JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Evaluation of the highly variable agomelatine pharmacokinetics in chinese healthy subjects to support bioequivalence study.
PUBLISHED: 01-01-2014
We aim to obtain the intra-subject coefficient of variability of a highly variable antidepressant agomelatine in humans, and propose an adjusted bioequivalence assessment strategy.
Authors: Thomas Z. Thompson, Farres Obeidin, Alisa A. Davidoff, Cody L. Hightower, Christohper Z. Johnson, Sonya L. Rice, Rebecca-Lyn Sokolove, Brandon K. Taylor, John M. Tuck, William G. Pearson, Jr..
Published: 05-06-2014
Characterizing hyolaryngeal movement is important to dysphagia research. Prior methods require multiple measurements to obtain one kinematic measurement whereas coordinate mapping of hyolaryngeal mechanics using Modified Barium Swallow (MBS) uses one set of coordinates to calculate multiple variables of interest. For demonstration purposes, ten kinematic measurements were generated from one set of coordinates to determine differences in swallowing two different bolus types. Calculations of hyoid excursion against the vertebrae and mandible are correlated to determine the importance of axes of reference. To demonstrate coordinate mapping methodology, 40 MBS studies were randomly selected from a dataset of healthy normal subjects with no known swallowing impairment. A 5 ml thin-liquid bolus and a 5 ml pudding swallows were measured from each subject. Nine coordinates, mapping the cranial base, mandible, vertebrae and elements of the hyolaryngeal complex, were recorded at the frames of minimum and maximum hyolaryngeal excursion. Coordinates were mathematically converted into ten variables of hyolaryngeal mechanics. Inter-rater reliability was evaluated by Intraclass correlation coefficients (ICC). Two-tailed t-tests were used to evaluate differences in kinematics by bolus viscosity. Hyoid excursion measurements against different axes of reference were correlated. Inter-rater reliability among six raters for the 18 coordinates ranged from ICC = 0.90 - 0.97. A slate of ten kinematic measurements was compared by subject between the six raters. One outlier was rejected, and the mean of the remaining reliability scores was ICC = 0.91, 0.84 - 0.96, 95% CI. Two-tailed t-tests with Bonferroni corrections comparing ten kinematic variables (5 ml thin-liquid vs. 5 ml pudding swallows) showed statistically significant differences in hyoid excursion, superior laryngeal movement, and pharyngeal shortening (p < 0.005). Pearson correlations of hyoid excursion measurements from two different axes of reference were: r = 0.62, r2 = 0.38, (thin-liquid); r = 0.52, r2 = 0.27, (pudding). Obtaining landmark coordinates is a reliable method to generate multiple kinematic variables from video fluoroscopic images useful in dysphagia research.
23 Related JoVE Articles!
Play Button
Simultaneous Quantification of T-Cell Receptor Excision Circles (TRECs) and K-Deleting Recombination Excision Circles (KRECs) by Real-time PCR
Authors: Alessandra Sottini, Federico Serana, Diego Bertoli, Marco Chiarini, Monica Valotti, Marion Vaglio Tessitore, Luisa Imberti.
Institutions: Spedali Civili di Brescia.
T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) are circularized DNA elements formed during recombination process that creates T- and B-cell receptors. Because TRECs and KRECs are unable to replicate, they are diluted after each cell division, and therefore persist in the cell. Their quantity in peripheral blood can be considered as an estimation of thymic and bone marrow output. By combining well established and commonly used TREC assay with a modified version of KREC assay, we have developed a duplex quantitative real-time PCR that allows quantification of both newly-produced T and B lymphocytes in a single assay. The number of TRECs and KRECs are obtained using a standard curve prepared by serially diluting TREC and KREC signal joints cloned in a bacterial plasmid, together with a fragment of T-cell receptor alpha constant gene that serves as reference gene. Results are reported as number of TRECs and KRECs/106 cells or per ml of blood. The quantification of these DNA fragments have been proven useful for monitoring immune reconstitution following bone marrow transplantation in both children and adults, for improved characterization of immune deficiencies, or for better understanding of certain immunomodulating drug activity.
Immunology, Issue 94, B lymphocytes, primary immunodeficiency, real-time PCR, immune recovery, T-cell homeostasis, T lymphocytes, thymic output, bone marrow output
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Ultrasonic Assessment of Myocardial Microstructure
Authors: Pranoti Hiremath, Michael Bauer, Hui-Wen Cheng, Kazumasa Unno, Ronglih Liao, Susan Cheng.
