JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.
PLoS ONE
PUBLISHED: 01-01-2014
Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.
Authors: Nicholas C Aflitto, Richard W Hofstetter, Reagan McGuire, David D Dunn, Kristen A Potter.
Published: 11-16-2014
ABSTRACT
Phloem tissues of pine are habitats for many thousands of organisms. Arthropods and microbes use phloem and cambium tissues to seek mates, lay eggs, rear young, feed, or hide from natural enemies or harsh environmental conditions outside of the tree. Organisms that persist within the phloem habitat are difficult to observe given their location under bark. We provide a technique to preserve intact phloem and prepare it for experimentation with invertebrates and microorganisms. The apparatus is called a ‘phloem sandwich’ and allows for the introduction and observation of arthropods, microbes, and other organisms. This technique has resulted in a better understanding of the feeding behaviors, life-history traits, reproduction, development, and interactions of organisms within tree phloem. The strengths of this technique include the use of inexpensive materials, variability in sandwich size, flexibility to re-open the sandwich or introduce multiple organisms through drilled holes, and the preservation and maintenance of phloem integrity. The phloem sandwich is an excellent educational tool for scientific discovery in both K-12 science courses and university research laboratories.
17 Related JoVE Articles!
Play Button
The Analysis of Purkinje Cell Dendritic Morphology in Organotypic Slice Cultures
Authors: Josef P. Kapfhammer, Olivia S. Gugger.
Institutions: University of Basel.
Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents 3. Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells 11 are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period 4. We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.
Neuroscience, Issue 61, dendritic development, dendritic branching, cerebellum, Purkinje cells
3637
Play Button
A Venturi Effect Can Help Cure Our Trees
Authors: Lucio Montecchio.
Institutions: Unversity of Padova.
In woody plants, xylem sap moves upwards through the vessels due to a decreasing gradient of water potential from the groundwater to the foliage. According to these factors and their dynamics, small amounts of sap-compatible liquids (i.e. pesticides) can be injected into the xylem system, reaching their target from inside. This endotherapic method, called "trunk injection" or "trunk infusion" (depending on whether the user supplies an external pressure or not), confines the applied chemicals only within the target tree, thereby making it particularly useful in urban situations. The main factors limiting wider use of the traditional drilling methods are related to negative side effects of the holes that must be drilled around the trunk circumference in order to gain access to the xylem vessels beneath the bark. The University of Padova (Italy) recently developed a manual, drill-free instrument with a small, perforated blade that enters the trunk by separating the woody fibers with minimal friction. Furthermore, the lenticular shaped blade reduces the vessels' cross section, increasing sap velocity and allowing the natural uptake of an external liquid up to the leaves, when transpiration rate is substantial. Ports partially close soon after the removal of the blade due to the natural elasticity and turgidity of the plant tissues, and the cambial activity completes the healing process in few weeks.
Environmental Sciences, Issue 80, Trunk injection, systemic injection, xylematic injection, endotherapy, sap flow, Bernoulli principle, plant diseases, pesticides, desiccants
51199
Play Button
A Technique to Screen American Beech for Resistance to the Beech Scale Insect (Cryptococcus fagisuga Lind.)
Authors: Jennifer L. Koch, David W. Carey.
Institutions: US Forest Service.
Beech bark disease (BBD) results in high levels of initial mortality, leaving behind survivor trees that are greatly weakened and deformed. The disease is initiated by feeding activities of the invasive beech scale insect, Cryptococcus fagisuga, which creates entry points for infection by one of the Neonectria species of fungus. Without scale infestation, there is little opportunity for fungal infection. Using scale eggs to artificially infest healthy trees in heavily BBD impacted stands demonstrated that these trees were resistant to the scale insect portion of the disease complex1. Here we present a protocol that we have developed, based on the artificial infestation technique by Houston2, which can be used to screen for scale-resistant trees in the field and in smaller potted seedlings and grafts. The identification of scale-resistant trees is an important component of management of BBD through tree improvement programs and silvicultural manipulation.
Environmental Sciences, Issue 87, Forestry, Insects, Disease Resistance, American beech, Fagus grandifolia, beech scale, Cryptococcus fagisuga, resistance, screen, bioassay
51515
Play Button
Fabrication of Nano-engineered Transparent Conducting Oxides by Pulsed Laser Deposition
Authors: Paolo Gondoni, Matteo Ghidelli, Fabio Di Fonzo, Andrea Li Bassi, Carlo S. Casari.
