examples to introduce a protocol for inducing DMM model in mice, and compared the onset of OA following establishment of this surgically induced model. The operations performed on mice were either sham operation, which just opened joint capsule, or DMM operation, which cut the menisco-tibial ligament and caused destabilization of medial meniscus. Osteoarthritis severity was evaluated using histological assay (e.g. Safranin O staining), expressions of OA-associated genes, degradation of cartilage extracellular matrix molecules, and osteophyte formation. DMM operation successfully induced OA initiation and progression in both wildtype and PGRN-/- mice, and loss of PGNR growth factor led to a more severe OA phenotype in this surgically induced model.
Bioengineering, Issue 84, Mouse, Cartilage, Surgery, Osteoarthritis, degenerative arthritis, progranulin, destabilization of medial meniscus (DMM)
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
Play Button
Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice
Authors: Marcella Facchini, Ida De Fino, Camilla Riva, Alessandra Bragonzi.
Institutions: San Raffaele Scientific Institute, Italian Cystic Fibrosis Research Foundation.
A mouse model of chronic airway infection is a key asset in cystic fibrosis (CF) research, although there are a number of concerns regarding the model itself. Early phases of inflammation and infection have been widely studied by using the Pseudomonas aeruginosa agar-beads mouse model, while only few reports have focused on the long-term chronic infection in vivo. The main challenge for long term chronic infection remains the low bacterial burden by P. aeruginosa and the low percentage of infected mice weeks after challenge, indicating that bacterial cells are progressively cleared by the host. This paper presents a method for obtaining efficient long-term chronic infection in mice. This method is based on the embedding of the P. aeruginosa clinical strains in the agar-beads in vitro, followed by intratracheal instillation in C57Bl/6NCrl mice. Bilateral lung infection is associated with several measurable read-outs including weight loss, mortality, chronic infection, and inflammatory response. The P. aeruginosa RP73 clinical strain was preferred over the PAO1 reference laboratory strain since it resulted in a comparatively lower mortality, more severe lesions, and higher chronic infection. P. aeruginosa colonization may persist in the lung for over three months. Murine lung pathology resembles that of CF patients with advanced chronic pulmonary disease. This murine model most closely mimics the course of the human disease and can be used both for studies on the pathogenesis and for the evaluation of novel therapies.
Infection, Issue 85, Opportunistic Infections, Respiratory Tract Infections, Inflammation, Lung Diseases, Cystic Fibrosis, Pseudomonas aeruginosa
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
The Bovine Lung in Biomedical Research: Visually Guided Bronchoscopy, Intrabronchial Inoculation and In Vivo Sampling Techniques
Authors: Annette Prohl, Carola Ostermann, Markus Lohr, Petra Reinhold.
Institutions: Friedrich-Loeffler-Institut.
There is an ongoing search for alternative animal models in research of respiratory medicine. Depending on the goal of the research, large animals as models of pulmonary disease often resemble the situation of the human lung much better than mice do. Working with large animals also offers the opportunity to sample the same animal repeatedly over a certain course of time, which allows long-term studies without sacrificing the animals. The aim was to establish in vivo sampling methods for the use in a bovine model of a respiratory Chlamydia psittaci infection. Sampling should be performed at various time points in each animal during the study, and the samples should be suitable to study the host response, as well as the pathogen under experimental conditions. Bronchoscopy is a valuable diagnostic tool in human and veterinary medicine. It is a safe and minimally invasive procedure. This article describes the intrabronchial inoculation of calves as well as sampling methods for the lower respiratory tract. Videoendoscopic, intrabronchial inoculation leads to very consistent clinical and pathological findings in all inoculated animals and is, therefore, well-suited for use in models of infectious lung disease. The sampling methods described are bronchoalveolar lavage, bronchial brushing and transbronchial lung biopsy. All of these are valuable diagnostic tools in human medicine and could be adapted for experimental purposes to calves aged 6-8 weeks. The samples obtained were suitable for both pathogen detection and characterization of the severity of lung inflammation in the host.
