JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Analysis of the A-U rich hairpin from the intergenic region of tospovirus S RNA as target and inducer of RNA silencing.
PLoS ONE
PUBLISHED: 01-01-2014
Earlier work indicated that Tomato spotted wilt virus (TSWV) messenger transcripts, and not the (anti)genomic RNAs, are targeted by the RNA silencing machinery. Here, the predicted AU-rich hairpin (HP) structure encoded by the intergenic region (IGR) of the TSWV S RNA, and present at the 3' end of viral mRNAs, was analyzed as a target and inducer for RNA silencing. Virus-derived siRNAs (vsiRNAs) purified from virus infected plants were found to derive from all three genomic RNA segments but predominantly the ambisense M and S RNAs. Further profiling on the S RNA sequence revealed that vsiRNAs were found from almost the entire S RNA sequence, except the IGR from where hardly any vsiRNAs were found. Similar profiles were observed with the distantly related Tomato yellow ring tospovirus (TYRV). Dicer cleavage assays using Drosophila melanogaster (Dm) embryo extracts showed that synthetic transcripts of the IGR-HP region were recognized as substrate for Dicer. Transient agroinfiltration assays of a GFP-sensor construct containing the IGR-HP sequence at its 3' UTR (GFP-HP) did not show more rapid/strong silencing and profiling of the corresponding siRNAs, generated outside the context of a viral infection, still revealed relatively low levels of IGR-HP-derived siRNAs. These data support the idea that the IGR-HP is a weak inducer of RNA silencing and only plays a minor role in the amplification of a strong antiviral RNAi response.
Authors: Minghui Yue, John Lalith Charles Richard, Norishige Yamada, Akiyo Ogawa, Yuya Ogawa.
Published: 11-26-2014
ABSTRACT
Combining RNA fluorescent in situ hybridization (FISH) with immunofluorescence (immuno-FISH) creates a technique that can be employed at the single cell level to detect the spatial dynamics of RNA localization with simultaneous insight into the localization of proteins, epigenetic modifications and other details which can be highlighted by immunofluorescence. X-chromosome inactivation is a paradigm for long non-coding RNA (lncRNA)-mediated gene silencing. X-inactive specific transcript (Xist) lncRNA accumulation (called an Xist cloud) on one of the two X-chromosomes in mammalian females is a critical step to initiate X-chromosome inactivation. Xist RNA directly or indirectly interacts with various chromatin-modifying enzymes and introduces distinct epigenetic landscapes to the inactive X-chromosome (Xi). One known epigenetic hallmark of the Xi is the Histone H3 trimethyl-lysine 27 (H3K27me3) modification. Here, we describe a simple and quick immuno-FISH protocol for detecting Xist RNA using RNA FISH with multiple oligonucleotide probes coupled with immunofluorescence of H3K27me3 to examine the localization of Xist RNA and associated epigenetic modifications. Using oligonucleotide probes results in a shorter incubation time and more sensitive detection of Xist RNA compared to in vitro transcribed RNA probes (riboprobes). This protocol provides a powerful tool for understanding the dynamics of lncRNAs and its associated epigenetic modification, chromatin structure, nuclear organization and transcriptional regulation.
26 Related JoVE Articles!
Play Button
Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture
Authors: Bernd Rädle, Andrzej J. Rutkowski, Zsolt Ruzsics, Caroline C. Friedel, Ulrich H. Koszinowski, Lars Dölken.
Institutions: Max von Pettenkofer Institute, University of Cambridge, Ludwig-Maximilians-University Munich.
The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by rigorous purification of newly transcribed RNA using thiol-specific biotinylation and streptavidin-coated magnetic beads. It is applicable to a broad range of organisms including vertebrates, Drosophila, and yeast. We successfully applied 4sU-tagging to study real-time kinetics of transcription factor activities, provide precise measurements of RNA half-lives, and obtain novel insights into the kinetics of RNA processing. Finally, computational modeling can be employed to generate an integrated, comprehensive analysis of the underlying molecular mechanisms.
Genetics, Issue 78, Cellular Biology, Molecular Biology, Microbiology, Biochemistry, Eukaryota, Investigative Techniques, Biological Phenomena, Gene expression profiling, RNA synthesis, RNA processing, RNA decay, 4-thiouridine, 4sU-tagging, microarray analysis, RNA-seq, RNA, DNA, PCR, sequencing
50195
Play Button
RNAi-mediated Double Gene Knockdown and Gustatory Perception Measurement in Honey Bees (Apis mellifera)
Authors: Ying Wang, Nicholas Baker, Gro V. Amdam.
Institutions: Arizona State University , Norwegian University of Life Sciences.
This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception. RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species. The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee's behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees.