Institutions: Harvard Medical School, Brigham and Women's Hospital, Harvard Medical School.
Echocardiography is a widely accessible imaging modality that is commonly used to noninvasively characterize and quantify changes in cardiac structure and function. Ultrasonic assessments of cardiac tissue can include analyses of backscatter signal intensity within a given region of interest. Previously established techniques have relied predominantly on the integrated or mean value of backscatter signal intensities, which may be susceptible to variability from aliased data from low frame rates and time delays for algorithms based on cyclic variation. Herein, we describe an ultrasound-based imaging algorithm that extends from previous methods, can be applied to a single image frame and accounts for the full distribution of signal intensity values derived from a given myocardial sample. When applied to representative mouse and human imaging data, the algorithm distinguishes between subjects with and without exposure to chronic afterload resistance. The algorithm offers an enhanced surrogate measure of myocardial microstructure and can be performed using open-access image analysis software.
Medicine, Issue 83, echocardiography, image analysis, myocardial fibrosis, hypertension, cardiac cycle, open-access image analysis software
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Carotid Artery Infusions for Pharmacokinetic and Pharmacodynamic Analysis of Taxanes in Mice
Authors: Joely D. Jacobs, Elizabeth A. Hopper-Borge.
Institutions: Fox Chase Cancer Center.
When proposing the use of a drug, drug combination, or drug delivery into a novel system, one must assess the pharmacokinetics of the drug in the study model. As the use of mouse models are often a vital step in preclinical drug discovery and drug development1-8, it is necessary to design a system to introduce drugs into mice in a uniform, reproducible manner. Ideally, the system should permit the collection of blood samples at regular intervals over a set time course. The ability to measure drug concentrations by mass-spectrometry, has allowed investigators to follow the changes in plasma drug levels over time in individual mice1, 9, 10. In this study, paclitaxel was introduced into transgenic mice as a continuous arterial infusion over three hours, while blood samples were simultaneously taken by retro-orbital bleeds at set time points. Carotid artery infusions are a potential alternative to jugular vein infusions, when factors such as mammary tumors or other obstructions make jugular infusions impractical. Using this technique, paclitaxel concentrations in plasma and tissue achieved similar levels as compared to jugular infusion. In this tutorial, we will demonstrate how to successfully catheterize the carotid artery by preparing an optimized catheter for the individual mouse model, then show how to insert and secure the catheter into the mouse carotid artery, thread the end of the catheter out through the back of the mouse’s neck, and hook the mouse to a pump to deliver a controlled rate of drug influx. Multiple low volume retro-orbital bleeds allow for analysis of plasma drug concentrations over time.
Medicine, Issue 92, pharmacokinetics, paclitaxel, catheter, carotid artery, infusion, tissue distribution
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
Intra-Operative Behavioral Tasks in Awake Humans Undergoing Deep Brain Stimulation Surgery
Authors: John T. Gale, Clarissa Martinez-Rubio, Sameer A. Sheth, Emad N. Eskandar.
Institutions: Harvard Medical School, Massachusetts General Hospital.
Deep brain stimulation (DBS) is a surgical procedure that directs chronic, high frequency electrical stimulation to specific targets in the brain through implanted electrodes. Deep brain stimulation was first implemented as a therapeutic modality by Benabid et al. in the late 1980s, when he used this technique to stimulate the ventral intermediate nucleus of the thalamus for the treatment of tremor 1. Currently, the procedure is used to treat patients who fail to respond adequately to medical management for diseases such as Parkinson's, dystonia, and essential tremor. The efficacy of this procedure for the treatment of Parkinson's disease has been demonstrated in well-powered, randomized controlled trials 2. Presently, the U.S. Food and Drug Administration has approved DBS as a treatment for patients with medically refractory essential tremor, Parkinson's disease, and dystonia. Additionally, DBS is currently being evaluated for the treatment of other psychiatric and neurological disorders, such as obsessive compulsive disorder, major depressive disorder, and epilepsy. DBS has not only been shown to help people by improving their quality of life, it also provides researchers with the unique opportunity to study and understand the human brain. Microelectrode recordings are routinely performed during DBS surgery in order to enhance the precision of anatomical targeting. Firing patterns of individual neurons can therefore be recorded while the subject performs a behavioral task. Early studies using these data focused on descriptive aspects, including firing and burst rates, and frequency modulation 3. More recent studies have focused on cognitive aspects of behavior in relation to neuronal activity 4,5. This article will provide a description of the intra-operative methods used to perform behavioral tasks and record neuronal data with awake patients during DBS cases. Our exposition of the process of acquiring electrophysiological data will illuminate the current scope and limitations of intra-operative human experiments.