Medicine, Issue 89, translational medicine, respiratory models, bovine lung, bronchoscopy, transbronchial lung biopsy, bronchoalveolar lavage, bronchial brushing, cytology brush
Play Button
Measuring Respiratory Function in Mice Using Unrestrained Whole-body Plethysmography
Authors: Rebecca Lim, Marcus J. Zavou, Phillipa-Louise Milton, Siow Teng Chan, Jean L. Tan, Hayley Dickinson, Sean V. Murphy, Graham Jenkin, Euan M. Wallace.
Institutions: Monash Institute of Medical Research, Monash Medical Centre, Animal Resource Centre, Perth, Australia, Wake Forest Institute for Regenerative Medicine.
Respiratory dysfunction is one of the leading causes of morbidity and mortality in the world and the rates of mortality continue to rise. Quantitative assessment of lung function in rodent models is an important tool in the development of future therapies. Commonly used techniques for assessing respiratory function including invasive plethysmography and forced oscillation. While these techniques provide valuable information, data collection can be fraught with artefacts and experimental variability due to the need for anesthesia and/or invasive instrumentation of the animal. In contrast, unrestrained whole-body plethysmography (UWBP) offers a precise, non-invasive, quantitative way by which to analyze respiratory parameters. This technique avoids the use of anesthesia and restraints, which is common to traditional plethysmography techniques. This video will demonstrate the UWBP procedure including the equipment set up, calibration and lung function recording. It will explain how to analyze the collected data, as well as identify experimental outliers and artefacts that results from animal movement. The respiratory parameters obtained using this technique include tidal volume, minute volume, inspiratory duty cycle, inspiratory flow rate and the ratio of inspiration time to expiration time. UWBP does not rely on specialized skills and is inexpensive to perform. A key feature of UWBP, and most appealing to potential users, is the ability to perform repeated measures of lung function on the same animal.
Physiology, Issue 90, Unrestrained Whole Body Plethysmography, Lung function, Respiratory Disease, Rodents
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
Noninvasive Intratracheal Intubation to Study the Pathology and Physiology of Mouse Lung
Authors: Yan Cai, Shioko Kimura.
Institutions: National Institutes of Health.
The use of a model that mimics the condition of lung diseases in humans is critical for studying the pathophysiology and/or etiology of a particular disease and for developing therapeutic intervention. With the increasing availability of knockout and transgenic derivatives, together with a vast amount of genetic information, mice provide one of the best models to study the molecular mechanisms underlying the pathology and physiology of lung diseases. Inhalation, intranasal instillation, intratracheal instillation, and intratracheal intubation are the most widely used techniques by a number of investigators to administer materials of interest to mouse lungs. There are pros and cons for each technique depending on the goals of a study. Here a noninvasive intratracheal intubation method that can directly deliver exogenous materials to mouse lungs is presented. This technique was applied to administer bleomycin to mouse lungs as a model to study pulmonary fibrosis.
Medicine, Issue 81, mouse, rodents, intratracheal intubation, delivery of exogenous substances, lung, study of airway pathology and physiology, pulmonary fibrosis
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
Play Button
Pressure Controlled Ventilation to Induce Acute Lung Injury in Mice
Authors: Michael Koeppen, Tobias Eckle, Holger K. Eltzschig.
Institutions: University of Colorado.
Murine models are extensively used to investigate acute injuries of different organs systems (1-34). Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation (1-3, 5, 8, 26, 30, 33-36). ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange (36). We have developed a murine model of ALI by using a pressure-controlled ventilation to induce ventilator-induced lung injury (2). For this purpose, C57BL/6 mice are anesthetized and a tracheotomy is performed followed by induction of ALI via mechanical ventilation. Mice are ventilated in a pressure-controlled setting with an inspiratory peak pressure of 45 mbar over 1 - 3 hours. As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed (2). Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes (1-3, 5). Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion.