Neuroscience, Issue 77, Genetics, Behavior, Neurobiology, Molecular Biology, Chemistry, Biochemistry, biology (general), genetics (animal and plant), animal biology, RNA interference, RNAi, double stranded RNA, dsRNA, double gene knockdown, vitellogenin gene, vg, ultraspiracle gene, usp, vitellogenin protein, Vg, ultraspiracle protein, USP, green fluorescence protein, GFP, gustatory perception, proboscis extension response, PER, honey bees, Apis mellifera, animal model, assay
50446
Play Button
VIGS-Mediated Forward Genetics Screening for Identification of Genes Involved in Nonhost Resistance
Authors: Muthappa Senthil-Kumar, Hee-Kyung Lee, Kirankumar S. Mysore.
Institutions: The Samuel Roberts Noble Foundation.
Nonhost disease resistance of plants against bacterial pathogens is controlled by complex defense pathways. Understanding this mechanism is important for developing durable disease-resistant plants against wide range of pathogens. Virus-induced gene silencing (VIGS)-based forward genetics screening is a useful approach for identification of plant defense genes imparting nonhost resistance. Tobacco rattle virus (TRV)-based VIGS vector is the most efficient VIGS vector to date and has been efficiently used to silence endogenous target genes in Nicotiana benthamiana. In this manuscript, we demonstrate a forward genetics screening approach for silencing of individual clones from a cDNA library in N. benthamiana and assessing the response of gene silenced plants for compromised nonhost resistance against nonhost pathogens, Pseudomonas syringae pv. tomato T1, P. syringae pv. glycinea, and X. campestris pv. vesicatoria. These bacterial pathogens are engineered to express GFPuv protein and their green fluorescing colonies can be seen by naked eye under UV light in the nonhost pathogen inoculated plants if the silenced target gene is involved in imparting nonhost resistance. This facilitates reliable and faster identification of gene silenced plants susceptible to nonhost pathogens. Further, promising candidate gene information can be known by sequencing the plant gene insert in TRV vector. Here we demonstrate the high throughput capability of VIGS-mediated forward genetics to identify genes involved in nonhost resistance. Approximately, 100 cDNAs can be individually silenced in about two to three weeks and their relevance in nonhost resistance against several nonhost bacterial pathogens can be studied in a week thereafter. In this manuscript, we enumerate the detailed steps involved in this screening. VIGS-mediated forward genetics screening approach can be extended not only to identifying genes involved in nonhost resistance but also to studying genes imparting several biotic and abiotic stress tolerances in various plant species.
Virology, Issue 78, Plant Biology, Infection, Genetics, Molecular Biology, Cellular Biology, Physiology, Genomics, Pathology, plants, Nonhost Resistance, Virus-induced gene silencing, VIGS, disease resistance, gene silencing, Pseudomonas, GFPuv, sequencing, virus, Nicotiana benthamiana, plant model
51033
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
51091
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
51204
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
51285
Play Button
Analysis of RNA Processing Reactions Using Cell Free Systems: 3' End Cleavage of Pre-mRNA Substrates in vitro
Authors: Joseph Jablonski, Mark Clementz, Kevin Ryan, Susana T. Valente.
Institutions: The Scripps Research Institute, City College of New York.
The 3’ end of mammalian mRNAs is not formed by abrupt termination of transcription by RNA polymerase II (RNPII). Instead, RNPII synthesizes precursor mRNA beyond the end of mature RNAs, and an active process of endonuclease activity is required at a specific site. Cleavage of the precursor RNA normally occurs 10-30 nt downstream from the consensus polyA site (AAUAAA) after the CA dinucleotides. Proteins from the cleavage complex, a multifactorial protein complex of approximately 800 kDa, accomplish this specific nuclease activity. Specific RNA sequences upstream and downstream of the polyA site control the recruitment of the cleavage complex. Immediately after cleavage, pre-mRNAs are polyadenylated by the polyA polymerase (PAP) to produce mature stable RNA messages. Processing of the 3’ end of an RNA transcript may be studied using cellular nuclear extracts with specific radiolabeled RNA substrates. In sum, a long 32P-labeled uncleaved precursor RNA is incubated with nuclear extracts in vitro, and cleavage is assessed by gel electrophoresis and autoradiography. When proper cleavage occurs, a shorter 5’ cleaved product is detected and quantified. Here, we describe the cleavage assay in detail using, as an example, the 3’ end processing of HIV-1 mRNAs.
Infectious Diseases, Issue 87, Cleavage, Polyadenylation, mRNA processing, Nuclear extracts, 3' Processing Complex
51309
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Nanomanipulation of Single RNA Molecules by Optical Tweezers
Authors: William Stephenson, Gorby Wan, Scott A. Tenenbaum, Pan T. X. Li.
Institutions: University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York.
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Bioengineering, Issue 90, RNA folding, single-molecule, optical tweezers, nanomanipulation, RNA secondary structure, RNA tertiary structure
51542
Play Button
Real-time Imaging of Single Engineered RNA Transcripts in Living Cells Using Ratiometric Bimolecular Beacons
Authors: Yang Song, Xuemei Zhang, Lingyan Huang, Mark A. Behlke, Andrew Tsourkas.
