JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Human leptospirosis: seroreactivity and genetic susceptibility in the population of São Miguel Island (Azores, Portugal).
PUBLISHED: 01-01-2014
Leptospirosis is a worldwide zoonotic and recognized neglected infectious disease. It has been observed that only a proportion of individuals exposed to pathogenic species of Leptospira become infected and develop clinically evident disease. Moreover, little information is available in subsequent reinfections. In the present study, we determine if a first infection with leptospirosis protects against subsequent reinfection, and investigate which of the host genetic factors are involved in the susceptibility and resistance to leptospirosis.
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Published: 07-06-2014
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
29 Related JoVE Articles!
Play Button
Cell Co-culture Patterning Using Aqueous Two-phase Systems
Authors: John P. Frampton, Joshua B. White, Abin T. Abraham, Shuichi Takayama.
Institutions: University of Michigan , University of Michigan .
Cell patterning technologies that are fast, easy to use and affordable will be required for the future development of high throughput cell assays, platforms for studying cell-cell interactions and tissue engineered systems. This detailed protocol describes a method for generating co-cultures of cells using biocompatible solutions of dextran (DEX) and polyethylene glycol (PEG) that phase-separate when combined above threshold concentrations. Cells can be patterned in a variety of configurations using this method. Cell exclusion patterning can be performed by printing droplets of DEX on a substrate and covering them with a solution of PEG containing cells. The interfacial tension formed between the two polymer solutions causes cells to fall around the outside of the DEX droplet and form a circular clearing that can be used for migration assays. Cell islands can be patterned by dispensing a cell-rich DEX phase into a PEG solution or by covering the DEX droplet with a solution of PEG. Co-cultures can be formed directly by combining cell exclusion with DEX island patterning. These methods are compatible with a variety of liquid handling approaches, including manual micropipetting, and can be used with virtually any adherent cell type.
Bioengineering, Issue 73, Biomedical Engineering, Microbiology, Molecular Biology, Cellular Biology, Biochemistry, Biotechnology, Cell Migration Assays, Culture Techniques, bioengineering (general), Patterning, Aqueous Two-Phase System, Co-Culture, cell, Dextran, Polyethylene glycol, media, PEG, DEX, colonies, cell culture
Play Button
Use of Image Cytometry for Quantification of Pathogenic Fungi in Association with Host Cells
Authors: Charlotte Berkes, Leo Li-Ying Chan, Alisha Wilkinson, Benjamin Paradis.
Institutions: Merrimack College, Merrimack College, Nexcelom Bioscience LLC.
Studies of the cellular pathogenesis mechanisms of pathogenic yeasts such as Candida albicans, Histoplasma capsulatum, and Cryptococcus neoformans commonly employ infection of mammalian hosts or host cells (i.e. macrophages) followed by yeast quantification using colony forming unit analysis or flow cytometry. While colony forming unit enumeration has been the most commonly used method in the field, this technique has disadvantages and limitations, including slow growth of some fungal species on solid media and low and/or variable plating efficiencies, which is of particular concern when comparing growth of wild-type and mutant strains. Flow cytometry can provide rapid quantitative information regarding yeast viability, however, adoption of flow cytometric detection for pathogenic yeasts has been limited for a number of practical reasons including its high cost and biosafety considerations. Here, we demonstrate an image-based cytometric methodology using the Cellometer Vision (Nexcelom Bioscience, LLC) for the quantification of viable pathogenic yeasts in co-culture with macrophages. Our studies focus on detection of two human fungal pathogens: Histoplasma capsulatum and Candida albicans. H. capsulatum colonizes alveolar macrophages by replicating within the macrophage phagosome, and here, we quantitatively assess the growth of H. capsulatum yeasts in RAW 264.7 macrophages using acridine orange/propidium iodide staining in combination with image cytometry. Our method faithfully recapitulates growth trends as measured by traditional colony forming unit enumeration, but with significantly increased sensitivity. Additionally, we directly assess infection of live macrophages with a GFP-expressing strain of C. albicans. Our methodology offers a rapid, accurate, and economical means for detection and quantification of important human fungal pathogens in association with host cells.
Infection, Issue 76, Microbiology, Infectious Diseases, Medicine, Immunology, Cellular Biology, Molecular Biology, Genetics, Pathology, Mycology, Bacteria, Macrophages, Fungi, Candida, Candida albicans, yeast, Histoplasma, Image cytometry, macrophage, fungus, propidium iodide, acridine orange, Cellometer Vision, cell, imaging, cell culture
Play Button
An In vitro Model to Study Immune Responses of Human Peripheral Blood Mononuclear Cells to Human Respiratory Syncytial Virus Infection
Authors: Marloes Vissers, Marrit N. Habets, Inge M. L. Ahout, Jop Jans, Marien I. de Jonge, Dimitri A. Diavatopoulos, Gerben Ferwerda.
