JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect.
PLoS ONE
PUBLISHED: 01-01-2014
We have recently reported that interferon gamma receptor deficient (IFN?R-/-) allogeneic donor T cells result in significantly less graft-versus-host disease (GvHD) than wild-type (WT) T cells, while maintaining an anti-leukemia or graft-versus-leukemia (GvL) effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We demonstrated that IFN?R signaling regulates alloreactive T cell trafficking to GvHD target organs through expression of the chemokine receptor CXCR3 in alloreactive T cells. Since IFN?R signaling is mediated via JAK1/JAK2, we tested the effect of JAK1/JAK2 inhibition on GvHD. While we demonstrated that pharmacologic blockade of JAK1/JAK2 in WT T cells using the JAK1/JAK2 inhibitor, INCB018424 (Ruxolitinib), resulted in a similar effect to IFN?R-/- T cells both in vitro (reduction of CXCR3 expression in T cells) and in vivo (mitigation of GvHD after allo-HSCT), it remains to be determined if in vivo administration of INCB018424 will result in preservation of GvL while reducing GvHD. Here, we report that INCB018424 reduces GvHD and preserves the beneficial GvL effect in two different murine MHC-mismatched allo-HSCT models and using two different murine leukemia models (lymphoid leukemia and myeloid leukemia). In addition, prolonged administration of INCB018424 further improves survival after allo-HSCT and is superior to other JAK1/JAK2 inhibitors, such as TG101348 or AZD1480. These data suggest that pharmacologic inhibition of JAK1/JAK2 might be a promising therapeutic approach to achieve the beneficial anti-leukemia effect and overcome HLA-barriers in allo-HSCT. It might also be exploited in other diseases besides GvHD, such as organ transplant rejection, chronic inflammatory diseases and autoimmune diseases.
Authors: Bryan Fiema, Andrew C. Harris, Aurelie Gomez, Praechompoo Pongtornpipat, Kelly Lamiman, Mark T. Vander Lugt, Sophie Paczesny.
Published: 10-31-2012
ABSTRACT
Unbiased discovery proteomics strategies have the potential to identify large numbers of novel biomarkers that can improve diagnostic and prognostic testing in a clinical setting and may help guide therapeutic interventions. When large numbers of candidate proteins are identified, it may be difficult to validate candidate biomarkers in a timely and efficient fashion from patient plasma samples that are event-driven, of finite volume and irreplaceable, such as at the onset of acute graft-versus-host disease (GVHD), a potentially life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Here we describe the process of performing commercially available ELISAs for six validated GVHD proteins: IL-2Rα5, TNFR16, HGF7, IL-88, elafin2, and REG3α3 (also known as PAP1) in a sequential fashion to minimize freeze-thaw cycles, thawed plasma time and plasma usage. For this procedure we perform the ELISAs in sequential order as determined by sample dilution factor as established in our laboratory using manufacturer ELISA kits and protocols with minor adjustments to facilitate optimal sequential ELISA performance. The resulting plasma biomarker concentrations can then be compiled and analyzed for significant findings within a patient cohort. While these biomarkers are currently for research purposes only, their incorporation into clinical care is currently being investigated in clinical trials. This technique can be applied to perform ELISAs for multiple proteins/cytokines of interest on the same sample(s) provided the samples do not need to be mixed with other reagents. If ELISA kits do not come with pre-coated plates, 96-well half-well plates or 384-well plates can be used to further minimize use of samples/reagents.
17 Related JoVE Articles!
Play Button
Induction of Alloantigen-specific Anergy in Human Peripheral Blood Mononuclear Cells by Alloantigen Stimulation with Co-stimulatory Signal Blockade
Authors: Jeff K. Davies, Christine M. Barbon, Annie R. Voskertchian, Lee M. Nadler, Eva C. Guinan.
Institutions: Dana Farber Cancer Institute, Brigham and Womens Hospital, Dana Farber Cancer Institute, Children’s Hospital Boston.