Institutions: University of Pennsylvania, Integrated DNA Technologies, Inc..
The growing realization that both the temporal and spatial regulation of gene expression can have important consequences on cell function has led to the development of diverse techniques to visualize individual RNA transcripts in single living cells. One promising technique that has recently been described utilizes an oligonucleotide-based optical probe, ratiometric bimolecular beacon (RBMB), to detect RNA transcripts that were engineered to contain at least four tandem repeats of the RBMB target sequence in the 3’-untranslated region. RBMBs are specifically designed to emit a bright fluorescent signal upon hybridization to complementary RNA, but otherwise remain quenched. The use of a synthetic probe in this approach allows photostable, red-shifted, and highly emissive organic dyes to be used for imaging. Binding of multiple RBMBs to the engineered RNA transcripts results in discrete fluorescence spots when viewed under a wide-field fluorescent microscope. Consequently, the movement of individual RNA transcripts can be readily visualized in real-time by taking a time series of fluorescent images. Here we describe the preparation and purification of RBMBs, delivery into cells by microporation and live-cell imaging of single RNA transcripts.
Genetics, Issue 90, RNA, imaging, single molecule, fluorescence, living cell
51544
Play Button
RNA Isolation from Mouse Pancreas: A Ribonuclease-rich Tissue
Authors: Ana Clara P. Azevedo-Pouly, Ola A. Elgamal, Thomas D. Schmittgen.
Institutions: The Ohio State University.
Isolation of high-quality RNA from ribonuclease-rich tissue such as mouse pancreas presents a challenge. As a primary function of the pancreas is to aid in digestion, mouse pancreas may contain as much a 75 mg of ribonuclease. We report modifications of standard phenol/guanidine thiocyanate lysis reagent protocols to isolate RNA from mouse pancreas. Guanidine thiocyanate is a strong protein denaturant and will effectively disrupt the activity of ribonuclease under most conditions. However, critical modifications to standard protocols are necessary to successfully isolate RNA from ribonuclease-rich tissues. Key steps include a high lysis reagent to tissue ratio, removal of undigested tissue prior to phase separation and inclusion of a ribonuclease inhibitor to the RNA solution. Using these and other modifications, we routinely isolate RNA with RNA Integrity Number (RIN) greater than 7. The isolated RNA is of suitable quality for routine gene expression analysis. Adaptation of this protocol to isolate RNA from ribonuclease rich tissues besides the pancreas should be readily achievable.
Molecular Biology, Issue 90, pancreas, mouse, RNA integrity, ribonuclease, RNA isolation, gene expression
51779
Play Button
In ovo Electroporation of miRNA-based Plasmids in the Developing Neural Tube and Assessment of Phenotypes by DiI Injection in Open-book Preparations
Authors: Nicole H. Wilson, Esther T. Stoeckli.
Institutions: University of Zurich.
Commissural dI1 neurons have been extensively studied to elucidate the mechanisms underlying axon guidance during development1,2. These neurons are located in the dorsal spinal cord and send their axons along stereotyped trajectories. Commissural axons initially project ventrally towards and then across the floorplate. After crossing the midline, these axons make a sharp rostral turn and project longitudinally towards the brain. Each of these steps is regulated by the coordinated activities of attractive and repulsive guidance cues. The correct interpretation of these cues is crucial to the guidance of axons along their demarcated pathway. Thus, the physiological contribution of a particular molecule to commissural axon guidance is ideally investigated in the context of the living embryo. Accordingly, gene knockdown in vivo must be precisely controlled in order to carefully distinguish axon guidance activities of genes that may play multiple roles during development. Here, we describe a method to knockdown gene expression in the chicken neural tube in a cell type-specific, traceable manner. We use novel plasmid vectors3 harboring cell type-specific promoters/enhancers that drive the expression of a fluorescent protein marker, followed directly by a miR30-RNAi transcript4 (located within the 3'-UTR of the cDNA encoding the fluorescent protein) (Figure 1). When electroporated into the developing neural tube, these vectors elicit efficient downregulation of gene expression and express bright fluorescent marker proteins to enable direct tracing of the cells experiencing knockdown3. Mixing different RNAi vectors prior to electroporation allows the simultaneous knockdown of two or more genes in independent regions of the spinal cord. This permits complex cellular and molecular interactions to be examined during development, in a manner that is fast, simple, precise and inexpensive. In combination with DiI tracing of commissural axon trajectories in open-book preparations5, this method is a useful tool for in vivo studies of the cellular and molecular mechanisms of commissural axon growth and guidance. In principle, any promoter/enhancer could be used, potentially making the technique more widely applicable for in vivo studies of gene function during development6. This video first demonstrates how to handle and window eggs, the injection of DNA plasmids into the neural tube and the electroporation procedure. To investigate commissural axon guidance, the spinal cord is removed from the embryo as an open-book preparation, fixed, and injected with DiI to enable axon pathways to be traced. The spinal cord is mounted between coverslips and visualized using confocal microscopy.
