JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Onset of buccal pumping in catshark embryos: how breathing develops in the egg capsule.
PUBLISHED: 01-01-2014
Respiration in fishes involves buccal pumping, which is characterized by the generation of nearly continuous water flow over the gills because of the rhythmic expansion/compression of the pharyngeal cavity. This mechanism is achieved by the functions of the vascular, skeletal, and muscular systems. However, the process by which the embryo establishes the mechanism remains a mystery. Morphological and kinematical observations on captive cloudy catsharks, Scyliorhinus torazame, have suggested that the embryo starts buccal pumping just before the respiratory slits open on the egg capsule. During the pre-opening period, the embryo acquires oxygen mainly via the external gill filaments. After slit opening, respiration of the embryo involves buccal pumping to pass water over the "internal gills." The onset of buccal pumping accompanies four morphological changes: (1) regression of the external gill filaments, (2) development of blood vessels within the "internal gills," (3) completion of the development of hyoid skeletal and muscular elements, and (4) development of the oral valve. A previous study showed that buccal pumping allows the embryo to actively regulate oxygen intake by changing the pumping frequency. Thus, establishment of buccal pumping in the egg capsule is probably important for embryo survival in the unstable oxygen environment of the egg capsule after slit opening.
Authors: Nathan E. Schroeder, Kristen M. Flatt.
Published: 09-04-2014
The mechanisms controlling stress-induced phenotypic plasticity in animals are frequently complex and difficult to study in vivo. A classic example of stress-induced plasticity is the dauer stage of C. elegans. Dauers are an alternative developmental larval stage formed under conditions of low concentrations of bacterial food and high concentrations of a dauer pheromone. Dauers display extensive developmental and behavioral plasticity. For example, a set of four inner-labial quadrant (IL2Q) neurons undergo extensive reversible remodeling during dauer formation. Utilizing the well-known environmental pathways regulating dauer entry, a previously established method for the production of crude dauer pheromone from large-scale liquid nematode cultures is demonstrated. With this method, a concentration of 50,000 - 75,000 nematodes/ml of liquid culture is sufficient to produce a highly potent crude dauer pheromone. The crude pheromone potency is determined by a dose-response bioassay. Finally, the methods used for in vivo time-lapse imaging of the IL2Qs during dauer formation are described.
27 Related JoVE Articles!
Play Button
An In Vitro Preparation for Eliciting and Recording Feeding Motor Programs with Physiological Movements in Aplysia californica
Authors: Jeffrey M. McManus, Hui Lu, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
Multifunctionality, the ability of one peripheral structure to generate multiple, distinct behaviors1, allows animals to rapidly adapt their behaviors to changing environments. The marine mollusk Aplysia californica provides a tractable system for the study of multifunctionality. During feeding, Aplysia generates several distinct types of behaviors using the same feeding apparatus, the buccal mass. The ganglia that control these behaviors contain a number of large, identified neurons that are accessible to electrophysiological study. The activity of these neurons has been described in motor programs that can be divided into two types, ingestive and egestive programs, based on the timing of neural activity that closes the food grasper relative to the neural activity that protracts or retracts the grasper2. However, in isolated ganglia, the muscle movements that would produce these behaviors are absent, making it harder to be certain whether the motor programs observed are correlates of real behaviors. In vivo, nerve and muscle recordings have been obtained corresponding to feeding programs2,3,4, but it is very difficult to directly record from individual neurons5. Additionally, in vivo, ingestive programs can be further divided into bites and swallows1,2, a distinction that is difficult to make in most previously described in vitro preparations. The suspended buccal mass preparation (Figure 1) bridges the gap between isolated ganglia and intact animals. In this preparation, ingestive behaviors - including both biting and swallowing - and egestive behaviors (rejection) can be elicited, at the same time as individual neurons can be recorded from and stimulated using extracellular electrodes6. The feeding movements associated with these different behaviors can be recorded, quantified, and related directly to the motor programs. The motor programs in the suspended buccal mass preparation appear to be more similar to those observed in vivo than are motor programs elicited in isolated ganglia. Thus, the motor programs in this preparation can be more directly related to in vivo behavior; at the same time, individual neurons are more accessible to recording and stimulation than in intact animals. Additionally, as an intermediate step between isolated ganglia and intact animals, findings from the suspended buccal mass can aid in interpretation of data obtained in both more reduced and more intact settings. The suspended buccal mass preparation is a useful tool for characterizing the neural control of multifunctionality in Aplysia.