Allogeneic hematopoietic stem cell transplantation (AHSCT) offers the best chance of cure for many patients with congenital and acquired hematologic diseases. Unfortunately, transplantation of alloreactive donor T cells which recognize and damage healthy patient tissues can result in Graft-versus-Host Disease (GvHD)1. One challenge to successful AHSCT is the prevention of GvHD without associated impairment of the beneficial effects of donor T cells, particularly immune reconstitution and prevention of relapse. GvHD can be prevented by non-specific depletion of donor T cells from stem cell grafts or by administration of pharmacological immunosuppression. Unfortunately these approaches increase infection and disease relapse2-4. An alternative strategy is to selectively deplete alloreactive donor T cells after allostimulation by recipient antigen presenting cells (APC) before transplant. Early clinical trials of these allodepletion strategies improved immune reconstitution after HLA-mismatched HSCT without excess GvHD5, 6. However, some allodepletion techniques require specialized recipient APC production6, 7and some approaches may have off-target effects including depletion of donor pathogen-specific T cells8and CD4 T regulatory cells9.One alternative approach is the inactivation of alloreactive donor T cells via induction of alloantigen-specific hyporesponsiveness. This is achieved by stimulating donor cells with recipient APC while providing blockade of CD28-mediated co-stimulation signals10.This "alloanergization" approach reduces alloreactivity by 1-2 logs while preserving pathogen- and tumor-associated antigen T cell responses in vitro11. The strategy has been successfully employed in 2 completed and 1 ongoing clinical pilot studies in which alloanergized donor T cells were infused during or after HLA-mismatched HSCT resulting in rapid immune reconstitution, few infections and less severe acute and chronic GvHD than historical control recipients of unmanipulated HLA-mismatched transplantation12. Here we describe our current protocol for the generation of peripheral blood mononuclear cells (PBMC) which have been alloanergized to HLA-mismatched unrelated stimulator PBMC. Alloanergization is achieved by allostimulation in the presence of monoclonal antibodies to the ligands B7.1 and B7.1 to block CD28-mediated costimulation. This technique does not require the production of specialized stimulator APC and is simple to perform, requiring only a single and relatively brief ex vivo incubation step. As such, the approach can be easily standardized for clinical use to generate donor T cells with reduced alloreactivity but retaining pathogen-specific immunity for adoptive transfer in the setting of AHSCT to improve immune reconstitution without excessive GvHD.
Immunology, Issue 49, Allogeneic stem cell transplantation, alloreactivity, Graft-versus-Host Disease, T cell costimulation, anergy, mixed lymphocyte reaction.
2673
Play Button
Induction of Graft-versus-host Disease and In Vivo T Cell Monitoring Using an MHC-matched Murine Model
Authors: Bryan A. Anthony, Gregg A. Hadley.
Institutions: The Ohio State University Medical Center.
Graft-versus-host disease (GVHD) is the limiting barrier to the broad use of bone marrow transplant as a curative therapy for a variety of hematological deficiencies. GVHD is caused by mature alloreactive T cells present in the bone marrow graft that are infused into the recipient and cause damage to host organs. However, in mice, T cells must be added to the bone marrow inoculum to cause GVHD. Although extensive work has been done to characterize T cell responses post transplant, bioluminescent imaging technology is a non-invasive method to monitor T cell trafficking patterns in vivo. Following lethal irradiation, recipient mice are transplanted with bone marrow cells and splenocytes from donor mice. T cell subsets from L2G85.B6 (transgenic mice that constitutively express luciferase) are included in the transplant. By only transplanting certain T cell subsets, one is able to track specific T cell subsets in vivo, and based on their location, develop hypotheses regarding the role of specific T cell subsets in promoting GVHD at various time points. At predetermined intervals post transplant, recipient mice are imaged using a Xenogen IVIS CCD camera. Light intensity can be quantified using Living Image software to generate a pseudo-color image based on photon intensity (red = high intensity, violet = low intensity). Between 4-7 days post transplant, recipient mice begin to show clinical signs of GVHD. Cooke et al.1 developed a scoring system to quantitate disease progression based on the recipient mice fur texture, skin integrity, activity, weight loss, and posture. Mice are scored daily, and euthanized when they become moribund. Recipient mice generally become moribund 20-30 days post transplant. Murine models are valuable tools for studying the immunology of GVHD. Selectively transplanting particular T cell subsets allows for careful identification of the roles each subset plays. Non-invasively tracking T cell responses in vivo adds another layer of value to murine GVHD models.
Immunology, Issue 66, Infection, Anatomy, T cells, bone marrow transplant, immunology, cell purification, x-ray irradiation, tail vein injection, bioluminescent imaging
3697
Play Button
A Method for Screening and Validation of Resistant Mutations Against Kinase Inhibitors
Authors: Meenu Kesarwani, Erika Huber, Zachary Kincaid, Mohammad Azam.
Institutions: Cincinnati Children's Hospital Medical Center.