Institutions: Radboud university medical center.
Human respiratory syncytial virus (HRSV) infections present a broad spectrum of disease severity, ranging from mild infections to life-threatening bronchiolitis. An important part of the pathogenesis of severe disease is an enhanced immune response leading to immunopathology. Here, we describe a protocol used to investigate the immune response of human immune cells to an HRSV infection. First, we describe methods used for culturing, purification and quantification of HRSV. Subsequently, we describe a human in vitro model in which peripheral blood mononuclear cells (PBMCs) are stimulated with live HRSV. This model system can be used to study multiple parameters that may contribute to disease severity, including the innate and adaptive immune response. These responses can be measured at the transcriptional and translational level. Moreover, viral infection of cells can easily be measured using flow cytometry. Taken together, stimulation of PBMC with live HRSV provides a fast and reproducible model system to examine mechanisms involved in HRSV-induced disease.
Immunology, Issue 82, Blood Cells, Respiratory Syncytial Virus, Human, Respiratory Tract Infections, Paramyxoviridae Infections, Models, Immunological, Immunity, HRSV culture, purification, quantification, PBMC isolation, stimulation, inflammatory pathways
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
Stress-induced Antibiotic Susceptibility Testing on a Chip
Authors: Maxim Kalashnikov, Jennifer Campbell, Jean C. Lee, Andre Sharon, Alexis F. Sauer-Budge.
Institutions: Fraunhofer USA Center for Manufacturing Innovation, Harvard Medical School, Boston University, Boston University.
We have developed a rapid microfluidic method for antibiotic susceptibility testing in a stress-based environment. Fluid is passed at high speeds over bacteria immobilized on the bottom of a microfluidic channel. In the presence of stress and antibiotic, susceptible strains of bacteria die rapidly. However, resistant bacteria survive these stressful conditions. The hypothesis behind this method is new: stress activation of biochemical pathways, which are targets of antibiotics, can accelerate antibiotic susceptibility testing. As compared to standard antibiotic susceptibility testing methods, the rate-limiting step - bacterial growth - is omitted during antibiotic application. The technical implementation of the method is in a combination of standard techniques and innovative approaches. The standard parts of the method include bacterial culture protocols, defining microfluidic channels in polydimethylsiloxane (PDMS), cell viability monitoring with fluorescence, and batch image processing for bacteria counting. Innovative parts of the method are in the use of culture media flow for mechanical stress application, use of enzymes to damage but not kill the bacteria, and use of microarray substrates for bacterial attachment. The developed platform can be used in antibiotic and nonantibiotic related drug development and testing. As compared to the standard bacterial suspension experiments, the effect of the drug can be turned on and off repeatedly over controlled time periods. Repetitive observation of the same bacterial population is possible over the course of the same experiment.
Bioengineering, Issue 83, antibiotic, susceptibility, resistance, microfluidics, microscopy, rapid, testing, stress, bacteria, fluorescence
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
Play Button
Use of Galleria mellonella as a Model Organism to Study Legionella pneumophila Infection
Authors: Clare R. Harding, Gunnar N. Schroeder, James W. Collins, Gad Frankel.
Institutions: Imperial College London.
Legionella pneumophila, the causative agent of a severe pneumonia named Legionnaires' disease, is an important human pathogen that infects and replicates within alveolar macrophages. Its virulence depends on the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication permissive vacuole known as the Legionella containing vacuole (LCV). L. pneumophila infection can be modeled in mice however most mouse strains are not permissive, leading to the search for novel infection models. We have recently shown that the larvae of the wax moth Galleria mellonella are suitable for investigation of L. pneumophila infection. G. mellonella is increasingly used as an infection model for human pathogens and a good correlation exists between virulence of several bacterial species in the insect and in mammalian models. A key component of the larvae's immune defenses are hemocytes, professional phagocytes, which take up and destroy invaders. L. pneumophila is able to infect, form a LCV and replicate within these cells. Here we demonstrate protocols for analyzing L. pneumophila virulence in the G. mellonella model, including how to grow infectious L. pneumophila, pretreat the larvae with inhibitors, infect the larvae and how to extract infected cells for quantification and immunofluorescence microscopy. We also describe how to quantify bacterial replication and fitness in competition assays. These approaches allow for the rapid screening of mutants to determine factors important in L. pneumophila virulence, describing a new tool to aid our understanding of this complex pathogen.