Neuroscience, Issue 70, Physiology, Biomedical Engineering, Anatomy, Marine Biology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, neurobiology, buccal mass, semi-intact preparation, extracellular electrodes, extracellular recording, neurons, animal model
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Isolation of Sensory Neurons of Aplysia californica for Patch Clamp Recordings of Glutamatergic Currents
Authors: Lynne A. Fieber, Stephen L. Carlson, Andrew T. Kempsell, Justin B. Greer, Michael C. Schmale.
Institutions: University of Miami.
The marine gastropod mollusk Aplysia californica has a venerable history as a model of nervous system function, with particular significance in studies of learning and memory. The typical preparations for such studies are ones in which the sensory and motoneurons are left intact in a minimally dissected animal, or a technically elaborate neuronal co-culture of individual sensory and motoneurons. Less common is the isolated neuronal preparation in which small clusters of nominally homogeneous neurons are dissociated into single cells in short term culture. Such isolated cells are useful for the biophysical characterization of ion currents using patch clamp techniques, and targeted modulation of these conductances. A protocol for preparing such cultures is described. The protocol takes advantage of the easily identifiable glutamatergic sensory neurons of the pleural and buccal ganglia, and describes their dissociation and minimal maintenance in culture for several days without serum.
Neuroscience, Issue 77, Neurobiology, Anatomy, Physiology, Cellular Biology, Molecular Biology, Environmental Sciences, Marine Biology, Receptors, Neurophysiology, Neurotransmitter, Neurotransmitter Agents, Patch Clamp Recordings, Primary Cell Culture, Electrophysiology, L-Glutamate, NMDA, D-Aspartate, dissection, ganglia, buccal ganglion, neurons, invertebrate, Aplysia californica, california sea slug, mollusk, animal model
Play Button
Renal Capsule Xenografting and Subcutaneous Pellet Implantation for the Evaluation of Prostate Carcinogenesis and Benign Prostatic Hyperplasia
Authors: Tristan M. Nicholson, Kristen S. Uchtmann, Conrad D. Valdez, Ashleigh B. Theberge, Tihomir Miralem, William A. Ricke.
Institutions: University of Wisconsin-Madison, University of Rochester School of Medicine & Dentistry, University of Wisconsin-Madison.
New therapies for two common prostate diseases, prostate cancer (PrCa) and benign prostatic hyperplasia (BPH), depend critically on experiments evaluating their hormonal regulation. Sex steroid hormones (notably androgens and estrogens) are important in PrCa and BPH; we probe their respective roles in inducing prostate growth and carcinogenesis in mice with experiments using compressed hormone pellets. Hormone and/or drug pellets are easily manufactured with a pellet press, and surgically implanted into the subcutaneous tissue of the male mouse host. We also describe a protocol for the evaluation of hormonal carcinogenesis by combining subcutaneous hormone pellet implantation with xenografting of prostate cell recombinants under the renal capsule of immunocompromised mice. Moreover, subcutaneous hormone pellet implantation, in combination with renal capsule xenografting of BPH tissue, is useful to better understand hormonal regulation of benign prostate growth, and to test new therapies targeting sex steroid hormone pathways.
Medicine, Issue 78, Cancer Biology, Prostatic Hyperplasia, Prostatic Neoplasms, Neoplastic Processes, Estradiol, Testosterone, Transplantation, Heterologous, Growth, Xenotransplantation, Heterologous Transplantation, Hormones, Prostate, Testosterone, 17beta-Estradiol, Benign prostatic hyperplasia, Prostate Cancer, animal model
Play Button
Quantification of the Respiratory Burst Response as an Indicator of Innate Immune Health in Zebrafish
Authors: Michelle F. Goody, Eric Peterman, Con Sullivan, Carol H. Kim.
Institutions: University of Maine.