Neuroscience, Issue 68, Developmental Biology, Molecular Biology, Genetics, Spinal cord, neural development, microRNA, chicken, in ovo electroporation, RNA interference, knock down, neural circuit, dissection, open-book preparation
4384
Play Button
Substrate Generation for Endonucleases of CRISPR/Cas Systems
Authors: Judith Zoephel, Srivatsa Dwarakanath, Hagen Richter, André Plagens, Lennart Randau.
Institutions: Max-Planck-Institute for Terrestrial Microbiology.
The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) 1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4. Here, we present methods to generate crRNAs and precursor-cRNAs for the study of Cas endoribonucleases. Different endonuclease assays require either short repeat sequences that can directly be synthesized as RNA oligonucleotides or longer crRNA and pre-crRNA sequences that are generated via in vitro T7 RNA polymerase run-off transcription. This methodology allows the incorporation of radioactive nucleotides for the generation of internally labeled endonuclease substrates and the creation of synthetic or mutant crRNAs. Cas6 endonuclease activity is utilized to mature pre-crRNAs into crRNAs with 5'-hydroxyl and a 2',3'-cyclic phosphate termini.
Molecular biology, Issue 67, CRISPR/Cas, endonuclease, in vitro transcription, crRNA, Cas6
4277
Play Button
Reverse Genetics Mediated Recovery of Infectious Murine Norovirus
Authors: Armando Arias, Luis Ureña, Lucy Thorne, Muhammad A. Yunus, Ian Goodfellow.
Institutions: Imperial College London .
Human noroviruses are responsible for most cases of human gastroenteritis (GE) worldwide and are recurrent problem in environments where close person-to-person contact cannot be avoided 1, 2. During the last few years an increase in the incidence of outbreaks in hospitals has been reported, causing significant disruptions to their operational capacity as well as large economic losses. The identification of new antiviral approaches has been limited due to the inability of human noroviruses to complete a productive infection in cell culture 3. The recent isolation of a murine norovirus (MNV), closely related to human norovirus 4 but which can be propagated in cells 5 has opened new avenues for the investigation of these pathogens 6, 7. MNV replication results in the synthesis of new positive sense genomic and subgenomic RNA molecules, the latter of which corresponds to the last third of the viral genome (Figure 1). MNV contains four different open reading frames (ORFs), of which ORF1 occupies most of the genome and encodes seven non-structural proteins (NS1-7) released from a polyprotein precursor. ORF2 and ORF3 are contained within the subgenomic RNA region and encode the capsid proteins (VP1 and VP2, respectively) (Figure 1). Recently, we have identified that additional ORF4 overlapping ORF2 but in a different reading frame is functional and encodes for a mitochondrial localised virulence factor (VF1) 8. Replication for positive sense RNA viruses, including noroviruses, takes place in the cytoplasm resulting in the synthesis of new uncapped RNA genomes. To promote viral translation, viruses exploit different strategies aimed at recruiting the cellular protein synthesis machinery 9-11. Interestingly, norovirus translation is driven by the multifunctional viral protein-primer VPg covalently linked to the 5' end of both genomic and subgenomic RNAs 12-14. This sophisticated mechanism of translation is likely to be a major factor in the limited efficiency of viral recovery by conventional reverse genetics approaches. Here we report two different strategies based on the generation of murine norovirus-1 (referred to as MNV herewith) transcripts capped at the 5' end. One of the methods involves both in vitro synthesis and capping of viral RNA, whereas the second approach entails the transcription of MNV cDNA in cells expressing T7 RNA polymerase. The availability of these reverse genetics systems for the study of MNV and a small animal model has provided an unprecedented ability to dissect the role of viral sequences in replication and pathogenesis 15-17.
Virology, Issue 64, Immunology, Genetics, Infection, RNA virus, VPg, RNA capping, T7 RNA polymerase, calicivirus, norovirus
4145
Play Button
Laser Microdissection Applied to Gene Expression Profiling of Subset of Cells from the Drosophila Wing Disc
Authors: Rosario Vicidomini, Giuseppe Tortoriello, Maria Furia, Gianluca Polese.
Institutions: University of Naples.