Medicine, Issue 47, Intra-Operative Physiology, Cognitive Neuroscience, Behavioral Neuroscience, Subthalamic Nucleus, Single-Unit Activity, Parkinson Disease, Deep Brain Stimulation
Play Button
The NeuroStar TMS Device: Conducting the FDA Approved Protocol for Treatment of Depression
Authors: Jared C. Horvath, John Mathews, Mark A. Demitrack, Alvaro Pascual-Leone.
Institutions: Beth Israel Deaconess Medical Center, Inc..
The Neuronetics NeuroStar Transcranial Magnetic Stimulation (TMS) System is a class II medical device that produces brief duration, pulsed magnetic fields. These rapidly alternating fields induce electrical currents within localized, targeted regions of the cortex which are associated with various physiological and functional brain changes.1,2,3 In 2007, O'Reardon et al., utilizing the NeuroStar device, published the results of an industry-sponsored, multisite, randomized, sham-stimulation controlled clinical trial in which 301 patients with major depression, who had previously failed to respond to at least one adequate antidepressant treatment trial, underwent either active or sham TMS over the left dorsolateral prefrontal cortex (DLPFC). The patients, who were medication-free at the time of the study, received TMS five times per week over 4-6 weeks.4 The results demonstrated that a sub-population of patients (those who were relatively less resistant to medication, having failed not more than two good pharmacologic trials) showed a statistically significant improvement on the Montgomery-Asberg Depression Scale (MADRS), the Hamilton Depression Rating Scale (HAMD), and various other outcome measures. In October 2008, supported by these and other similar results5,6,7, Neuronetics obtained the first and only Food and Drug Administration (FDA) approval for the clinical treatment of a specific form of medication-refractory depression using a TMS Therapy device (FDA approval K061053). In this paper, we will explore the specified FDA approved NeuroStar depression treatment protocol (to be administered only under prescription and by a licensed medical profession in either an in- or outpatient setting).
Neuroscience, Issue 45, Transcranial Magnetic Stimulation, Depression, Neuronetics, NeuroStar, FDA Approved
Play Button
Quantitative Autonomic Testing
Authors: Peter Novak.
Institutions: University of Massachusetts Medical School.
Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.
Medicine, Issue 53, Deep breathing, Valsalva maneuver, tilt test, sudomotor testing, Composite Autonomic Severity Score, CASS
Play Button
The Mouse Forced Swim Test
Authors: Adem Can, David T. Dao, Michal Arad, Chantelle E. Terrillion, Sean C. Piantadosi, Todd D. Gould.
Institutions: University of Maryland School of Medicine, Tulane University School of Medicine, University of Maryland School of Medicine, University of Maryland .
The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed.
Neuroscience, Issue 59, animal models, behavioral analysis, neuroscience, neurobiology, mood disorder, depression, mood stabilizer, antidepressant, forced swimming test, FST
Play Button
Measuring the Subjective Value of Risky and Ambiguous Options using Experimental Economics and Functional MRI Methods
Authors: Ifat Levy, Lior Rosenberg Belmaker, Kirk Manson, Agnieszka Tymula, Paul W. Glimcher.
Institutions: Yale School of Medicine, Yale School of Medicine, New York University , New York University , New York University .
Most of the choices we make have uncertain consequences. In some cases the probabilities for different possible outcomes are precisely known, a condition termed "risky". In other cases when probabilities cannot be estimated, this is a condition described as "ambiguous". While most people are averse to both risk and ambiguity1,2, the degree of those aversions vary substantially across individuals, such that the subjective value of the same risky or ambiguous option can be very different for different individuals. We combine functional MRI (fMRI) with an experimental economics-based method3 to assess the neural representation of the subjective values of risky and ambiguous options4. This technique can be now used to study these neural representations in different populations, such as different age groups and different patient populations. In our experiment, subjects make consequential choices between two alternatives while their neural activation is tracked using fMRI. On each trial subjects choose between lotteries that vary in their monetary amount and in either the probability of winning that amount or the ambiguity level associated with winning. Our parametric design allows us to use each individual's choice behavior to estimate their attitudes towards risk and ambiguity, and thus to estimate the subjective values that each option held for them. Another important feature of the design is that the outcome of the chosen lottery is not revealed during the experiment, so that no learning can take place, and thus the ambiguous options remain ambiguous and risk attitudes are stable. Instead, at the end of the scanning session one or few trials are randomly selected and played for real money. Since subjects do not know beforehand which trials will be selected, they must treat each and every trial as if it and it alone was the one trial on which they will be paid. This design ensures that we can estimate the true subjective value of each option to each subject. We then look for areas in the brain whose activation is correlated with the subjective value of risky options and for areas whose activation is correlated with the subjective value of ambiguous options.