The phagocyte respiratory burst is part of the innate immune response to pathogen infection and involves the production of reactive oxygen species (ROS). ROS are toxic and function to kill phagocytized microorganisms. In vivo quantification of phagocyte-derived ROS provides information regarding an organism's ability to mount a robust innate immune response. Here we describe a protocol to quantify and compare ROS in whole zebrafish embryos upon chemical induction of the phagocyte respiratory burst. This method makes use of a non-fluorescent compound that becomes fluorescent upon oxidation by ROS. Individual zebrafish embryos are pipetted into the wells of a microplate and incubated in this fluorogenic substrate with or without a chemical inducer of the respiratory burst. Fluorescence in each well is quantified at desired time points using a microplate reader. Fluorescence readings are adjusted to eliminate background fluorescence and then compared using an unpaired t-test. This method allows for comparison of the respiratory burst potential of zebrafish embryos at different developmental stages and in response to experimental manipulations such as protein knockdown, overexpression, or treatment with pharmacological agents. This method can also be used to monitor the respiratory burst response in whole dissected kidneys or cell preparations from kidneys of adult zebrafish and some other fish species. We believe that the relative simplicity and adaptability of this protocol will complement existing protocols and will be of interest to researchers who seek to better understand the innate immune response.
Immunology, Issue 79, Phagocytes, Immune System, Zebrafish, Reactive Oxygen Species, Immune System Processes, Host-Pathogen Interactions, Respiratory Burst, Immune System Phenomena, innate immunity, bacteria, virus, infection]
Play Button
Mouse Embryonic Development in a Serum-free Whole Embryo Culture System
Authors: Vijay K. Kalaskar, James D. Lauderdale.
Institutions: University of Georgia, University of Georgia.
Mid-gestation stage mouse embryos were cultured utilizing a serum-free culture medium prepared from commercially available stem cell media supplements in an oxygenated rolling bottle culture system. Mouse embryos at E10.5 were carefully isolated from the uterus with intact yolk sac and in a process involving precise surgical maneuver the embryos were gently exteriorized from the yolk sac while maintaining the vascular continuity of the embryo with the yolk sac. Compared to embryos prepared with intact yolk sac or with the yolk sac removed, these embryos exhibited superior survival rate and developmental progression when cultured under similar conditions. We show that these mouse embryos, when cultured in a defined medium in an atmosphere of 95% O2 / 5% CO2 in a rolling bottle culture apparatus at 37 °​C for 16-40 hr, exhibit morphological growth and development comparable to the embryos developing in utero. We believe this method will be useful for investigators needing to utilize whole embryo culture to study signaling interactions important in embryonic organogenesis.
Developmental Biology, Issue 85, mouse embryo, mid-gestation, serum-free, defined media, roller culture, organogenesis, development
Play Button
Aplysia Ganglia Preparation for Electrophysiological and Molecular Analyses of Single Neurons
Authors: Komol Akhmedov, Beena M. Kadakkuzha, Sathyanarayanan V. Puthanveettil.
Institutions: The Scripps Research Institute, Florida.
A major challenge in neurobiology is to understand the molecular underpinnings of neural circuitry that govern a specific behavior. Once the specific molecular mechanisms are identified, new therapeutic strategies can be developed to treat abnormalities in specific behaviors caused by degenerative diseases or aging of the nervous system. The marine snail Aplysia californica is well suited for the investigations of cellular and molecular basis of behavior because neural circuitry underlying a specific behavior could be easily determined and the individual components of the circuitry could be easily manipulated. These advantages of Aplysia have led to several fundamental discoveries of neurobiology of learning and memory. Here we describe a preparation of the Aplysia nervous system for the electrophysiological and molecular analyses of individual neurons. Briefly, ganglion dissected from the nervous system is exposed to protease to remove the ganglion sheath such that neurons are exposed but retain neuronal activity as in the intact animal. This preparation is used to carry out electrophysiological measurements of single or multiple neurons. Importantly, following the recording using a simple methodology, the neurons could be isolated directly from the ganglia for gene expression analysis. These protocols were used to carry out simultaneous electrophysiological recordings from L7 and R15 neurons, study their response to acetylcholine and quantitating expression of CREB1 gene in isolated single L7, L11, R15, and R2 neurons of Aplysia.
Neurobiology, Issue 83, intracellular recording, identified neuron, neural circuitry, gene expression, action potential, CREB, Aplysia californica, genomics
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
Play Button
Dissection and Downstream Analysis of Zebra Finch Embryos at Early Stages of Development
Authors: Jessica R. Murray, Monika E. Stanciauskas, Tejas S. Aralere, Margaret S. Saha.