The discovery of BCR/ABL as a driver oncogene in chronic myeloid leukemia (CML) resulted in the development of Imatinib, which, in fact, demonstrated the potential of targeting the kinase in cancers by effectively treating the CML patients. This observation revolutionized drug development to target the oncogenic kinases implicated in various other malignancies, such as, EGFR, B-RAF, KIT and PDGFRs. However, one major drawback of anti-kinase therapies is the emergence of drug resistance mutations rendering the target to have reduced or lost affinity for the drug. Understanding the mechanisms employed by resistant variants not only helps in developing the next generation inhibitors but also gives impetus to clinical management using personalized medicine. We reported a retroviral vector based screening strategy to identify the spectrum of resistance conferring mutations in BCR/ABL, which has helped in developing the next generation BCR/ABL inhibitors. Using Ruxolitinib and JAK2 as a drug target pair, here we describe in vitro screening methods that utilizes the mouse BAF3 cells expressing the random mutation library of JAK2 kinase.
Genetics, Issue 94, JAK2, BCR/ABL, TKI, random mutagenesis, drug resistance, kinase inhibitors, in-vivo resistance,
51984
Play Button
Development of an IFN-γ ELISpot Assay to Assess Varicella-Zoster Virus-specific Cell-mediated Immunity Following Umbilical Cord Blood Transplantation
Authors: Insaf Salem Fourati, Anne-Julie Grenier, Élyse Jolette, Natacha Merindol, Philippe Ovetchkine, Hugo Soudeyns.
Institutions: Université de Montréal, Université de Montréal, Université de Montréal.
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.  
Immunology, Issue 89, Varicella zoster virus, cell-mediated immunity, T cells, interferon gamma, ELISpot, umbilical cord blood transplantation
51643
Play Button
Transplantation of Tail Skin to Study Allogeneic CD4 T Cell Responses in Mice
Authors: Mathias Schmaler, Maria A. S. Broggi, Simona W. Rossi.
Institutions: University of Basel and University Hospital Basel.
The study of T cell responses and their consequences during allo-antigen recognition requires a model that enables one to distinguish between donor and host T cells, to easily monitor the graft, and to adapt the system in order to answer different immunological questions. Medawar and colleagues established allogeneic tail-skin transplantation in mice in 1955. Since then, the skin transplantation model has been continuously modified and adapted to answer specific questions. The use of tail-skin renders this model easy to score for graft rejection, requires neither extensive preparation nor deep anesthesia, is applicable to animals of all genetic background, discourages ischemic necrosis, and permits chemical and biological intervention. In general, both CD4+ and CD8+ allogeneic T cells are responsible for the rejection of allografts since they recognize mismatched major histocompatibility antigens from different mouse strains. Several models have been described for activating allogeneic T cells in skin-transplanted mice. The identification of major histocompatibility complex (MHC) class I and II molecules in different mouse strains including C57BL/6 mice was an important step toward understanding and studying T cell-mediated alloresponses. In the tail-skin transplantation model described here, a three-point mutation (I-Abm12) in the antigen-presenting groove of the MHC-class II (I-Ab) molecule is sufficient to induce strong allogeneic CD4+ T cell activation in C57BL/6 mice. Skin grafts from I-Abm12 mice on C57BL/6 mice are rejected within 12-15 days, while syngeneic grafts are accepted for up to 100 days. The absence of T cells (CD3-/- and Rag2-/- mice) allows skin graft acceptance up to 100 days, which can be overcome by transferring 2 x 104 wild type or transgenic T cells. Adoptively transferred T cells proliferate and produce IFN-γ in I-Abm12-transplanted Rag2-/- mice.
Immunology, Issue 89, Tail-skin transplantation, I-Abm12 mismatch, CD4+ T cell, ABM, Rejection, Tolerance
51724
Play Button
Generation of Human Alloantigen-specific T Cells from Peripheral Blood
Authors: Burhan P Jama, Gerald P Morris.
Institutions: University of California, San Diego.