Medicine, Issue 51, Ventilator-induced lung injury, acute lung injury, targeted gene deletion, murine model, lung
Play Button
Use of a Hanging Weight System for Coronary Artery Occlusion in Mice
Authors: Tobias Eckle, Michael Koeppen, Holger Eltzschig.
Institutions: University of Colorado Denver.
Murine studies of acute injury are an area of intense investigation, as knockout mice for different genes are becoming increasingly available 1-38. Cardioprotection by ischemic preconditioning (IP) remains an area of intense investigation. To further elucidate its molecular basis, the use of knockout mouse studies is particularly important 7, 14, 30, 39. Despite the fact that previous studies have already successfully performed cardiac ischemia and reperfusion in mice, this model is technically very challenging. Particularly, visual identification of the coronary artery, placement of the suture around the vessel and coronary occlusion by tying off the vessel with a supported knot is technically difficult. In addition, re-opening the knot for intermittent reperfusion of the coronary artery during IP without causing surgical trauma adds additional challenge. Moreover, if the knot is not tied down strong enough, inadvertent reperfusion due to imperfect occlusion of the coronary may affect the results. In fact, this can easily occur due to the movement of the beating heart. Based on potential problems associated with using a knotted coronary occlusion system, we adopted a previously published model of chronic cardiomyopathy based on a hanging weight system for intermittent coronary artery occlusion during IP 39. In fact, coronary artery occlusion can thus be achieved without having to occlude the coronary by a knot. Moreover, reperfusion of the vessel can be easily achieved by supporting the hanging weights which are in a remote localization from cardiac tissues. We tested this system systematically, including variation of ischemia and reperfusion times, preconditioning regiments, body temperature and genetic backgrounds39. In addition to infarct staining, we tested cardiac troponin I (cTnI) as a marker of myocardial infarction in this model. In fact, plasma levels of cTnI correlated with infarct sizes (R2=0.8). Finally, we could show in several studies that this technique yields highly reproducible infarct sizes during murine IP and myocardial infarction6, 8, 30, 40, 41. Therefore, this technique may be helpful for researchers who pursue molecular mechanisms involved in cardioprotection by IP using a genetic approach in mice with targeted gene deletion. Further studies on cardiac IP using transgenic mice may consider this technique.
Medicine, Issue 50, Cardioprotection, preconditioning, targeted gene deletion, murine, model, ischemia, reperfusion, heart
Play Button
Using Eggs from Schistosoma mansoni as an In vivo Model of Helminth-induced Lung Inflammation
Authors: Karen L. Joyce, Will Morgan, Robert Greenberg, Meera G. Nair.
Institutions: University of Pennsylvania , University of Pennsylvania .
Schistosoma parasites are blood flukes that infect an estimated 200 million people worldwide 1. In chronic infection with Schistosoma, the severe pathology, including liver fibrosis and splenomegaly, is caused by the immune response to the parasite eggs rather than the parasite itself 2. Parasite eggs induce a Th2 response characterized by the production of IL-4, IL-5 and IL-13, the alternative activation of macrophages and the recruitment of eosinophils. Here, we describe injection of Schistosoma mansoni eggs as a model to examine parasite-specific Th2 cytokine responses in the lung and draining lymph nodes, the formation of pulmonary granulomas surrounding the egg, and airway inflammation. Following intraperitoneal sensitization and intravenous challenge, S. mansoni eggs are transported to the lung via the pulmonary arteries where they are trapped within the lung parenchyma by granulomas composed of lymphocytes, eosinophils and alternatively activated macrophages 3-6. Associated with granuloma formation, inflammation in the broncho-alveolar spaces, expansion of the draining lymph nodes and CD4 T cell activation can be observed. Here we detail the protocol for isolating Schistosoma mansoni eggs from infected livers (modified from 7), sensitizing and challenging mice, and recovering the organs (broncho-alveolar lavage (BAL), lung and draining lymph nodes) for analysis. We also include representative histologic and immunologic data and suggestions for additional immunologic analysis. Overall, this method provides an in vivo model to investigate helminth-induced immunologic responses in the lung, which is broadly applicable to the study of Th2 inflammatory diseases including helminth infection, fibrotic diseases, allergic inflammation and asthma. Advantages of this model for the study of type 2 inflammation in the lung include the reproducibility of a potent Th2 inflammatory response in the lung and draining lymph nodes, the ease of assessment of inflammation by histologic examination of the granulomas surrounding the egg, and the potential for long-term storage of the parasite eggs.