Institutions: Politecnico di Milano, Instituto Italiano di Tecnologia.
Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O2 pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO2, Al2O3, WO3 and Ag4O4.
Materials Science, Issue 72, Physics, Nanotechnology, Nanoengineering, Oxides, thin films, thin film theory, deposition and growth, Pulsed laser Deposition (PLD), Transparent conducting oxides (TCO), Hierarchically organized Nanostructured oxides, Al doped ZnO (AZO) films, enhanced light scattering capability, gases, deposition, nanoporus, nanoparticles, Van der Pauw, scanning electron microscopy, SEM
50297
Play Button
A Practical Guide to Phylogenetics for Nonexperts
Authors: Damien O'Halloran.
Institutions: The George Washington University.
Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts. We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteria and finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studies and also serve as an educational resource that could be incorporated into a classroom or teaching-lab.
Basic Protocol, Issue 84, phylogenetics, multiple sequence alignments, phylogenetic tree, BLAST executables, basic local alignment search tool, Bayesian models
50975
Play Button
Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry
Authors: Colin Ruprecht, Takayuki Tohge, Alisdair Fernie, Cara L. Mortimer, Amanda Kozlo, Paul D. Fraser, Norma Funke, Igor Cesarino, Ruben Vanholme, Wout Boerjan, Kris Morreel, Ingo Burgert, Notburga Gierlinger, Vincent Bulone, Vera Schneider, Andrea Stockero, Juan Navarro-Aviñó, Frank Pudel, Bart Tambuyser, James Hygate, Jon Bumstead, Louis Notley, Staffan Persson.
Institutions: Max Planck Institute for Molecular Plant Physiology, Royal Holloway, University of London, VIB, UGhent, ETH Zurich, EMPA, Royal Institute of Technology (KTH), European Research and Project Office GmbH, ABBA Gaia S.L., Pflanzenöltechnologie, Capax Environmental Services, Green Fuels, Neutral Consulting Ltd, University of Melbourne.
The global demand for food, feed, energy, and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Environmental Sciences, Issue 87, botany, plants, Biorefining, Poplar, Tobacco tree, Arabidopsis, suberin, lignin, cell walls, biomass, long-chain hydrocarbons, isoprenoids, Nicotiana glauca, systems biology
51393
Play Button
Design and Construction of an Urban Runoff Research Facility
Authors: Benjamin G. Wherley, Richard H. White, Kevin J. McInnes, Charles H. Fontanier, James C. Thomas, Jacqueline A. Aitkenhead-Peterson, Steven T. Kelly.
Institutions: Texas A&M University, The Scotts Miracle-Gro Company.
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems.
Environmental Sciences, Issue 90, urban runoff, landscapes, home lawns, turfgrass, St. Augustinegrass, carbon, nitrogen, phosphorus, sodium
51540
Play Button
A Protocol for Conducting Rainfall Simulation to Study Soil Runoff
Authors: Leonard C. Kibet, Louis S. Saporito, Arthur L. Allen, Eric B. May, Peter J. A. Kleinman, Fawzy M. Hashem, Ray B. Bryant.
Institutions: University of Maryland Eastern Shore, USDA - Agricultural Research Service, University of Maryland Eastern Shore.
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.
Environmental Sciences, Issue 86, Agriculture, Water Pollution, Water Quality, Technology, Industry, and Agriculture, Rainfall Simulator, Artificial Rainfall, Runoff, Packed Soil Boxes, Nonpoint Source, Urea
51664
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
50961
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
52131
Play Button
Profiling the Triacylglyceride Contents in Bat Integumentary Lipids by Preparative Thin Layer Chromatography and MALDI-TOF Mass Spectrometry
Authors: Evan L. Pannkuk, Thomas S. Risch, Brett J. Savary.
Institutions: Arkansas State University, Arkansas State University, Arkansas State University.