Neuroscience, Issue 67, Medicine, Molecular Biology, fMRI, magnetic resonance imaging, decision-making, value, uncertainty, risk, ambiguity
Play Button
The Tail Suspension Test
Authors: Adem Can, David T. Dao, Chantelle E. Terrillion, Sean C. Piantadosi, Shambhu Bhat, Todd D. Gould.
Institutions: University of Maryland School of Medicine, Tulane University School of Medicine, University of Maryland , University of Maryland School of Medicine.
The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test.
Neuroscience, Issue 59, animal models, behavioral analysis, neuroscience, neurobiology, mood disorder, depression, mood stabilizer, antidepressant
Play Button
Three Dimensional Vestibular Ocular Reflex Testing Using a Six Degrees of Freedom Motion Platform
Authors: Joyce Dits, Mark M.J. Houben, Johannes van der Steen.
Institutions: Erasmus MC, TNO Human Factors.
The vestibular organ is a sensor that measures angular and linear accelerations with six degrees of freedom (6DF). Complete or partial defects in the vestibular organ results in mild to severe equilibrium problems, such as vertigo, dizziness, oscillopsia, gait unsteadiness nausea and/or vomiting. A good and frequently used measure to quantify gaze stabilization is the gain, which is defined as the magnitude of compensatory eye movements with respect to imposed head movements. To test vestibular function more fully one has to realize that 3D VOR ideally generates compensatory ocular rotations not only with a magnitude (gain) equal and opposite to the head rotation but also about an axis that is co-linear with the head rotation axis (alignment). Abnormal vestibular function thus results in changes in gain and changes in alignment of the 3D VOR response. Here we describe a method to measure 3D VOR using whole body rotation on a 6DF motion platform. Although the method also allows testing translation VOR responses 1, we limit ourselves to a discussion of the method to measure 3D angular VOR. In addition, we restrict ourselves here to description of data collected in healthy subjects in response to angular sinusoidal and impulse stimulation. Subjects are sitting upright and receive whole-body small amplitude sinusoidal and constant acceleration impulses. Sinusoidal stimuli (f = 1 Hz, A = 4°) were delivered about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5° in azimuth. Impulses were delivered in yaw, roll and pitch and in the vertical canal planes. Eye movements were measured using the scleral search coil technique 2. Search coil signals were sampled at a frequency of 1 kHz. The input-output ratio (gain) and misalignment (co-linearity) of the 3D VOR were calculated from the eye coil signals 3. Gain and co-linearity of 3D VOR depended on the orientation of the stimulus axis. Systematic deviations were found in particular during horizontal axis stimulation. In the light the eye rotation axis was properly aligned with the stimulus axis at orientations 0° and 90° azimuth, but gradually deviated more and more towards 45° azimuth. The systematic deviations in misalignment for intermediate axes can be explained by a low gain for torsion (X-axis or roll-axis rotation) and a high gain for vertical eye movements (Y-axis or pitch-axis rotation (see Figure 2). Because intermediate axis stimulation leads a compensatory response based on vector summation of the individual eye rotation components, the net response axis will deviate because the gain for X- and Y-axis are different. In darkness the gain of all eye rotation components had lower values. The result was that the misalignment in darkness and for impulses had different peaks and troughs than in the light: its minimum value was reached for pitch axis stimulation and its maximum for roll axis stimulation. Case Presentation Nine subjects participated in the experiment. All subjects gave their informed consent. The experimental procedure was approved by the Medical Ethics Committee of Erasmus University Medical Center and adhered to the Declaration of Helsinki for research involving human subjects. Six subjects served as controls. Three subjects had a unilateral vestibular impairment due to a vestibular schwannoma. The age of control subjects (six males and three females) ranged from 22 to 55 years. None of the controls had visual or vestibular complaints due to neurological, cardio vascular and ophthalmic disorders. The age of the patients with schwannoma varied between 44 and 64 years (two males and one female). All schwannoma subjects were under medical surveillance and/or had received treatment by a multidisciplinary team consisting of an othorhinolaryngologist and a neurosurgeon of the Erasmus University Medical Center. Tested patients all had a right side vestibular schwannoma and underwent a wait and watch policy (Table 1; subjects N1-N3) after being diagnosed with vestibular schwannoma. Their tumors had been stabile for over 8-10 years on magnetic resonance imaging.