Heterogeneous nature of tissues has proven to be a limiting factor in the amount of information that can be generated from biological samples, compromising downstream analyses. Considering the complex and dynamic cellular associations existing within many tissues, in order to recapitulate the in vivo interactions thorough molecular analysis one must be able to analyze specific cell populations within their native context. Laser-mediated microdissection can achieve this goal, allowing unambiguous identification and successful harvest of cells of interest under direct microscopic visualization while maintaining molecular integrity. We have applied this technology to analyse gene expression within defined areas of the developing Drosophila wing disc, which represents an advantageous model system to study growth control, cell differentiation and organogenesis. Larval imaginal discs are precociously subdivided into anterior and posterior, dorsal and ventral compartments by lineage restriction boundaries. Making use of the inducible GAL4-UAS binary expression system, each of these compartments can be specifically labelled in transgenic flies expressing an UAS-GFP transgene under the control of the appropriate GAL4-driver construct. In the transgenic discs, gene expression profiling of discrete subsets of cells can precisely be determined after laser-mediated microdissection, using the fluorescent GFP signal to guide laser cut. Among the variety of downstream applications, we focused on RNA transcript profiling after localised RNA interference (RNAi). With the advent of RNAi technology, GFP labelling can be coupled with localised knockdown of a given gene, allowing to determinate the transcriptional response of a discrete cell population to the specific gene silencing. To validate this approach, we dissected equivalent areas of the disc from the posterior (labelled by GFP expression), and the anterior (unlabelled) compartment upon regional silencing in the P compartment of an otherwise ubiquitously expressed gene. RNA was extracted from microdissected silenced and unsilenced areas and comparative gene expression profiling determined by quantitative real-time RT-PCR. We show that this method can effectively be applied for accurate transcriptomics of subsets of cells within the Drosophila imaginal discs. Indeed, while massive disc preparation as source of RNA generally assumes cell homogeneity, it is well known that transcriptional expression can vary greatly within these structures in consequence of positional information. Using localized fluorescent GFP signal to guide laser cut, more accurate transcriptional analyses can be performed and profitably applied to disparate applications, including transcript profiling of distinct cell lineages within their native context.
Developmental Biology, Issue 38, Drosophila, Imaginal discs, Laser microdissection, Gene expression, Transcription profiling, Regulatory pathways , in vivo RNAi, GAL4-UAS, GFP labelling, Positional information
1895
Play Button
MISSION esiRNA for RNAi Screening in Mammalian Cells
Authors: Mirko Theis, Frank Buchholz.
Institutions: Max Planck Institute of Molecular Cell Biology and Genetics.
RNA interference (RNAi) is a basic cellular mechanism for the control of gene expression. RNAi is induced by short double-stranded RNAs also known as small interfering RNAs (siRNAs). The short double-stranded RNAs originate from longer double stranded precursors by the activity of Dicer, a protein of the RNase III family of endonucleases. The resulting fragments are components of the RNA-induced silencing complex (RISC), directing it to the cognate target mRNA. RISC cleaves the target mRNA thereby reducing the expression of the encoded protein1,2,3. RNAi has become a powerful and widely used experimental method for loss of gene function studies in mammalian cells utilizing small interfering RNAs. Currently two main methods are available for the production of small interfering RNAs. One method involves chemical synthesis, whereas an alternative method employs endonucleolytic cleavage of target specific long double-stranded RNAs by RNase III in vitro. Thereby, a diverse pool of siRNA-like oligonucleotides is produced which is also known as endoribonuclease-prepared siRNA or esiRNA. A comparison of efficacy of chemically derived siRNAs and esiRNAs shows that both triggers are potent in target-gene silencing. Differences can, however, be seen when comparing specificity. Many single chemically synthesized siRNAs produce prominent off-target effects, whereas the complex mixture inherent in esiRNAs leads to a more specific knockdown10. In this study, we present the design of genome-scale MISSION esiRNA libraries and its utilization for RNAi screening exemplified by a DNA-content screen for the identification of genes involved in cell cycle progression. We show how to optimize the transfection protocol and the assay for screening in high throughput. We also demonstrate how large data-sets can be evaluated statistically and present methods to validate primary hits. Finally, we give potential starting points for further functional characterizations of validated hits.
Cellular Biology, Issue 39, MISSION, esiRNA, RNAi, cell cycle, high throughput screening
2008
Play Button
Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton
Authors: Xiquan Gao, Robert C. Britt Jr., Libo Shan, Ping He.
Institutions: Texas A&M University, Texas A&M University.
Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation1. To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation2,3. Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies3,4. As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development6, and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves7, providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton.
Plant Biology, Issue 54, Agrobacterium, Cotton, Functional Genomics, Virus-Induced Gene Silencing
2938
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
2953
Play Button
Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery
Authors: Jiehua Zhou, Haitang Li, Jane Zhang, Swiderski Piotr, John Rossi.