Infection, Issue 81, Bacterial Infections, Infection, Disease Models, Animal, Bacterial Infections and Mycoses, Galleria mellonella, Legionella pneumophila, insect model, bacterial infection, Legionnaires' disease, haemocytes
Play Button
Following in Real Time the Impact of Pneumococcal Virulence Factors in an Acute Mouse Pneumonia Model Using Bioluminescent Bacteria
Authors: Malek Saleh, Mohammed R. Abdullah, Christian Schulz, Thomas Kohler, Thomas Pribyl, Inga Jensch, Sven Hammerschmidt.
Institutions: University of Greifswald.
Pneumonia is one of the major health care problems in developing and industrialized countries and is associated with considerable morbidity and mortality. Despite advances in knowledge of this illness, the availability of intensive care units (ICU), and the use of potent antimicrobial agents and effective vaccines, the mortality rates remain high1. Streptococcus pneumoniae is the leading pathogen of community-acquired pneumonia (CAP) and one of the most common causes of bacteremia in humans. This pathogen is equipped with an armamentarium of surface-exposed adhesins and virulence factors contributing to pneumonia and invasive pneumococcal disease (IPD). The assessment of the in vivo role of bacterial fitness or virulence factors is of utmost importance to unravel S. pneumoniae pathogenicity mechanisms. Murine models of pneumonia, bacteremia, and meningitis are being used to determine the impact of pneumococcal factors at different stages of the infection. Here we describe a protocol to monitor in real-time pneumococcal dissemination in mice after intranasal or intraperitoneal infections with bioluminescent bacteria. The results show the multiplication and dissemination of pneumococci in the lower respiratory tract and blood, which can be visualized and evaluated using an imaging system and the accompanying analysis software.
Infection, Issue 84, Gram-Positive Bacteria, Streptococcus pneumoniae, Pneumonia, Bacterial, Respiratory Tract Infections, animal models, community-acquired pneumonia, invasive pneumococcal diseases, Pneumococci, bioimaging, virulence factor, dissemination, bioluminescence, IVIS Spectrum
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
Play Button
Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions
Authors: Maria J. Mazon Moya, Emma Colucci-Guyon, Serge Mostowy.
Institutions: Imperial College London, Institut Pasteur, Unité Macrophages et Développement de l'Immunité.
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.
Infection, Issue 91, ATG8/LC3, autophagy, cytoskeleton, HeLa cells, p62, septin, Shigella, zebrafish
Play Button
A Protocol to Infect Caenorhabditis elegans with Salmonella typhimurium
Authors: Jiuli Zhang, Kailiang Jia.
Institutions: Florida Atlantic University.
In the last decade, C. elegans has emerged as an invertebrate organism to study interactions between hosts and pathogens, including the host defense against gram-negative bacterium Salmonella typhimurium. Salmonella establishes persistent infection in the intestine of C. elegans and results in early death of infected animals. A number of immunity mechanisms have been identified in C. elegans to defend against Salmonella infections. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has been shown to limit the Salmonella replication in C. elegans and in mammals. Here, a protocol is described to infect C. elegans with Salmonella typhimurium, in which the worms are exposed to Salmonella for a limited time, similar to Salmonella infection in humans. Salmonella infection significantly shortens the lifespan of C. elegans. Using the essential autophagy gene bec-1 as an example, we combined this infection method with C. elegans RNAi feeding approach and showed this protocol can be used to examine the function of C. elegans host genes in defense against Salmonella infection. Since C. elegans whole genome RNAi libraries are available, this protocol makes it possible to comprehensively screen for C. elegans genes that protect against Salmonella and other intestinal pathogens using genome-wide RNAi libraries.
Immunology, Issue 88, C. elegans, Salmonella typhimurium, autophagy, infection, pathogen, host, RNAi
Play Button
gDNA Enrichment by a Transposase-based Technology for NGS Analysis of the Whole Sequence of BRCA1, BRCA2, and 9 Genes Involved in DNA Damage Repair
Authors: Sandy Chevrier, Romain Boidot.
Institutions: Centre Georges-François Leclerc.
The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3'-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.
Genetics, Issue 92, gDNA enrichment, Nextera, NGS, DNA damage, BRCA1, BRCA2
Play Button
Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants
Authors: Pei-Yi Lin, Nadege Roche-Labarbe, Mathieu Dehaes, Stefan Carp, Angela Fenoglio, Beniamino Barbieri, Katherine Hagan, P. Ellen Grant, Maria Angela Franceschini.