Institutions: College of William and Mary.
The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access.
Developmental Biology, Issue 88, zebra finch (Taeniopygiaguttata), dissection, embryo, development, in situ hybridization, 5-ethynyl-2’-deoxyuridine (EdU)
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Production of Haploid Zebrafish Embryos by In Vitro Fertilization
Authors: Paul T. Kroeger Jr., Shahram Jevin Poureetezadi, Robert McKee, Jonathan Jou, Rachel Miceli, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.
Developmental Biology, Issue 89, zebrafish, haploid, in vitro fertilization, forward genetic screen, saturation, recessive mutation, mutagenesis
Play Button
Hyperpolarized Xenon for NMR and MRI Applications
Authors: Christopher Witte, Martin Kunth, Jörg Döpfert, Federica Rossella, Leif Schröder.
Institutions: Leibniz-Institut für Molekulare Pharmakologie.
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode.
Physics, Issue 67, NMR, MRI, hyperpolarization, optical pumping, SEOP, xenon, molecular imaging, biosensor
Play Button
Efficient Gene Delivery into Multiple CNS Territories Using In Utero Electroporation
Authors: Rajiv Dixit, Fuqu Lu, Robert Cantrup, Nicole Gruenig, Lisa Marie Langevin, Deborah M. Kurrasch, Carol Schuurmans.
Institutions: University of Calgary , University of Calgary .
The ability to manipulate gene expression is the cornerstone of modern day experimental embryology, leading to the elucidation of multiple developmental pathways. Several powerful and well established transgenic technologies are available to manipulate gene expression levels in mouse, allowing for the generation of both loss- and gain-of-function models. However, the generation of mouse transgenics is both costly and time consuming. Alternative methods of gene manipulation have therefore been widely sought. In utero electroporation is a method of gene delivery into live mouse embryos1,2 that we have successfully adapted3,4. It is largely based on the success of in ovo electroporation technologies that are commonly used in chick5. Briefly, DNA is injected into the open ventricles of the developing brain and the application of an electrical current causes the formation of transient pores in cell membranes, allowing for the uptake of DNA into the cell. In our hands, embryos can be efficiently electroporated as early as embryonic day (E) 11.5, while the targeting of younger embryos would require an ultrasound-guided microinjection protocol, as previously described6. Conversely, E15.5 is the latest stage we can easily electroporate, due to the onset of parietal and frontal bone differentiation, which hampers microinjection into the brain. In contrast, the retina is accessible through the end of embryogenesis. Embryos can be collected at any time point throughout the embryonic or early postnatal period. Injection of a reporter construct facilitates the identification of transfected cells. To date, in utero electroporation has been most widely used for the analysis of neocortical development1,2,3,4. More recent studies have targeted the embryonic retina7,8,9 and thalamus10,11,12. Here, we present a modified in utero electroporation protocol that can be easily adapted to target different domains of the embryonic CNS. We provide evidence that by using this technique, we can target the embryonic telencephalon, diencephalon and retina. Representative results are presented, first showing the use of this technique to introduce DNA expression constructs into the lateral ventricles, allowing us to monitor progenitor maturation, differentiation and migration in the embryonic telencephalon. We also show that this technique can be used to target DNA to the diencephalic territories surrounding the 3rd ventricle, allowing the migratory routes of differentiating neurons into diencephalic nuclei to be monitored. Finally, we show that the use of micromanipulators allows us to accurately introduce DNA constructs into small target areas, including the subretinal space, allowing us to analyse the effects of manipulating gene expression on retinal development.
Neuroscience, Issue 52, In utero electroporation, embryonic central nervous system, telencephalon, diencephalon, retina, gene delivery, mouse, gain-of-function, loss-of-function
Play Button
Measures of Heart and Ventilatory Rates in Freely Moving Crayfish
Authors: Sonya M. Bierbower, Robin L. Cooper.
Institutions: University of Kentucky.