Institutions: Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and clinical translation of siRNAs is efficient delivery. Particularly, considering the safety and efficacy of RNAi-based therapeutics, it is highly desirable to develop a targeted intracellular siRNA delivery approach to specific cell populations or tissues. The HIV-1 gp120 protein, a glycoprotein envelope on the surface of HIV-1, plays an important role in viral entry into CD4 cells. The interaction of gp120 and CD4 that triggers HIV-1 entry and initiates cell fusion has been validated as a clinically relevant anti-viral strategy for drug discovery. Herein, we firstly discuss the selection and identification of 2'-F modified anti-HIV gp120 RNA aptamers. Using a conventional nitrocellulose filter SELEX method, several new aptamers with nanomolar affinity were isolated from a 50 random nt RNA library. In order to successfully obtain bound species with higher affinity, the selection stringency is carefully controlled by adjusting the conditions. The selected aptamers can specifically bind and be rapidly internalized into cells expressing the HIV-1 envelope protein. Additionally, the aptamers alone can neutralize HIV-1 infectivity. Based upon the best aptamer A-1, we also create a novel dual inhibitory function anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. Further, we utilize the gp120 aptamer-siRNA chimeras for cell-type specific delivery of the siRNA into HIV-1 infected cells. This dual function chimera shows considerable potential for combining various nucleic acid therapeutic agents (aptamer and siRNA) in suppressing HIV-1 infection, making the aptamer-siRNA chimeras attractive therapeutic candidates for patients failing highly active antiretroviral therapy (HAART).
Immunology, Issue 52, SELEX (Systematic Evolution of Ligands by EXponential enrichment), RNA aptamer, HIV-1 gp120, RNAi (RNA interference), siRNA (small interfering RNA), cell-type specific delivery
2954
Play Button
Dissecting Host-virus Interaction in Lytic Replication of a Model Herpesvirus
Authors: Xiaonan Dong, Pinghui Feng.
Institutions: UT Southwestern Medical Center, UT Southwestern Medical Center.
In response to viral infection, a host develops various defensive responses, such as activating innate immune signaling pathways that lead to antiviral cytokine production1,2. In order to colonize the host, viruses are obligate to evade host antiviral responses and manipulate signaling pathways. Unraveling the host-virus interaction will shed light on the development of novel therapeutic strategies against viral infection. Murine γHV68 is closely related to human oncogenic Kaposi's sarcoma-associated herpesvirus and Epsten-Barr virus3,4. γHV68 infection in laboratory mice provides a tractable small animal model to examine the entire course of host responses and viral infection in vivo, which are not available for human herpesviruses. In this protocol, we present a panel of methods for phenotypic characterization and molecular dissection of host signaling components in γHV68 lytic replication both in vivo and ex vivo. The availability of genetically modified mouse strains permits the interrogation of the roles of host signaling pathways during γHV68 acute infection in vivo. Additionally, mouse embryonic fibroblasts (MEFs) isolated from these deficient mouse strains can be used to further dissect roles of these molecules during γHV68 lytic replication ex vivo. Using virological and molecular biology assays, we can pinpoint the molecular mechanism of host-virus interactions and identify host and viral genes essential for viral lytic replication. Finally, a bacterial artificial chromosome (BAC) system facilitates the introduction of mutations into the viral factor(s) that specifically interrupt the host-virus interaction. Recombinant γHV68 carrying these mutations can be used to recapitulate the phenotypes of γHV68 lytic replication in MEFs deficient in key host signaling components. This protocol offers an excellent strategy to interrogate host-pathogen interaction at multiple levels of intervention in vivo and ex vivo. Recently, we have discovered that γHV68 usurps an innate immune signaling pathway to promote viral lytic replication5. Specifically, γHV68 de novo infection activates the immune kinase IKKβ and activated IKKβ phosphorylates the master viral transcription factor, replication and transactivator (RTA), to promote viral transcriptional activation. In doing so, γHV68 efficiently couples its transcriptional activation to host innate immune activation, thereby facilitating viral transcription and lytic replication. This study provides an excellent example that can be applied to other viruses to interrogate host-virus interaction.
Immunology, Issue 56, herpesvirus, gamma herpesvirus 68, γHV68, signaling pathways, host-virus interaction, viral lytic replication
3140
Play Button
Simple and Robust in vivo and in vitro Approach for Studying Virus Assembly
Authors: Sonali Chaturvedi, Bongsu Jung, Sharad Gupta, Bahman Anvari, A.L.N. Rao.
Institutions: University of California, Riverside , University of California, Riverside .