The mammalian integument includes sebaceous glands that secrete an oily material onto the skin surface. Sebum production is part of the innate immune system that is protective against pathogenic microbes. Abnormal sebum production and chemical composition are also a clinical symptom of specific skin diseases. Sebum contains a complex mixture of lipids, including triacylglycerides, which is species-specific. The broad chemical properties exhibited by diverse lipid classes hinder the specific determination of sebum composition. Analytical techniques for lipids typically require chemical derivatizations that are labor-intensive and increase sample preparation costs. This paper describes how to extract lipids from mammalian integument, separate broad lipid classes by thin-layer chromatography, and profile the triacylglyceride contents using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This robust method enables a direct determination of the triacylglyceride profiles among species and individuals, and it can be readily applied to any taxonomic group of mammals.
Chemistry, Issue 79, Molecular Biology, Biochemistry, Genetics, Anatomy, Physiology, Eukaryota, Bacterial Infections and Mycoses, Pathological Conditions, Signs and Symptoms, Diagnosis, Life Sciences (General), Triacylglyceride, Plagiopatagium, Integument, Sebaceous gland, White-Nose Syndrome, Matrix-Assisted Laser-desorption/Ionization Time-of-Flight Mass Spectrometry, Thin-Layer Chromatography, animal model
50757
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
Linking Predation Risk, Herbivore Physiological Stress and Microbial Decomposition of Plant Litter
Authors: Oswald J. Schmitz, Mark A. Bradford, Michael S. Strickland, Dror Hawlena.
Institutions: Yale University, Virginia Tech, The Hebrew University of Jerusalem.
The quantity and quality of detritus entering the soil determines the rate of decomposition by microbial communities as well as recycle rates of nitrogen (N) and carbon (C) sequestration1,2. Plant litter comprises the majority of detritus3, and so it is assumed that decomposition is only marginally influenced by biomass inputs from animals such as herbivores and carnivores4,5. However, carnivores may influence microbial decomposition of plant litter via a chain of interactions in which predation risk alters the physiology of their herbivore prey that in turn alters soil microbial functioning when the herbivore carcasses are decomposed6. A physiological stress response by herbivores to the risk of predation can change the C:N elemental composition of herbivore biomass7,8,9 because stress from predation risk increases herbivore basal energy demands that in nutrient-limited systems forces herbivores to shift their consumption from N-rich resources to support growth and reproduction to C-rich carbohydrate resources to support heightened metabolism6. Herbivores have limited ability to store excess nutrients, so stressed herbivores excrete N as they increase carbohydrate-C consumption7. Ultimately, prey stressed by predation risk increase their body C:N ratio7,10, making them poorer quality resources for the soil microbial pool likely due to lower availability of labile N for microbial enzyme production6. Thus, decomposition of carcasses of stressed herbivores has a priming effect on the functioning of microbial communities that decreases subsequent ability to of microbes to decompose plant litter6,10,11. We present the methodology to evaluate linkages between predation risk and litter decomposition by soil microbes. We describe how to: induce stress in herbivores from predation risk; measure those stress responses, and measure the consequences on microbial decomposition. We use insights from a model grassland ecosystem comprising the hunting spider predator (Pisuarina mira), a dominant grasshopper herbivore (Melanoplus femurrubrum),and a variety of grass and forb plants9.
Environmental Sciences, Issue 73, Microbiology, Plant Biology, Entomology, Organisms, Investigative Techniques, Biological Phenomena, Chemical Phenomena, Metabolic Phenomena, Microbiological Phenomena, Earth Resources and Remote Sensing, Life Sciences (General), Litter Decomposition, Ecological Stoichiometry, Physiological Stress and Ecosystem Function, Predation Risk, Soil Respiration, Carbon Sequestration, Soil Science, respiration, spider, grasshoper, model system
50061
Play Button
Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods
Authors: Razieh Karamzadeh, Mohamadreza Baghaban Eslaminejad, Reza Aflatoonian.