The fear, flight or fight response serves as the fundamental physiological basis for examining an organism's awareness of its environment under an impending predator attack. Although it is not known whether invertebrates posses an autonomic nervous system identical to that of vertebrates, evidence shows invertebrates have a sympathetic-like response to regulate the internal environment and ready the organism to act behaviorally to a given stimuli. Furthermore, this physiological response can be feasibly measured and it acts as a biological index for the animal's internal state. Measurements of the physiological response can be directly related to internal and external stressors through changes in the central nervous system controlled coordination of the cardio-vascular and respiratory systems. More specifically, monitoring heart and ventilation rates provide quantifiable measures of the stress response not always behaviorally observed. Crayfish are good model organisms for heart and ventilatory rate measurements due to the feasibility of recording, as well as the rich history known of the morphology of the crayfish, dating back to Huxley in 1888, and the well-studied typical behaviors.
Physiology, Issue 32, invertebrate, autonomic nervous system, behavior, crustacean
Play Button
Electrode Fabrication and Implantation in Aplysia californica for Multi-channel Neural and Muscular Recordings in Intact, Freely Behaving Animals
Authors: Miranda J. Cullins, Hillel J. Chiel.
Institutions: Case Western Reserve University, Case Western Reserve University, Case Western Reserve University.
Recording from key nerves and muscles of Aplysia during feeding behavior allows us to study the patterns of neural control in an intact animal. Simultaneously recording from multiple nerves and muscles gives us precise information about the timing of neural activity. Previous recording methods have worked for two electrodes, but the study of additional nerves or muscles required combining and averaging the recordings of multiple animals, which made it difficult to determine fine details of timing and phasing, because of variability from response to response, and from animal to animal. Implanting four individual electrodes has a very low success rate due to the formation of adhesions that prevent animals from performing normal feeding movements. We developed a new method of electrode fabrication that reduces the bulk of the electrodes inside the animal allowing for normal feeding movements. Using a combination of glues to attach the electrodes results in a more reliable insulation of the electrode which lasts longer, making it possible to record for periods as long as a week. The fabrication technique that we describe could be extended to incorporate several additional electrodes, and would be applicable to vertebrate animals.
Neuroscience, Issue 40, in vivo electrodes, Aplysia, neurobiology, chronic recording, extracellular recording
Play Button
In-vivo Centrifugation of Drosophila Embryos
Authors: Susan L. Tran, Michael A. Welte.
Institutions: University of Rochester.
A major strategy for purifying and isolating different types of intracellular organelles is to separate them from each other based on differences in buoyant density. However, when cells are disrupted prior to centrifugation, proteins and organelles in this non-native environment often inappropriately stick to each other. Here we describe a method to separate organelles by density in intact, living Drosophila embryos. Early embryos before cellularization are harvested from population cages, and their outer egg shells are removed by treatment with 50% bleach. Embryos are then transferred to a small agar plate and inserted, posterior end first, into small vertical holes in the agar. The plates containing embedded embryos are centrifuged for 30 min at 3000g. The agar supports the embryos and keeps them in a defined orientation. Afterwards, the embryos are dug out of the agar with a blunt needle. Centrifugation separates major organelles into distinct layers, a stratification easily visible by bright-field microscopy. A number of fluorescent markers are available to confirm successful stratification in living embryos. Proteins associated with certain organelles will be enriched in a particular layer, demonstrating colocalization. Individual layers can be recovered for biochemical analysis or transplantation into donor eggs. This technique is applicable for organelle separation in other large cells, including the eggs and oocytes of diverse species.
Cellular Biology, Issue 40, Drosophila, embryo, centrifugation, organelle, lipid droplet, yolk, colocalization, transplantation
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
Play Button
Quantitative Autonomic Testing
Authors: Peter Novak.
Institutions: University of Massachusetts Medical School.
Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.
Medicine, Issue 53, Deep breathing, Valsalva maneuver, tilt test, sudomotor testing, Composite Autonomic Severity Score, CASS
Play Button
Transplantation of GFP-expressing Blastomeres for Live Imaging of Retinal and Brain Development in Chimeric Zebrafish Embryos
Authors: Jian Zou, Xiangyun Wei.
Institutions: University of Pittsburgh, University of Pittsburgh.