Institutions: Massachusetts General Hospital, Harvard Medical School, Université de Caen Basse-Normandie, Boston Children's Hospital, Harvard Medical School, ISS, INC..
Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO2). Thus, measures of CMRO2 are reflective of neuronal viability and provide critical diagnostic information, making CMRO2 an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO2) as a surrogate for cerebral oxygen consumption. However, SO2 is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO2 are not sensitive enough to detect brain injury hours after the insult 1,2, because oxygen consumption and delivery reach equilibrium after acute transients 3. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO2 (CMRO2i) 4,5. With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain development, and response to therapy in neonates. Moreover, this method adheres to all neonatal intensive care unit (NICU) policies on infection control and institutional policies on laser safety. Future work will seek to integrate the two instruments to reduce acquisition time at the bedside and to implement real-time feedback on data quality to reduce the rate of data rejection.
Medicine, Issue 73, Developmental Biology, Neurobiology, Neuroscience, Biomedical Engineering, Anatomy, Physiology, Near infrared spectroscopy, diffuse correlation spectroscopy, cerebral hemodynamic, cerebral metabolism, brain injury screening, brain health, brain development, newborns, neonates, imaging, clinical techniques
Play Button
Recurrent Herpetic Stromal Keratitis in Mice, a Model for Studying Human HSK
Authors: Jessica Morris, Patrick M. Stuart, Megan Rogge, Chloe Potter, Nipun Gupta, Xiao-Tang Yin.
Institutions: Saint Louis University.
Herpetic eye disease, termed herpetic stromal keratitis (HSK), is a potentially blinding infection of the cornea that results in over 300,000 clinical visits each year for treatment. Between 1 and 2 percent of those patients with clinical disease will experience loss of vision of the infected cornea. The vast majority of these cases are the result of reactivation of a latent infection by herpes simplex type I virus and not due to acute disease. Interestingly, the acute infection is the model most often used to study this disease. However, it was felt that a recurrent model of HSK would be more reflective of what occurs during clinical disease. The recurrent animal models for HSK have employed both rabbits and mice. The advantage of rabbits is that they experience reactivation from latency absent any known stimulus. That said, it is difficult to explore the role that many immunological factors play in recurrent HSK because the rabbit model does not have the immunological and genetic resources that the mouse has. We chose to use the mouse model for recurrent HSK because it has the advantage of there being many resources available and also we know when reactivation will occur because reactivation is induced by exposure to UV-B light. Thus far, this model has allowed those laboratories using it to define several immunological factors that are important to this disease. It has also allowed us to test both therapeutic and vaccine efficacy.
Infection, Issue 70, Immunology, Virology, Medicine, Infectious Diseases, Ophthalmology, Herpes, herpetic stromal keratitis, HSK, keratitis, pathogenesis, clinical evaluation, virus, eye, mouse, animal model
Play Button
Immuno-fluorescence Assay of Leptospiral Surface-exposed Proteins
Authors: Marija Pinne, David Haake.
Institutions: University of California, Los Angeles, Veterans Affairs Greater Los Angeles Healthcare System, University of California Los Angeles (UCLA), Veterans Affairs Greater Los Angeles Health Care System.
Bacterial surface proteins are involved in direct contact with host cells and in uptake of nutrients from the environment 1. For this reason, cellular localization can provide insights into the functional role of bacterial proteins. Surface localization of bacterial proteins is a key step towards identification of virulence factors involved in mechanisms of pathogenicity. Methods for fractionating leptospiral membranes 2-5 may be selective for a certain class of outer-membrane proteins (OMPs), such as lipoproteins vs. transmembrane OMPs, and therefore lead to misclassification. This likely is due to structural differences and how they are associated to the outer membrane. Lipoproteins are associated with membranes via a hydrophobic interaction between the N-terminal lipid moiety (three fatty acids) and the lipid bilayer phospholipids 6, 7. In contrast, transmembrane OMPs are typically integrated into the lipid bilayer by amphipathic β-sheets arranged in a barrel-like structure 8, 9. In addition, presence of a protein in the outer-membrane does not necessarily guarantee that the protein or its domains are exposed on the surface. Spirochetal outer membranes are known to be fragile and therefore necessitate methods involving gentle manipulation of cells and inclusion of sub-surface protein controls to assess the integrity of the outer membrane. Here, we present an immunofluorescence assay (IFA) method to directly assess surface exposure of proteins on intact leptospires. This method is based on recognition of leptospiral surface proteins by antigen-specific antibodies. Herein, antibodies specific for OmpL5410 are detetcted aftero binding to native, surface exposed epitopes. Comparison of antibody reactivity to intact versus permeabilized cells enables evaluation of cellular distribution and whether or not a protein is selectively present on leptospiral surface. The integrity of outer membrane should be assessed using antibody to one or more subsurface proteins, preferably located in the periplasm. The surface IFA method can be used to analyze surface exposure of any leptospiral protein to which specific antibodies are available. Both the usefulness and limitation of the method depends on whether the antibodies employed are able to bind to native epitopes. Since antibodies often are raised against recombinant proteins, epitopes of native, surface-exposed proteins may not be recognized. Nevertheless, the surface IFA method is a valuable tool for studying components of intact bacterial surfaces. This method can be applied not only for leptospires but also other spirochetes and gram-negative bacteria. For stronger conclusions regarding surface-exposure of OMPs, a comprehensive approach involving several cell localization methods is recommended 10.