The study of human T lymphocyte biology often involves examination of responses to activating ligands. T cells recognize and respond to processed peptide antigens presented by MHC (human ortholog HLA) molecules through the T cell receptor (TCR) in a highly sensitive and specific manner. While the primary function of T cells is to mediate protective immune responses to foreign antigens presented by self-MHC, T cells respond robustly to antigenic differences in allogeneic tissues. T cell responses to alloantigens can be described as either direct or indirect alloreactivity. In alloreactivity, the T cell responds through highly specific recognition of both the presented peptide and the MHC molecule. The robust oligoclonal response of T cells to allogeneic stimulation reflects the large number of potentially stimulatory alloantigens present in allogeneic tissues. While the breadth of alloreactive T cell responses is an important factor in initiating and mediating the pathology associated with biologically-relevant alloreactive responses such as graft versus host disease and allograft rejection, it can preclude analysis of T cell responses to allogeneic ligands. To this end, this protocol describes a method for generating alloreactive T cells from naive human peripheral blood leukocytes (PBL) that respond to known peptide-MHC (pMHC) alloantigens. The protocol applies pMHC multimer labeling, magnetic bead enrichment and flow cytometry to single cell in vitro culture methods for the generation of alloantigen-specific T cell clones. This enables studies of the biochemistry and function of T cells responding to allogeneic stimulation.
Immunology, Issue 93, T cell, immunology, human cell culture, transplantation, flow cytometry, alloreactivity
52257
Play Button
Procedure for Human Saphenous Veins Ex Vivo Perfusion and External Reinforcement
Authors: Alban Longchamp, Florent Allagnat, Xavier Berard, Florian Alonso, Jacques-Antoine Haefliger, Sébastien Deglise, Jean-Marc Corpataux.
Institutions: Brigham and Women's Hospital/Harvard Medical School, CHUV University Hospital, University of Bordeaux, CHUV University Hospital.
The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh.
Medicine, Issue 92, vein, human, intimal hyperplasia, neointima, perfusion, mesh, pressure, ex vivo
52079
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
52127
Play Button
Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia
Authors: Sandra Christoph, Alisa B. Lee-Sherick, Susan Sather, Deborah DeRyckere, Douglas K. Graham.
Institutions: University of Colorado Anschutz Medical Campus, University Hospital of Essen.
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds.
Medicine, Issue 79, Leukemia, Receptor Protein-Tyrosine Kinases, Molecular Targeted Therapy, Therapeutics, novel small molecule inhibitor, receptor tyrosine kinase, leukemia
50720
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
The Utility of Stage-specific Mid-to-late Drosophila Follicle Isolation
Authors: Andrew J. Spracklen, Tina L. Tootle.
Institutions: University of Iowa Carver College of Medicine.
Drosophila oogenesis or follicle development has been widely used to advance the understanding of complex developmental and cell biologic processes. This methods paper describes how to isolate mid-to-late stage follicles (Stage 10B-14) and utilize them to provide new insights into the molecular and morphologic events occurring during tight windows of developmental time. Isolated follicles can be used for a variety of experimental techniques, including in vitro development assays, live imaging, mRNA expression analysis and western blot analysis of proteins. Follicles at Stage 10B (S10B) or later will complete development in culture; this allows one to combine genetic or pharmacologic perturbations with in vitro development to define the effects of such manipulations on the processes occurring during specific periods of development. Additionally, because these follicles develop in culture, they are ideally suited for live imaging studies, which often reveal new mechanisms that mediate morphological events. Isolated follicles can also be used for molecular analyses. For example, changes in gene expression that result from genetic perturbations can be defined for specific developmental windows. Additionally, protein level, stability, and/or posttranslational modification state during a particular stage of follicle development can be examined through western blot analyses. Thus, stage-specific isolation of Drosophila follicles provides a rich source of information into widely conserved processes of development and morphogenesis.
Developmental Biology, Issue 82, Drosophila melanogaster, Organ Culture Techniques, Gene Expression Profiling, Microscopy, Confocal, Cell Biology, Genetic Research, Molecular Biology, Pharmacology, Drosophila, oogenesis, follicle, live-imaging, gene expression, development
50493
Play Button
A Modified Heterotopic Swine Hind Limb Transplant Model for Translational Vascularized Composite Allotransplantation (VCA) Research
Authors: Zuhaib Ibrahim, Damon S. Cooney, Jaimie T. Shores, Justin M. Sacks, Eric G. Wimmers, Steven C. Bonawitz, Chad Gordon, Dawn Ruben, Stefan Schneeberger, W. P. Andrew Lee, Gerald Brandacher.
Institutions: Johns Hopkins University School of Medicine.