In viruses with positive-sense RNA genomes pathogenic to humans, animals and plants, progeny encapsidation into mature and stable virions is a cardinal phase during establishment of infection in a given host. Consequently, study of encapsidation deciphers the information regarding the know-how of the mechanism regulating virus assembly to form infectious virions. Such information is vital in formulating novel methods of curbing virus spread and disease control. Virus encapsidation can be studied in vivo and in vitro. Genome encapsidation in vivo is a highly regulated selective process involving macromolecular interactions and subcellular compartmentalization. Therefore, study leading to dissect events encompassing virus encapsidation in vivo would provide basic knowledge to understand how viruses proliferate and assemble. Recently in vitro encapsidation has been exploited for the research in the area of biomedical imaging and therapeutic applications. Non-enveloped plant viruses stand far ahead in the venture of in vitro encapsidation of the negatively charged foreign material. Brome mosaic virus (BMV), a non-enveloped multicomponent RNA virus pathogenic to plants, has been used as a model system for studying genome packaging in vivo and in vitro. For encapsidation assays in Nicotiana benthamiana plants, Agrobacterium -mediated transient expression, refer to as agroinfiltration, is an efficient and robust technique for the synchronized delivery and expression of multiple components to the same cell. In this approach, a suspension of Agrobacterium tumefaciens cells carrying binary plasmid vectors carrying cDNAs of desiredviral mRNAs is infiltrated into the intercellular space withina leaf using nothing more sophisticated than a 1 ml disposable syringe (without needle). This process results in the transfer of DNA insert into plant cells; the T-DNA insert remains transiently in the nucleus and is then transcribed by the host polymerase II, leading to the transient expression. The resulting mRNA transcript (capped and polyadenylated) is then exported to the cytoplasm for translation. After approximately 24 to 48 hours of incubation,sections of infiltrated leaves can be sampled for microscopyor biochemical analyses. Agroinfiltration permits large numbers (hundreds to thousands) of cells to be transfected simultaneously. For in vitro encapsidation, purified virions of BMV are dissociated into capsid protein by dialyzing against dissociation buffer containing calcium chloride followed by removal of RNA and un-dissociated virions by centrifugation. Genome depleted capsid protein subunits are then reassembled with desired viral genome components or non-viral components such as indocyanine dye.
Immunology, Issue 61, Agrobacterium, Brome mosaic virus, Nicotiana benthamiana, encapsidation, dissociation, in vitro assembly, Nano technology
3645
Play Button
TransFLP — A Method to Genetically Modify Vibrio cholerae Based on Natural Transformation and FLP-recombination
Authors: Melanie Blokesch.
Institutions: Ecole Polytechnique Fédérale de Lausanne (EPFL).
Several methods are available to manipulate bacterial chromosomes1-3. Most of these protocols rely on the insertion of conditionally replicative plasmids (e.g. harboring pir-dependent or temperature-sensitive replicons1,2). These plasmids are integrated into bacterial chromosomes based on homology-mediated recombination. Such insertional mutants are often directly used in experimental settings. Alternatively, selection for plasmid excision followed by its loss can be performed, which for Gram-negative bacteria often relies on the counter-selectable levan sucrase enzyme encoded by the sacB gene4. The excision can either restore the pre-insertion genotype or result in an exchange between the chromosome and the plasmid-encoded copy of the modified gene. A disadvantage of this technique is that it is time-consuming. The plasmid has to be cloned first; it requires horizontal transfer into V. cholerae (most notably by mating with an E. coli donor strain) or artificial transformation of the latter; and the excision of the plasmid is random and can either restore the initial genotype or create the desired modification if no positive selection is exerted. Here, we present a method for rapid manipulation of the V. cholerae chromosome(s)5 (Figure 1). This TransFLP method is based on the recently discovered chitin-mediated induction of natural competence in this organism6 and other representative of the genus Vibrio such as V. fischeri7. Natural competence allows the uptake of free DNA including PCR-generated DNA fragments. Once taken up, the DNA recombines with the chromosome given the presence of a minimum of 250-500 bp of flanking homologous region8. Including a selection marker in-between these flanking regions allows easy detection of frequently occurring transformants. This method can be used for different genetic manipulations of V. cholerae and potentially also other naturally competent bacteria. We provide three novel examples on what can be accomplished by this method in addition to our previously published study on single gene deletions and the addition of affinity-tag sequences5. Several optimization steps concerning the initial protocol of chitin-induced natural transformation6 are incorporated in this TransFLP protocol. These include among others the replacement of crab shell fragments by commercially available chitin flakes8, the donation of PCR-derived DNA as transforming material9, and the addition of FLP-recombination target sites (FRT)5. FRT sites allow site-directed excision of the selection marker mediated by the Flp recombinase10.
Immunology, Issue 68, Microbiology, Genetics, natural transformation, DNA uptake, FLP recombination, chitin, Vibrio cholerae
3761
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Using an Automated Cell Counter to Simplify Gene Expression Studies: siRNA Knockdown of IL-4 Dependent Gene Expression in Namalwa Cells
Authors: Adam M. McCoy, Claudia Litterst, Michelle L. Collins, Luis A. Ugozzoli.
Institutions: Bio-Rad Laboratories.
The use of siRNA mediated gene knockdown is continuing to be an important tool in studies of gene expression. siRNA studies are being conducted not only to study the effects of downregulating single genes, but also to interrogate signaling pathways and other complex interaction networks. These pathway analyses require both the use of relevant cellular models and methods that cause less perturbation to the cellular physiology. Electroporation is increasingly being used as an effective way to introduce siRNA and other nucleic acids into difficult to transfect cell lines and primary cells without altering the signaling pathway under investigation. There are multiple critical steps to a successful siRNA experiment, and there are ways to simplify the work while improving the data quality at several experimental stages. To help you get started with your siRNA mediated gene knockdown project, we will demonstrate how to perform a pathway study complete from collecting and counting the cells prior to electroporation through post transfection real-time PCR gene expression analysis. The following study investigates the role of the transcriptional activator STAT6 in IL-4 dependent gene expression of CCL17 in a Burkitt lymphoma cell line (Namalwa). The techniques demonstrated are useful for a wide range of siRNA-based experiments on both adherent and suspension cells. We will also show how to streamline cell counting with the TC10 automated cell counter, how to electroporate multiple samples simultaneously using the MXcell electroporation system, and how to simultaneously assess RNA quality and quantity with the Experion automated electrophoresis system.