Immunology, Issue 53, Molecular Biology, Leptospira, intact cells, outer membrane, surface-exposed proteins, surface immuno-fluorescence
Play Button
Cecal Ligation Puncture Procedure
Authors: Miguel G. Toscano, Doina Ganea, Ana M. Gamero.
Institutions: Temple University , Temple University .
Human sepsis is characterized by a set of systemic reactions in response to intensive and massive infection that failed to be locally contained by the host. Currently, sepsis ranks among the top ten causes of mortality in the USA intensive care units 1. During sepsis there are two established haemodynamic phases that may overlap. The initial phase (hyperdynamic) is defined as a massive production of proinflammatory cytokines and reactive oxygen species by macrophages and neutrophils that affects vascular permeability (leading to hypotension), cardiac function and induces metabolic changes culminating in tissue necrosis and organ failure. Consequently, the most common cause of mortality is acute kidney injury. The second phase (hypodynamic) is an anti-inflammatory process involving altered monocyte antigen presentation, decreased lymphocyte proliferation and function and increased apoptosis. This state known as immunosuppression or immune depression sharply increases the risk of nocosomial infections and ultimately, death. The mechanisms of these pathophysiological processes are not well characterized. Because both phases of sepsis may cause irreversible and irreparable damage, it is essential to determine the immunological and physiological status of the patient. This is the main reason why many therapeutic drugs have failed. The same drug given at different stages of sepsis may be therapeutic or otherwise harmful or have no effect 2,3. To understand sepsis at various levels it is crucial to have a suitable and comprehensive animal model that reproduces the clinical course of the disease. It is important to characterize the pathophysiological mechanisms occurring during sepsis and control the model conditions for testing potential therapeutic agents. To study the etiology of human sepsis researchers have developed different animal models. The most widely used clinical model is cecal ligation and puncture (CLP). The CLP model consists of the perforation of the cecum allowing the release of fecal material into the peritoneal cavity to generate an exacerbated immune response induced by polymicrobial infection. This model fulfills the human condition that is clinically relevant. As in humans, mice that undergo CLP with fluid resuscitation show the first (early) hyperdynamic phase that in time progresses to the second (late) hypodynamic phase. In addition, the cytokine profile is similar to that seen in human sepsis where there is increased lymphocyte apoptosis (reviewed in 4,5). Due to the multiple and overlapping mechanisms involved in sepsis, researchers need a suitable sepsis model of controlled severity in order to obtain consistent and reproducible results.
Medicine, Issue 51, sepsis, systemic inflammation, infection, septic shock, animal model
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
Measuring Bacterial Load and Immune Responses in Mice Infected with Listeria monocytogenes
Authors: Nancy Wang, Richard Strugnell, Odilia Wijburg, Thomas Brodnicki.
Institutions: The University of Melbourne, The University of Melbourne.