Immunology, Issue 64, Infection, Microbiology, helminth, parasite, mouse, Th2, lung, inflammation, granuloma, alternative activation, macrophage
Play Button
Bioluminescence Imaging of NADPH Oxidase Activity in Different Animal Models
Authors: Wei Han, Hui Li, Brahm H. Segal, Timothy S. Blackwell.
Institutions: Vanderbilt University School of Medicine, Roswell Park Cancer Institute, University at Buffalo School of Medicine.
NADPH oxidase is a critical enzyme that mediates antibacterial and antifungal host defense. In addition to its role in antimicrobial host defense, NADPH oxidase has critical signaling functions that modulate the inflammatory response 1. Thus, the development of a method to measure in "real-time" the kinetics of NADPH oxidase-derived ROS generation is expected to be a valuable research tool to understand mechanisms relevant to host defense, inflammation, and injury. Chronic granulomatous disease (CGD) is an inherited disorder of the NADPH oxidase characterized by severe infections and excessive inflammation. Activation of the phagocyte NADPH oxidase requires translocation of its cytosolic subunits (p47phox, p67phox, and p40phox) and Rac to a membrane-bound flavocytochrome (composed of a gp91phox and p22phox heterodimer). Loss of function mutations in any of these NADPH oxidase components result in CGD. Similar to patients with CGD, gp91phox -deficient mice and p47phox-deficient mice have defective phagocyte NADPH oxidase activity and impaired host defense 2, 13. In addition to phagocytes, which contain the NADPH oxidase components described above, a variety of other cell types express different isoforms of NADPH oxidase. Here, we describe a method to quantify ROS production in living mice and to delineate the contribution of NADPH oxidase to ROS generation in models of inflammation and injury. This method is based on ROS reacting with L-012 (an analogue of luminol) to emit luminescence that is recorded by a charge-coupled device (CCD). In the original description of the L-012 probe, L-012-dependent chemiluminescence was completely abolished by superoxide dismutase, indicating that the main ROS detected in this reaction was superoxide anion 14. Subsequent studies have shown that L-012 can detect other free radicals, including reactive nitrogen species 15, 16. Kielland et al. 16 showed that topical application of phorbol myristate acetate, a potent activator of NADPH oxidase, led to NADPH oxidase-dependent ROS generation that could be detected in mice using the luminescent probe L-012. In this model, they showed that L-012-dependent luminescence was abolished in p47phox-deficient mice. We compared ROS generation in wildtype mice and NADPH oxidase-deficient p47phox-/- mice 2 in the following three models: 1) intratracheal administration of zymosan, a pro-inflammatory fungal cell wall-derived product that can activate NADPH oxidase; 2) cecal ligation and puncture (CLP), a model of intra-abdominal sepsis with secondary acute lung inflammation and injury; and 3) oral carbon tetrachloride (CCl4), a model of ROS-dependent hepatic injury. These models were specifically selected to evaluate NADPH oxidase-dependent ROS generation in the context of non-infectious inflammation, polymicrobial sepsis, and toxin-induced organ injury, respectively. Comparing bioluminescence in wildtype mice to p47phox-/- mice enables us to delineate the specific contribution of ROS generated by p47phox-containing NADPH oxidase to the bioluminescent signal in these models. Bioluminescence imaging results that demonstrated increased ROS levels in wildtype mice compared to p47phox-/- mice indicated that NADPH oxidase is the major source of ROS generation in response to inflammatory stimuli. This method provides a minimally invasive approach for "real-time" monitoring of ROS generation during inflammation in vivo.