Vascularized Composite Allotransplantation (VCA) such as hand and face transplants represent a viable treatment option for complex musculoskeletal trauma and devastating tissue loss. Despite favorable and highly encouraging early and intermediate functional outcomes, rejection of the highly immunogenic skin component of a VCA and potential adverse effects of chronic multi-drug immunosuppression continue to hamper widespread clinical application of VCA. Therefore, research in this novel field needs to focus on translational studies related to unique immunologic features of VCA and to develop novel immunomodulatory strategies for immunomodulation and tolerance induction following VCA without the need for long term immunosuppression. This article describes a reliable and reproducible translational large animal model of VCA that is comprised of an osteomyocutaneous flap in a MHC-defined swine heterotopic hind limb allotransplantation. Briefly, a well-vascularized skin paddle is identified in the anteromedial thigh region using near infrared laser angiography. The underlying muscles, knee joint, distal femur, and proximal tibia are harvested on a femoral vascular pedicle. This allograft can be considered both a VCA and a vascularized bone marrow transplant with its unique immune privileged features. The graft is transplanted to a subcutaneous abdominal pocket in the recipient animal with a skin component exteriorized to the dorsolateral region for immune monitoring. Three surgical teams work simultaneously in a well-coordinated manner to reduce anesthesia and ischemia times, thereby improving efficiency of this model and reducing potential confounders in experimental protocols. This model serves as the groundwork for future therapeutic strategies aimed at reducing and potentially eliminating the need for chronic multi-drug immunosuppression in VCA.
Medicine, Issue 80, Upper Extremity, Swine, Microsurgery, Tissue Transplantation, Transplantation Immunology, Surgical Procedures, Operative, Vascularized Composite Allografts, reconstructive transplantation, translational research, swine, hind limb allotransplantation, bone marrow, osteomyocutaneous, microvascular anastomosis, immunomodulation
50475
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
50290
Play Button
Using Quantitative Real-time PCR to Determine Donor Cell Engraftment in a Competitive Murine Bone Marrow Transplantation Model
Authors: Ningfei An, Yubin Kang.
Institutions: Medical University of South Carolina.
Murine bone marrow transplantation models provide an important tool in measuring hematopoietic stem cell (HSC) functions and determining genes/molecules that regulate HSCs. In these transplant model systems, the function of HSCs is determined by the ability of these cells to engraft and reconstitute lethally irradiated recipient mice. Commonly, the donor cell contribution/engraftment is measured by antibodies to donor- specific cell surface proteins using flow cytometry. However, this method heavily depends on the specificity and the ability of the cell surface marker to differentiate donor-derived cells from recipient-originated cells, which may not be available for all mouse strains. Considering the various backgrounds of genetically modified mouse strains in the market, this cell surface/ flow cytometry-based method has significant limitations especially in mouse strains that lack well-defined surface markers to separate donor cells from congenic recipient cells. Here, we reported a PCR-based technique to determine donor cell engraftment/contribution in transplant recipient mice. We transplanted male donor bone marrow HSCs to lethally irradiated congenic female mice. Peripheral blood samples were collected at different time points post transplantation. Bone marrow samples were obtained at the end of the experiments. Genomic DNA was isolated and the Y chromosome specific gene, Zfy1, was amplified using quantitative Real time PCR. The engraftment of male donor-derived cells in the female recipient mice was calculated against standard curve with known percentage of male vs. female DNAs. Bcl2 was used as a reference gene to normalize the total DNA amount. Our data suggested that this approach reliably determines donor cell engraftment and provides a useful, yet simple method in measuring hematopoietic cell reconstitution in murine bone marrow transplantation models. Our method can be routinely performed in most laboratories because no costly equipment such as flow cytometry is required.
Medicine, Issue 73, Biomedical Engineering, Stem Cell Biology, Genetics, Immunology, Anatomy, Physiology, Cellular Biology, Surgery, Y Chromosome, Hematopoietic Stem Cells, HSC, stem cells, Bone Marrow Transplantation, Real-Time Polymerase Chain Reaction, rtPCR, PCR, Chimerism, Y chromosome specific gene, graft, engraftment, isolation, transplantation, cell culture, murine model, animal model
50193
Play Button
HLA-Ig Based Artificial Antigen Presenting Cells for Efficient ex vivo Expansion of Human CTL
Authors: Yen-Ling Chiu, Jonathan P. Schneck, Mathias Oelke.
Institutions: Johns Hopkins University, Far-Eastern Memorial Hospital, Johns Hopkins University, Johns Hopkins University.