Listeria monocytogenes (Listeria) is a Gram-positive facultative intracellular pathogen1. Mouse studies typically employ intravenous injection of Listeria, which results in systemic infection2. After injection, Listeria quickly disseminates to the spleen and liver due to uptake by CD8α+ dendritic cells and Kupffer cells3,4. Once phagocytosed, various bacterial proteins enable Listeria to escape the phagosome, survive within the cytosol, and infect neighboring cells5. During the first three days of infection, different innate immune cells (e.g. monocytes, neutrophils, NK cells, dendritic cells) mediate bactericidal mechanisms that minimize Listeria proliferation. CD8+ T cells are subsequently recruited and responsible for the eventual clearance of Listeria from the host, typically within 10 days of infection6. Successful clearance of Listeria from infected mice depends on the appropriate onset of host immune responses6 . There is a broad range of sensitivities amongst inbred mouse strains7,8. Generally, mice with increased susceptibility to Listeria infection are less able to control bacterial proliferation, demonstrating increased bacterial load and/or delayed clearance compared to resistant mice. Genetic studies, including linkage analyses and knockout mouse strains, have identified various genes for which sequence variation affects host responses to Listeria infection6,8-14. Determination and comparison of infection kinetics between different mouse strains is therefore an important method for identifying host genetic factors that contribute to immune responses against Listeria. Comparison of host responses to different Listeria strains is also an effective way to identify bacterial virulence factors that may serve as potential targets for antibiotic therapy or vaccine design. We describe here a straightforward method for measuring bacterial load (colony forming units [CFU] per tissue) and preparing single-cell suspensions of the liver and spleen for FACS analysis of immune responses in Listeria-infected mice. This method is particularly useful for initial characterization of Listeria infection in novel mouse strains, as well as comparison of immune responses between different mouse strains infected with Listeria. We use the Listeria monocytogenes EGD strain15 that, when cultured on blood agar, exhibits a characteristic halo zone around each colony due to β-hemolysis1 (Figure 1). Bacterial load and immune responses can be determined at any time-point after infection by culturing tissue homogenate on blood agar plates and preparing tissue cell suspensions for FACS analysis using the protocols described below. We would note that individuals who are immunocompromised or pregnant should not handle Listeria, and the relevant institutional biosafety committee and animal facility management should be consulted before work commences.
Immunology, Issue 54, Listeria, intracellular bacteria, genetic susceptibility, liver, spleen, blood, FACS analysis, T cells
Play Button
Assessment and Evaluation of the High Risk Neonate: The NICU Network Neurobehavioral Scale
Authors: Barry M. Lester, Lynne Andreozzi-Fontaine, Edward Tronick, Rosemarie Bigsby.
Institutions: Brown University, Women & Infants Hospital of Rhode Island, University of Massachusetts, Boston.
There has been a long-standing interest in the assessment of the neurobehavioral integrity of the newborn infant. The NICU Network Neurobehavioral Scale (NNNS) was developed as an assessment for the at-risk infant. These are infants who are at increased risk for poor developmental outcome because of insults during prenatal development, such as substance exposure or prematurity or factors such as poverty, poor nutrition or lack of prenatal care that can have adverse effects on the intrauterine environment and affect the developing fetus. The NNNS assesses the full range of infant neurobehavioral performance including neurological integrity, behavioral functioning, and signs of stress/abstinence. The NNNS is a noninvasive neonatal assessment tool with demonstrated validity as a predictor, not only of medical outcomes such as cerebral palsy diagnosis, neurological abnormalities, and diseases with risks to the brain, but also of developmental outcomes such as mental and motor functioning, behavior problems, school readiness, and IQ. The NNNS can identify infants at high risk for abnormal developmental outcome and is an important clinical tool that enables medical researchers and health practitioners to identify these infants and develop intervention programs to optimize the development of these infants as early as possible. The video shows the NNNS procedures, shows examples of normal and abnormal performance and the various clinical populations in which the exam can be used.
Behavior, Issue 90, NICU Network Neurobehavioral Scale, NNNS, High risk infant, Assessment, Evaluation, Prediction, Long term outcome
Play Button
Determining the Contribution of the Energy Systems During Exercise
Authors: Guilherme G. Artioli, Rômulo C. Bertuzzi, Hamilton Roschel, Sandro H. Mendes, Antonio H. Lancha Jr., Emerson Franchini.
Institutions: University of Sao Paulo, University of Sao Paulo, University of Sao Paulo, University of Sao Paulo.