Cells change extensively in their locations and property during embryogenesis. These changes are regulated by the interactions between the cells and their environment. Chimeric embryos, which are composed of cells of different genetic background, are great tools to study the cell-cell interactions mediated by genes of interest. The embryonic transparency of zebrafish at early developmental stages permits direct visualization of the morphogenesis of tissues and organs at the cellular level. Here, we demonstrate a protocol to generate chimeric retinas and brains in zebrafish embryos and to perform live imaging of the donor cells. The protocol covers the preparation of transplantation needles, the transplantation of GFP-expressing donor blastomeres to GFP-negative hosts, and the examination of donor cell behavior under live confocal microscopy. With slight modifications, this protocol can also be used to study the embryonic development of other tissues and organs in zebrafish. The advantages of using GFP to label donor cells are also discussed.
Developmental Biology, Issue 41, transformation, fluorescence donor fish, live imaging, zebrafish, blastomeres, embryo, GFP
Play Button
Applying Microfluidics to Electrophysiology
Authors: David T. Eddington.
Institutions: University of Illinois, Chicago.
Microfluidics can be integrated with standard electrophysiology techniques to allow new experimental modalities. Specifically, the motivation for the microfluidic brain slice device is discussed including how the device docks to standard perfusion chambers and the technique of passive pumping which is used to deliver boluses of neuromodulators to the brain slice. By simplifying the device design, we are able to achieve a practical solution to the current unmet electrophysiology need of applying multiple neuromodulators across multiple regions of the brain slice. This is achieved by substituting the standard coverglass substrate of the perfusion chamber with a thin microfluidic device bonded to the coverglass substrate. This was then attached to the perfusion chamber and small holes connect the open-well of the perfusion chamber to the microfluidic channels buried within the microfluidic substrate. These microfluidic channels are interfaced with ports drilled into the edge of the perfusion chamber to access and deliver stimulants. This project represents how the field of microfluidics is transitioning away from proof-of concept device demonstrations and into practical solutions for unmet experimental and clinical needs.
Neuroscience, Issue 8, Biomedical Engineering, Microfluidics, Slice Recording, Electrophysiology, Neurotransmitter, Bioengineering
Play Button
Windowing Chicken Eggs for Developmental Studies
Authors: Matthew J. Korn, Karina S. Cramer.
Institutions: University of California, Irvine (UCI).
The study of development has been greatly aided by the use of the chick embryo as an experimental model. The ease of accessibility of the embryo has allowed for experiments to map cell fates using several approaches, including chick quail chimeras and focal dye labeling. In addition, it allows for molecular perturbations of several types, including placement of protein-coated beads and introduction of plasmid DNA using in ovo electroporation. These experiments have yielded important data on the development of the central and peripheral nervous systems. For many of these studies, it is necessary to open the eggshell and reclose it without perturbing the embryo's growth. The embryo can be examined at successive developmental stages by re-opening the eggshell. While there are several excellent methods for opening chicken eggs, in this article we demonstrate one method that has been optimized for long survival times. In this method, the egg rests on its side and a small window is cut in the shell. After the experimental procedure, the shell is used to cover the egg for the duration of its development. Clear plastic tape overlying the eggshell protects the embryo and helps retain hydration during the remainder of the incubation period. This method has been used beginning at two days of incubation and has allowed survival through mature embryonic ages.
Developmental Biology, Issue 8, Neuroscience, Chicken, Embryos, Electroporation, In ovo
Play Button
Placing Growth Factor-Coated Beads on Early Stage Chicken Embryos
Authors: Matthew J. Korn, Karina S. Cramer.
Institutions: University of California, Irvine (UCI).
The neural tube expresses many proteins in specific spatiotemporal patterns during development. These proteins have been shown to be critical for cell fate determination, cell migration, and formation of neural circuits. Neuronal induction and patterning involve bone morphogenetic protein (BMP), sonic hedgehog (SHH), fibroblast growth factor (FGF), among others. In particular, the expression pattern of Fgf8 is in close proximity to regions expressing BMP4 and SHH. This expression pattern is consistent with developmental interactions that facilitate patterning in the telencephalon. Here we provide a visual demonstration of a method in which an in ovo preparation can be used to test the effects of Fgfs in the formation of the forebrain. Beads are coated with protein and placed in the developing neural tube to provide sustained exposure. Because the procedure uses small, carefully placed beads, it is minimally invasive and allows several beads to be placed within a single neural tube. Moreover, the method allows for continued development so that embryos can be analyzed at a more mature stage to detect changes in anatomy and in neural patterning. This simple but useful protocol allows for real time imaging. It provides a means to make spatially and temporally limited changes to endogenous protein levels.