CTL with optimal effector function play critical roles in mediating protection against various intracellular infections and cancer. However, individuals may exhibit suppressive immune microenvironment and, in contrast to activating CTL, their autologous antigen presenting cells may tend to tolerize or anergize antigen specific CTL. As a result, although still in the experimental phase, CTL-based adoptive immunotherapy has evolved to become a promising treatment for various diseases such as cancer and virus infections. In initial experiments ex vivo expanded CMV (cytomegalovirus) specific CTL have been used for treatment of CMV infection in immunocompromised allogeneic bone marrow transplant patients. While it is common to have life-threatening CMV viremia in these patients, none of the patients receiving expanded CTL develop CMV related illness, implying the anti-CMV immunity is established by the adoptively transferred CTL1. Promising results have also been observed for melanoma and may be extended to other types of cancer2. While there are many ways to ex vivo stimulate and expand human CTL, current approaches are restricted by the cost and technical limitations. For example, the current gold standard is based on the use of autologous DC. This requires each patient to donate a significant number of leukocytes and is also very expensive and laborious. Moreover, detailed in vitro characterization of DC expanded CTL has revealed that these have only suboptimal effector function 3. Here we present a highly efficient aAPC based system for ex vivo expansion of human CMV specific CTL for adoptive immunotherapy (Figure 1). The aAPC were made by coupling cell sized magnetic beads with human HLA-A2-Ig dimer and anti-CD28mAb4. Once aAPC are made, they can be loaded with various peptides of interest, and remain functional for months. In this report, aAPC were loaded with a dominant peptide from CMV, pp65 (NLVPMVATV). After culturing purified human CD8+ CTL from a healthy donor with aAPC for one week, CMV specific CTL can be increased dramatically in specificity up to 98% (Figure 2) and amplified more than 10,000 fold. If more CMV-specific CTL are required, further expansion can be easily achieved by repetitive stimulation with aAPC. Phenotypic and functional characterization shows these expanded cells have an effector-memory phenotype and make significant amounts of both TNFα and IFNγ (Figure 3).
Immunology, Issue 50, immunotherapy, adoptive T cell therapy, CD8+ T cells, HLA-A2-Ig, CMV, aAPC, DC
2801
Play Button
Generation of Multivirus-specific T Cells to Prevent/treat Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant
Authors: Ulrike Gerdemann, Juan F. Vera, Cliona M. Rooney, Ann M. Leen.
Institutions: Baylor College of Medicine.
Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APCs). As few as 2x105/kg trivirus-specific cytotoxic T lymphocytes (CTL) proliferated by several logs after infusion and appeared to prevent and treat even severe viral disease resistant to other available therapies. The broader implementation of this encouraging approach is limited by high production costs, complexity of manufacture and the prolonged time (4-6 weeks for EBV-LCL generation, and 4-8 weeks for CTL manufacture – total 10-14 weeks) for preparation. To overcome these limitations we have developed a new, GMP-compliant CTL production protocol. First, in place of adenovectors to stimulate T-cells we use dendritic cells (DCs) nucleofected with DNA plasmids encoding LMP2, EBNA1 and BZLF1 (EBV), Hexon and Penton (Adv), and pp65 and IE1 (CMV) as antigen-presenting cells. These APCs reactivate T cells specific for all the stimulating antigens. Second, culture of activated T-cells in the presence of IL-4 (1,000U/ml) and IL-7 (10ng/ml) increases and sustains the repertoire and frequency of specific T cells in our lines. Third, we have used a new, gas permeable culture device (G-Rex) that promotes the expansion and survival of large cell numbers after a single stimulation, thus removing the requirement for EBV-LCLs and reducing technician intervention. By implementing these changes we can now produce multispecific CTL targeting EBV, CMV, and Adv at a cost per 106 cells that is reduced by >90%, and in just 10 days rather than 10 weeks using an approach that may be extended to additional protective viral antigens. Our FDA-approved approach should be of value for prophylactic and treatment applications for high risk allogeneic HSCT recipients.
Immunology, Issue 51, T cells, immunotherapy, viral infections, nucleofection, plasmids, G-Rex culture device
2736
Play Button
Murine Skin Transplantation
Authors: Kym R. Garrod, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
As one of the most stringent and least technically challenging models, skin transplantation is a standard method to assay host T cell responses to MHC-disparate donor antigens. The aim of this video-article is to provide the viewer with a step-by-step visual demonstration of skin transplantation using the mouse model. The protocol is divided into 5 main components: 1) harvesting donor skin; 2) preparing recipient for transplant; 3) skin transplant; 4) bandage removal and monitoring graft rejection; 5) helpful hints. Once proficient, the procedure itself should take <10 min to perform.
Immunology, Issue 11, allograft rejection, skin transplant, mouse
634
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.