One of the most important aspects of the metabolic demand is the relative contribution of the energy systems to the total energy required for a given physical activity. Although some sports are relatively easy to be reproduced in a laboratory (e.g., running and cycling), a number of sports are much more difficult to be reproduced and studied in controlled situations. This method presents how to assess the differential contribution of the energy systems in sports that are difficult to mimic in controlled laboratory conditions. The concepts shown here can be adapted to virtually any sport. The following physiologic variables will be needed: rest oxygen consumption, exercise oxygen consumption, post-exercise oxygen consumption, rest plasma lactate concentration and post-exercise plasma peak lactate. To calculate the contribution of the aerobic metabolism, you will need the oxygen consumption at rest and during the exercise. By using the trapezoidal method, calculate the area under the curve of oxygen consumption during exercise, subtracting the area corresponding to the rest oxygen consumption. To calculate the contribution of the alactic anaerobic metabolism, the post-exercise oxygen consumption curve has to be adjusted to a mono or a bi-exponential model (chosen by the one that best fits). Then, use the terms of the fitted equation to calculate anaerobic alactic metabolism, as follows: ATP-CP metabolism = A1 (mL . s-1) x t1 (s). Finally, to calculate the contribution of the lactic anaerobic system, multiply peak plasma lactate by 3 and by the athlete’s body mass (the result in mL is then converted to L and into kJ). The method can be used for both continuous and intermittent exercise. This is a very interesting approach as it can be adapted to exercises and sports that are difficult to be mimicked in controlled environments. Also, this is the only available method capable of distinguishing the contribution of three different energy systems. Thus, the method allows the study of sports with great similarity to real situations, providing desirable ecological validity to the study.
Physiology, Issue 61, aerobic metabolism, anaerobic alactic metabolism, anaerobic lactic metabolism, exercise, athletes, mathematical model
Play Button
Mass Production of Genetically Modified Aedes aegypti for Field Releases in Brazil
Authors: Danilo O. Carvalho, Derric Nimmo, Neil Naish, Andrew R. McKemey, Pam Gray, André B. B. Wilke, Mauro T. Marrelli, Jair F. Virginio, Luke Alphey, Margareth L. Capurro.
Institutions: Oxitec Ltd, Universidade de São Paulo, Universidade de São Paulo, Moscamed Brasil, University of Oxford, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM).
New techniques and methods are being sought to try to win the battle against mosquitoes. Recent advances in molecular techniques have led to the development of new and innovative methods of mosquito control based around the Sterile Insect Technique (SIT)1-3. A control method known as RIDL (Release of Insects carrying a Dominant Lethal)4, is based around SIT, but uses genetic methods to remove the need for radiation-sterilization5-8. A RIDL strain of Ae. aegypti was successfully tested in the field in Grand Cayman9,10; further field use is planned or in progress in other countries around the world. Mass rearing of insects has been established in several insect species and to levels of billions a week. However, in mosquitoes, rearing has generally been performed on a much smaller scale, with most large scale rearing being performed in the 1970s and 80s. For a RIDL program it is desirable to release as few females as possible as they bite and transmit disease. In a mass rearing program there are several stages to produce the males to be released: egg production, rearing eggs until pupation, and then sorting males from females before release. These males are then used for a RIDL control program, released as either pupae or adults11,12. To suppress a mosquito population using RIDL a large number of high quality male adults need to be reared13,14. The following describes the methods for the mass rearing of OX513A, a RIDL strain of Ae. aegypti 8, for release and covers the techniques required for the production of eggs and mass rearing RIDL males for a control program.
Basic Protocol, Issue 83, Aedes aegypti, mass rearing, population suppression, transgenic, insect, mosquito, dengue
Play Button
Detection of Invasive Pulmonary Aspergillosis in Haematological Malignancy Patients by using Lateral-flow Technology
Authors: Christopher Thornton, Gemma Johnson, Samir Agrawal.
Institutions: University of Exeter, Queen Mary University of London, St. Bartholomew's Hospital and The London NHS Trust.