Immunology, Issue 68, Molecular Biology, NADPH oxidase, reactive oxygen species, bioluminescence imaging
Play Button
Analysis of Pulmonary Dendritic Cell Maturation and Migration during Allergic Airway Inflammation
Authors: Rahul Kushwah, Jim Hu.
Institutions: McMaster University, Hamilton, University of Toronto.
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen1,2. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response3. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment4. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens5. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma6,7. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Immunology, Issue 65, Medicine, Physiology, Dendritic Cells, allergic airway inflammation, ovalbumin, lymph nodes, lungs, dendritic cell maturation, dendritic cell migration, mediastinal lymph nodes
Play Button
Differentiating Functional Roles of Gene Expression from Immune and Non-immune Cells in Mouse Colitis by Bone Marrow Transplantation
Authors: Hon Wai Koon, Samantha Ho, Michelle Cheng, Ryan Ichikawa, Charalabos Pothoulakis.
Institutions: The University of California Los Angeles, Los Angeles.
To understand the role of a gene in the development of colitis, we compared the responses of wild-type mice and gene-of-interest deficient knockout mice to colitis. If the gene-of-interest is expressed in both bone marrow derived cells and non-bone marrow derived cells of the host; however, it is possible to differentiate the role of a gene of interest in bone marrow derived cells and non- bone marrow derived cells by bone marrow transplantation technique. To change the bone marrow derived cell genotype of mice, the original bone marrow of recipient mice were destroyed by irradiation and then replaced by new donor bone marrow of different genotype. When wild-type mice donor bone marrow was transplanted to knockout mice, we could generate knockout mice with wild-type gene expression in bone marrow derived cells. Alternatively, when knockout mice donor bone marrow was transplanted to wild-type recipient mice, wild-type mice without gene-of-interest expressing from bone marrow derived cells were produced. However, bone marrow transplantation may not be 100% complete. Therefore, we utilized cluster of differentiation (CD) molecules (CD45.1 and CD45.2) as markers of donor and recipient cells to track the proportion of donor bone marrow derived cells in recipient mice and success of bone marrow transplantation. Wild-type mice with CD45.1 genotype and knockout mice with CD45.2 genotype were used. After irradiation of recipient mice, the donor bone marrow cells of different genotypes were infused into the recipient mice. When the new bone marrow regenerated to take over its immunity, the mice were challenged by chemical agent (dextran sodium sulfate, DSS 5%) to induce colitis. Here we also showed the method to induce colitis in mice and evaluate the role of the gene of interest expressed from bone-marrow derived cells. If the gene-of-interest from the bone derived cells plays an important role in the development of the disease (such as colitis), the phenotype of the recipient mice with bone marrow transplantation can be significantly altered. At the end of colitis experiments, the bone marrow derived cells in blood and bone marrow were labeled with antibodies against CD45.1 and CD45.2 and their quantitative ratio of existence could be used to evaluate the success of bone marrow transplantation by flow cytometry. Successful bone marrow transplantation should show a vast majority of donor genotype (in term of CD molecule marker) over recipient genotype in both the bone marrow and blood of recipient mice.
Immunology, Issue 68, Genetics, Cellular Biology, Physiology, Bone marrow transplantation, colitis, mice, irradiation
Play Button
Right Ventricular Systolic Pressure Measurements in Combination with Harvest of Lung and Immune Tissue Samples in Mice
Authors: Wen-Chi Chen, Sung-Hyun Park, Carol Hoffman, Cecil Philip, Linda Robinson, James West, Gabriele Grunig.