Developmental Biology, Issue 8, Neuroscience, Growth Factor, Heparin-Coated Beads, Chicken, Embryos
Play Button
In Ovo Electroporations of HH Stage 10 Chicken Embryos
Authors: Marissa C. Blank, Victor Chizhikov, Kathleen J. Millen.
Institutions: University of Chicago, University of Chicago.
Large size and external development of the chicken embryo have long made it a valuable tool in the study of developmental biology. With the advent of molecular biological techniques, the chick has become a useful system in which to study gene regulation and function. By electroporating DNA or RNA constructs into the developing chicken embryo, genes can be expressed or knocked down in order to analyze in vivo gene function. Similarly, reporter constructs can be used for fate mapping or to examine putative gene regulatory elements. Compared to similar experiments in mouse, chick electroporation has the advantages of being quick, easy and inexpensive. This video demonstrates first how to make a window in the eggshell to manipulate the embryo. Next, the embryo is visualized with a dilute solution of India ink injected below the embryo. A glass needle and pipette are used to inject DNA and Fast Green dye into the developing neural tube, then platinum electrodes are placed parallel to the embryo and short electrical pulses are administered with a pulse generator. Finally, the egg is sealed with tape and placed back into an incubator for further development. Additionally, the video shows proper egg storage and handling and discusses possible causes of embryo loss following electroporation.
Neuroscience, issue 9, neuron, development, brain
Play Button
Preparation and Fractionation of Xenopus laevis Egg Extracts
Authors: Marie K. Cross, Maureen Powers.
Institutions: Emory University.
Crude and fractionated Xenopus egg extracts can be used to provide ingredients for reconstituting cellular processes for morphological and biochemical analysis. Egg lysis and differential centrifugation are used to prepare the crude extract which in turn in used to prepare fractionated extracts and light membrane preparations.
Cellular Biology, Issue 18, Current Protocols Wiley, Xenopus laevis, Egg Extracts, Density Gradient Centrifugation, Light Membrane Fraction, Nuclear Fraction
Play Button
Deciphering Axonal Pathways of Genetically Defined Groups of Neurons in the Chick Neural Tube Utilizing in ovo Electroporation
Authors: Oshri Avraham, Sophie Zisman, Yoav Hadas, Lilach Vald, Avihu Klar.
Institutions: Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School.
Employment of enhancer elements to drive expression of reporter genes in neurons is a widely used paradigm for tracking axonal projection. For tracking axonal projection of spinal interneurons in vertebrates, germ line-targeted reporter genes yield bilaterally symmetric labeling. Therefore, it is hard to distinguish between the ipsi- and contra-laterally projecting axons. Unilateral electroporation into the chick neural tube provides a useful means to restrict expression of a reporter gene to one side of the central nervous system, and to follow axonal projection on both sides 1 ,2-5. This video demonstrates first how to handle the eggs prior to injection. At HH stage 18-20, DNA is injected into the sacral level of the neural tube, then tungsten electrodes are placed parallel to the embryo and short electrical pulses are administered with a pulse generator. The egg is sealed with tape and placed back into an incubator for further development. Three days later (E6) the spinal cord is removed as an open book preparation from embryo, fixed, and processed for whole mount antibody staining. The stained spinal cord is mounted on slide and visualized using confocal microscopy.
Neuroscience, Issue 39, in ovo electroporation, neural tube, chick, interneurons, axonal pathway
Play Button
Dissection of 6.5 dpc Mouse Embryos
Authors: Kelly Shea, Niels Geijsen.
Institutions: Harvard Medical School.
Analysis of gene expression patterns during early stages of mammalian embryonic development can provide important clues about gene function, cell-cell interaction and signaling mechanisms that guide embryonic patterning. However, dissection of the mouse embryo from the decidua shortly after implantation can be a challenging procedure, and detailed step-by-step documentation of this process is lacking. Here we demonstrate how post-implantation (6.5 dpc) embryos are isolated by first dissecting the uterus of a pregnant mouse (detection of the vaginal plug was designated day 0.5 poist coitum) and subsequently dissecting the embryo from maternal decidua. The dissection of Reichert's membrane is described as well as the removal of the ectoplacental cone.
Developmental Biology, Issue 2, mouse, embryo, implantation, dissection
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.