Invasive pulmonary aspergillosis (IPA) is a leading cause of morbidity and mortality in haematological malignancy patients and hematopoietic stem cell transplant recipients1. Detection of IPA represents a formidable diagnostic challenge and, in the absence of a 'gold standard', relies on a combination of clinical data and microbiology and histopathology where feasible. Diagnosis of IPA must conform to the European Organization for Research and Treatment of Cancer and the National Institute of Allergy and Infectious Diseases Mycology Study Group (EORTC/MSG) consensus defining "proven", "probable", and "possible" invasive fungal diseases2. Currently, no nucleic acid-based tests have been externally validated for IPA detection and so polymerase chain reaction (PCR) is not included in current EORTC/MSG diagnostic criteria. Identification of Aspergillus in histological sections is problematic because of similarities in hyphal morphologies with other invasive fungal pathogens3, and proven identification requires isolation of the etiologic agent in pure culture. Culture-based approaches rely on the availability of biopsy samples, but these are not always accessible in sick patients, and do not always yield viable propagules for culture when obtained. An important feature in the pathogenesis of Aspergillus is angio-invasion, a trait that provides opportunities to track the fungus immunologically using tests that detect characteristic antigenic signatures molecules in serum and bronchoalveolar lavage (BAL) fluids. This has led to the development of the Platelia enzyme immunoassay (GM-EIA) that detects Aspergillus galactomannan and a 'pan-fungal' assay (Fungitell test) that detects the conserved fungal cell wall component (1 →3)-β-D-glucan, but not in the mucorales that lack this component in their cell walls1,4. Issues surrounding the accuracy of these tests1,4-6 has led to the recent development of next-generation monoclonal antibody (MAb)-based assays that detect surrogate markers of infection1,5. Thornton5 recently described the generation of an Aspergillus-specific MAb (JF5) using hybridoma technology and its use to develop an immuno-chromatographic lateral-flow device (LFD) for the point-of-care (POC) diagnosis of IPA. A major advantage of the LFD is its ability to detect activity since MAb JF5 binds to an extracellular glycoprotein antigen that is secreted during active growth of the fungus only5. This is an important consideration when using fluids such as lung BAL for diagnosing IPA since Aspergillus spores are a common component of inhaled air. The utility of the device in diagnosing IPA has been demonstrated using an animal model of infection, where the LFD displayed improved sensitivity and specificity compared to the Platelia GM and Fungitell (1 → 3)-β-D-glucan assays7. Here, we present a simple LFD procedure to detect Aspergillus antigen in human serum and BAL fluids. Its speed and accuracy provides a novel adjunct point-of-care test for diagnosis of IPA in haematological malignancy patients.
Immunology, Issue 61, Invasive pulmonary aspergillosis, acute myeloid leukemia, bone marrow transplant, diagnosis, monoclonal antibody, lateral-flow technology
Play Button
Use of Artificial Sputum Medium to Test Antibiotic Efficacy Against Pseudomonas aeruginosa in Conditions More Relevant to the Cystic Fibrosis Lung
Authors: Sebastian Kirchner, Joanne L Fothergill, Elli A. Wright, Chloe E. James, Eilidh Mowat, Craig Winstanley.
Institutions: University of Liverpool , University of Liverpool .
There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic1. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic2. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests3. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence4,5,6. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a >128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods3. Several in vitro models have been used previously to study P. aeruginosa biofilms7, 8. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung9 . In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa2 and affect antibiotic susceptibility10. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.
Immunology, Issue 64, Microbiology, Pseudomonas aeruginosa, antimicrobial susceptibility, artificial sputum media, lung infection, cystic fibrosis, diagnostics, plankton
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Play Button
Interview: Protein Folding and Studies of Neurodegenerative Diseases
Authors: Susan Lindquist.
Institutions: MIT - Massachusetts Institute of Technology.
In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders. The problem of the protein folding is at the core of the modern biology. In addition to their traditional biochemical functions, proteins can mediate transfer of biological information and therefore can be considered a genetic material. This recently discovered function of proteins has important implications for studies of human disorders. Dr. Lindquist also describes current experimental approaches to investigate the mechanism of neurodegenerative diseases based on genetic studies in model organisms.
Neuroscience, issue 17, protein folding, brain, neuron, prion, neurodegenerative disease, yeast, screen, Translational Research
Play Button
Electroporation of Mycobacteria
Authors: Renan Goude, Tanya Parish.
Institutions: Barts and the London School of Medicine and Dentistry, Barts and the London School of Medicine and Dentistry.
High efficiency transformation is a major limitation in the study of mycobacteria. The genus Mycobacterium can be difficult to transform; this is mainly caused by the thick and waxy cell wall, but is compounded by the fact that most molecular techniques have been developed for distantly-related species such as Escherichia coli and Bacillus subtilis. In spite of these obstacles, mycobacterial plasmids have been identified and DNA transformation of many mycobacterial species have now been described. The most successful method for introducing DNA into mycobacteria is electroporation. Many parameters contribute to successful transformation; these include the species/strain, the nature of the transforming DNA, the selectable marker used, the growth medium, and the conditions for the electroporation pulse. Optimized methods for the transformation of both slow- and fast-grower are detailed here. Transformation efficiencies for different mycobacterial species and with various selectable markers are reported.
Microbiology, Issue 15, Springer Protocols, Mycobacteria, Electroporation, Bacterial Transformation, Transformation Efficiency, Bacteria, Tuberculosis, M. Smegmatis, Springer Protocols
Play Button
Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes
Authors: Anthony A. James.
Institutions: University of California, Irvine (UCI).
In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.
Cellular Biology, Issue 5, mosquito, malaria, dengue fever, genetics, infectious disease, Translational Research
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.