Cellular Biology, Issue 38, Cell Counting, Gene Silencing, siRNA, Namalwa Cells, IL4, Gene Expression, Electroporation, Real Time PCR
1904
Play Button
Lentivirus Production
Authors: Xiaoyin Wang, Michael McManus.
Institutions: University of California, San Francisco - UCSF.
RNA interference (RNAi) is a system of gene silencing in living cells. In RNAi, genes homologous in sequence to short interfering RNAs (siRNA) are silenced at the post-transcriptional state. Short hairpin RNAs, precursors to siRNA, can be expressed using lentivirus, allowing for RNAi in a variety of cell types. Lentiviruses, such as the Human Immunodeficiency Virus, are capable to infecting both dividing and non-dividing cells. We will describe a procedure which to package lentiviruses. Packaging refers to the preparation of competent virus from DNA vectors. Lentiviral vector production systems are based on a 'split' system, where the natural viral genome has been split into individual helper plasmid constructs. This splitting of the different viral elements into four separate vectors diminishes the risk of creating a replication-capable virus by adventitious recombination of the lentiviral genome. Here, a vector containing the shRNA of interest and three packaging vectors (p-VSVG, pRSV, pMDL) are transiently transfected into human 293 cells. After at least a 48-hour incubation period, the virus containing supernatant is harvested and concentrated. Finally, virus titer is determined by reporter (fluorescent) expression with a flow cytometer.
Microbiology, Issue 32, Lentivirus, RNAi, viral titration, transfection, retrovirus, flow cytometry, split vector system, shRNA.
1499
Play Button
Virus-induced Gene Silencing (VIGS) in Nicotiana benthamiana and Tomato
Authors: Andrá C. Velásquez, Suma Chakravarthy, Gregory B. Martin.
Institutions: Cornell University, Boyce Thompson Institute for Plant Research.
RNA interference (RNAi) is a highly specific gene-silencing phenomenon triggered by dsRNA1. This silencing mechanism uses two major classes of RNA regulators: microRNAs, which are produced from non-protein coding genes and short interfering RNAs (siRNAs). Plants use RNAi to control transposons and to exert tight control over developmental processes such as flower organ formation and leaf development2,3,4. Plants also use RNAi to defend themselves against infection by viruses. Consequently, many viruses have evolved suppressors of gene silencing to allow their successful colonization of their host5. Virus-induced gene silencing (VIGS) is a method that takes advantage of the plant RNAi-mediated antiviral defense mechanism. In plants infected with unmodified viruses the mechanism is specifically targeted against the viral genome. However, with virus vectors carrying sequences derived from host genes, the process can be additionally targeted against the corresponding host mRNAs. VIGS has been adapted for high-throughput functional genomics in plants by using the plant pathogen Agrobacterium tumefaciens to deliver, via its Ti plasmid, a recombinant virus carrying the entire or part of the gene sequence targeted for silencing. Systemic virus spread and the endogenous plant RNAi machinery take care of the rest. dsRNAs corresponding to the target gene are produced and then cleaved by the ribonuclease Dicer into siRNAs of 21 to 24 nucleotides in length. These siRNAs ultimately guide the RNA-induced silencing complex (RISC) to degrade the target transcript2. Different vectors have been employed in VIGS and one of the most frequently used is based on tobacco rattle virus (TRV). TRV is a bipartite virus and, as such, two different A. tumefaciens strains are used for VIGS. One carries pTRV1, which encodes the replication and movement viral functions while the other, pTRV2, harbors the coat protein and the sequence used for VIGS6,7. Inoculation of Nicotiana benthamiana and tomato seedlings with a mixture of both strains results in gene silencing. Silencing of the endogenous phytoene desaturase (PDS) gene, which causes photobleaching, is used as a control for VIGS efficiency. It should be noted, however, that silencing in tomato is usually less efficient than in N. benthamiana. RNA transcript abundance of the gene of interest should always be measured to ensure that the target gene has efficiently been down-regulated. Nevertheless, heterologous gene sequences from N. benthamiana can be used to silence their respective orthologs in tomato and vice versa8.
Plant Biology, Issue 28, Virus-induced gene silencing (VIGS), RNA interference (RNAi), Tobacco Rattle Virus (TRV) vectors, Nicotiana benthamiana, tomato
1292
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.