Institutions: New York University School of Medicine, Tuxedo, Vanderbilt University Medical Center, New York University School of Medicine.
The function of the right heart is to pump blood through the lungs, thus linking right heart physiology and pulmonary vascular physiology. Inflammation is a common modifier of heart and lung function, by elaborating cellular infiltration, production of cytokines and growth factors, and by initiating remodeling processes 1. Compared to the left ventricle, the right ventricle is a low-pressure pump that operates in a relatively narrow zone of pressure changes. Increased pulmonary artery pressures are associated with increased pressure in the lung vascular bed and pulmonary hypertension 2. Pulmonary hypertension is often associated with inflammatory lung diseases, for example chronic obstructive pulmonary disease, or autoimmune diseases 3. Because pulmonary hypertension confers a bad prognosis for quality of life and life expectancy, much research is directed towards understanding the mechanisms that might be targets for pharmaceutical intervention 4. The main challenge for the development of effective management tools for pulmonary hypertension remains the complexity of the simultaneous understanding of molecular and cellular changes in the right heart, the lungs and the immune system. Here, we present a procedural workflow for the rapid and precise measurement of pressure changes in the right heart of mice and the simultaneous harvest of samples from heart, lungs and immune tissues. The method is based on the direct catheterization of the right ventricle via the jugular vein in close-chested mice, first developed in the late 1990s as surrogate measure of pressures in the pulmonary artery5-13. The organized team-approach facilitates a very rapid right heart catheterization technique. This makes it possible to perform the measurements in mice that spontaneously breathe room air. The organization of the work-flow in distinct work-areas reduces time delay and opens the possibility to simultaneously perform physiology experiments and harvest immune, heart and lung tissues. The procedural workflow outlined here can be adapted for a wide variety of laboratory settings and study designs, from small, targeted experiments, to large drug screening assays. The simultaneous acquisition of cardiac physiology data that can be expanded to include echocardiography5,14-17 and harvest of heart, lung and immune tissues reduces the number of animals needed to obtain data that move the scientific knowledge basis forward. The procedural workflow presented here also provides an ideal basis for gaining knowledge of the networks that link immune, lung and heart function. The same principles outlined here can be adapted to study other or additional organs as needed.
Immunology, Issue 71, Medicine, Anatomy, Physiology, Cardiology, Surgery, Cardiovascular Abnormalities, Inflammation, Respiration Disorders, Immune System Diseases, Cardiac physiology, mouse, pulmonary hypertension, right heart function, lung immune response, lung inflammation, lung remodeling, catheterization, mice, tissue, animal model
Play Button
Protein Transfection of Mouse Lung
Authors: Patrick Geraghty, Robert Foronjy.
Institutions: St. Luke's Roosevelt Medical Center.