Institutions: Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
Developing wisdom teeth are easy-accessible source of stem cells during the adulthood which could be obtained by routine orthodontic treatments. Human pulp-derived stem cells (hDPSCs) possess high proliferation potential with multi-lineage differentiation capacity compare to the ordinary source of adult stem cells1-8; therefore, hDPSCs could be the good candidates for autologous transplantation in tissue engineering and regenerative medicine. Along with these benefits, possessing the mesenchymal stem cells (MSC) features, such as immunolodulatory effect, make hDPSCs more valuable, even in the case of allograft transplantation6,9,10. Therefore, the primary step for using this source of stem cells is to select the best protocol for isolating hDPSCs from pulp tissue. In order to achieve this goal, it is crucial to investigate the effect of various isolation conditions on different cellular behaviors, such as their common surface markers & also their differentiation capacity. Thus, here we separate human pulp tissue from impacted third molar teeth, and then used both existing protocols based on literature, for isolating hDPSCs,11-13 i.e. enzymatic dissociation of pulp tissue (DPSC-ED) or outgrowth from tissue explants (DPSC-OG). In this regards, we tried to facilitate the isolation methods by using dental diamond disk. Then, these cells characterized in terms of stromal-associated Markers (CD73, CD90, CD105 & CD44), hematopoietic/endothelial Markers (CD34, CD45 & CD11b), perivascular marker, like CD146 and also STRO-1. Afterwards, these two protocols were compared based on the differentiation potency into odontoblasts by both quantitative polymerase chain reaction (QPCR) & Alizarin Red Staining. QPCR were used for the assessment of the expression of the mineralization-related genes (alkaline phosphatase; ALP, matrix extracellular phosphoglycoprotein; MEPE & dentin sialophosphoprotein; DSPP).14
Stem Cell Biology, Issue 69, Medicine, Developmental Biology, Cellular Biology, Bioengineering, Dental pulp tissue, Human third molar, Human dental pulp stem cells, hDPSC, Odontoblasts, Outgrown stem cells, MSC, differentiation
4372
Play Button
Do-It-Yourself Device for Recovery of Cryopreserved Samples Accidentally Dropped into Cryogenic Storage Tanks
Authors: Rohini Mehta, Ancha Baranova, Aybike Birerdinc.
Institutions: George Mason University, Inova Health System, Research Center for Medical Genetics RAMS.
Liquid nitrogen is colorless, odorless, extremely cold (-196 °C) liquid kept under pressure. It is commonly used as a cryogenic fluid for long term storage of biological materials such as blood, cells and tissues 1,2. The cryogenic nature of liquid nitrogen, while ideal for sample preservation, can cause rapid freezing of live tissues on contact - known as 'cryogenic burn'2, which may lead to severe frostbite in persons closely involved in storage and retrieval of samples from Dewars. Additionally, as liquid nitrogen evaporates it reduces the oxygen concentration in the air and might cause asphyxia, especially in confined spaces2. In laboratories, biological samples are often stored in cryovials or cryoboxes stacked in stainless steel racks within the Dewar tanks1. These storage racks are provided with a long shaft to prevent boxes from slipping out from the racks and into the bottom of Dewars during routine handling. All too often, however, boxes or vials with precious samples slip out and sink to the bottom of liquid nitrogen filled tank. In such cases, samples could be tediously retrieved after transferring the liquid nitrogen into a spare container or discarding it. The boxes and vials can then be relatively safely recovered from emptied Dewar. However, the cryogenic nature of liquid nitrogen and its expansion rate makes sunken sample retrieval hazardous. It is commonly recommended by Safety Offices that sample retrieval be never carried out by a single person. Another alternative is to use commercially available cool grabbers or tongs to pull out the vials3. However, limited visibility within the dark liquid filled Dewars poses a major limitation in their use. In this article, we describe the construction of a Cryotolerant DIY retrieval device, which makes sample retrieval from Dewar containing cryogenic fluids both safe and easy.
Basic Protocols, Issue 63, Biological samples, Device, Liquid nitrogen, Dewar, Sample Retrieval
3903
Play Button
The ITS2 Database
Authors: Benjamin Merget, Christian Koetschan, Thomas Hackl, Frank Förster, Thomas Dandekar, Tobias Müller, Jörg Schultz, Matthias Wolf.
Institutions: University of Würzburg, University of Würzburg.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8. The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.
Genetics, Issue 61, alignment, internal transcribed spacer 2, molecular systematics, secondary structure, ribosomal RNA, phylogenetic tree, homology modeling, phylogeny
3806
Play Button
Analysis of Gene Expression in Emerald Ash Borer (Agrilus planipennis) Using Quantitative Real Time-PCR
Authors: Binny Bhandary, Swapna Priya Rajarapu, Loren Rivera-Vega, Omprakash Mittapalli.
Institutions: The Ohio State University.
Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America. EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1st-, 2nd-, 3rd-, 4th-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium.
Cellular Biology, Issue 39, quantitative real time-PCR, peritrophin, emerald ash borer, gene expression
1974
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.