Increasing protein expression enables researchers to better understand the functional role of that protein in regulating key biological processes1. In the lung, this has been achieved typically through genetic approaches that utilize transgenic mice2,3 or viral or non-viral vectors that elevate protein levels via increased gene expression4. Transgenic mice are costly and time-consuming to generate and the random insertion of a transgene or chronic gene expression can alter normal lung development and thus limit the utility of the model5. While conditional transgenics avert problems associated with chronic gene expression6, the reverse tetracycline-controlled transactivator (rtTA) mice, which are used to generate conditional expression, develop spontaneous air space enlargement7. As with transgenics, the use of viral and non-viral vectors is expensive8 and can provoke dose-dependent inflammatory responses that confound results9 and hinder expression10. Moreover, the efficacy of repeated doses are limited by enhanced immune responses to the vector11,12. Researchers are developing adeno-associated viral (AAV) vectors that provoke less inflammation and have longer expression within the lung13. Using β-galactosidase, we present a method for rapidly and effectively increasing protein expression within the lung using a direct protein transfection technique. This protocol mixes a fixed amount of purified protein with 20 μl of a lipid-based transfection reagent (Pro-Ject, Pierce Bio) to allow penetration into the lung tissue itself. The liposomal protein mixture is then injected into the lungs of the mice via the trachea using a microsprayer (Penn Century, Philadelphia, PA). The microsprayer generates a fine plume of liquid aerosol throughout the lungs. Using the technique we have demonstrated uniform deposition of the injected protein throughout the airways and the alveoli of mice14. The lipid transfection technique allows the use of a small amount of protein to achieve effect. This limits the inflammatory response that otherwise would be provoked by high protein administration. Indeed, using this technique we published that we were able to significantly increase PP2A activity in the lung without affecting lung lavage cellularity15. Lung lavage cellularity taken 24 hr after challenge was comparable to controls (27±4 control vs. 31±5 albumin transfected; N=6 per group). Moreover, it increases protein levels without inducing lung developmental changes or architectural changes that can occur in transgenic models. However, the need for repeated administrations may make this technique less favorable for studies examining the effects of long-term increases in protein expression. This would be particularly true for proteins with short half-lives.
Molecular Biology, Issue 75, Medicine, Biomedical Engineering, Bioengineering, Biochemistry, Genetics, Cellular Biology, Anatomy, Physiology, Proteins, Torso, Tissues, Cells, Animal Structures, Respiratory System, Eukaryota, Immune System Diseases, Respiratory Tract Diseases, Natural Science Disciplines, Life Sciences (General), transfection, lung, protein, mice, inflammation, animal model
Play Button
Pseudomonas aeruginosa Induced Lung Injury Model
Authors: Varsha Suresh Kumar, Ruxana T. Sadikot, Jeanette E. Purcell, Asrar B. Malik, Yuru Liu.
Institutions: University of Illinois at Chicago, Emory University, University of Illinois at Chicago.
In order to study human acute lung injury and pneumonia, it is important to develop animal models to mimic various pathological features of this disease. Here we have developed a mouse lung injury model by intra-tracheal injection of bacteria Pseudomonas aeruginosa (P. aeruginosa or PA). Using this model, we were able to show lung inflammation at the early phase of injury. In addition, alveolar epithelial barrier leakiness was observed by analyzing bronchoalveolar lavage (BAL); and alveolar cell death was observed by Tunel assay using tissue prepared from injured lungs. At a later phase following injury, we observed cell proliferation required for the repair process. The injury was resolved 7 days from the initiation of P. aeruginosa injection. This model mimics the sequential course of lung inflammation, injury and repair during pneumonia. This clinically relevant animal model is suitable for studying pathology, mechanism of repair, following acute lung injury, and also can be used to test potential therapeutic agents for this disease.
Immunology, Issue 92, Lung, injury, pseudomonas, pneumonia, mouse model, alveoli
Play Button
Homing of Hematopoietic Cells to the Bone Marrow
Authors: Rushdia Z. Yusuf, David T. Scadden.
Institutions: MGH - Massachusetts General Hospital.
Homing is the phenomenon whereby transplanted hematopoietic cells are able to travel to and engraft or establish residence in the bone marrow. Various chemomkines and receptors are involved in the homing of hematopoietic stem cells. [1, 2] This paper outlines the classic homing protocol used in hematopoietic stem cell studies. In general this involves isolating the cell population whose homing needs to be investigated, staining this population with a dye of interest and injecting these cells into the blood stream of a recipient animal. The recipient animal is then sacrificed at a pre-determined time after injection and the bone marrow evaluated for the percentage or absolute number of cells which are positive for the dye of interest. In one of the most common experimental schemes, the homing efficiency of hematopoietic cells from two genetically distinct animals (a wild type animal and the corresponding knock-out) is compared. This article describes the hematopoietic cell homing protocol in the framework of such as experiment.
Immunology, Issue 25, HSC, homing, engraftment, transplantation
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.