Neurobiology, Issue 75, Neuroscience, Medicine, Anatomy, Physiology, Biomedical Engineering, Ophthalmology, vestibulo ocular reflex, eye movements, torsion, balance disorders, rotation translation, equilibrium, eye rotation, motion, body rotation, vestibular organ, clinical techniques
Play Button
Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
Authors: Clare L. Protheroe, Henrike (Rianne) J.C. Ravensbergen, Jessica A. Inskip, Victoria E. Claydon.
Institutions: Simon Fraser University .
Orthostatic tolerance (OT) refers to the ability to maintain cardiovascular stability when upright, against the hydrostatic effects of gravity, and hence to maintain cerebral perfusion and prevent syncope (fainting). Various techniques are available to assess OT and the effects of gravitational stress upon the circulation, typically by reproducing a presyncopal event (near-fainting episode) in a controlled laboratory environment. The time and/or degree of stress required to provoke this response provides the measure of OT. Any technique used to determine OT should: enable distinction between patients with orthostatic intolerance (of various causes) and asymptomatic control subjects; be highly reproducible, enabling evaluation of therapeutic interventions; avoid invasive procedures, which are known to impair OT1. In the late 1980s head-upright tilt testing was first utilized for diagnosing syncope2. Since then it has been used to assess OT in patients with syncope of unknown cause, as well as in healthy subjects to study postural cardiovascular reflexes2-6. Tilting protocols comprise three categories: passive tilt; passive tilt accompanied by pharmacological provocation; and passive tilt with combined lower body negative pressure (LBNP). However, the effects of tilt testing (and other orthostatic stress testing modalities) are often poorly reproducible, with low sensitivity and specificity to diagnose orthostatic intolerance7. Typically, a passive tilt includes 20-60 min of orthostatic stress continued until the onset of presyncope in patients2-6. However, the main drawback of this procedure is its inability to invoke presyncope in all individuals undergoing the test, and corresponding low sensitivity8,9. Thus, different methods were explored to increase the orthostatic stress and improve sensitivity. Pharmacological provocation has been used to increase the orthostatic challenge, for example using isoprenaline4,7,10,11 or sublingual nitrate12,13. However, the main drawback of these approaches are increases in sensitivity at the cost of unacceptable decreases in specificity10,14, with a high positive response rate immediately after administration15. Furthermore, invasive procedures associated with some pharmacological provocations greatly increase the false positive rate1. Another approach is to combine passive tilt testing with LBNP, providing a stronger orthostatic stress without invasive procedures or drug side-effects, using the technique pioneered by Professor Roger Hainsworth in the 1990s16-18. This approach provokes presyncope in almost all subjects (allowing for symptom recognition in patients with syncope), while discriminating between patients with syncope and healthy controls, with a specificity of 92%, sensitivity of 85%, and repeatability of 1.1±0.6 min16,17. This allows not only diagnosis and pathophysiological assessment19-22, but also the evaluation of treatments for orthostatic intolerance due to its high repeatability23-30. For these reasons, we argue this should be the "gold standard" for orthostatic stress testing, and accordingly this will be the method described in this paper.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Neurobiology, Kinesiology, Cardiology, tilt test, lower body negative pressure, orthostatic stress, syncope, orthostatic tolerance, fainting, gravitational stress, head upright, stroke, clinical techniques
Play Button
Measuring Cardiac Autonomic Nervous System (ANS) Activity in Children
Authors: Aimée E. van Dijk, René van Lien, Manon van Eijsden, Reinoud J. B. J. Gemke, Tanja G. M. Vrijkotte, Eco J. de Geus.
Institutions: Academic Medical Center - University of Amsterdam, Public Health Service of Amsterdam (GGD), VU University, VU University Medical Center, VU University, VU University Medical Center.
The autonomic nervous system (ANS) controls mainly automatic bodily functions that are engaged in homeostasis, like heart rate, digestion, respiratory rate, salivation, perspiration and renal function. The ANS has two main branches: the sympathetic nervous system, preparing the human body for action in times of danger and stress, and the parasympathetic nervous system, which regulates the resting state of the body. ANS activity can be measured invasively, for instance by radiotracer techniques or microelectrode recording from superficial nerves, or it can be measured non-invasively by using changes in an organ's response as a proxy for changes in ANS activity, for instance of the sweat glands or the heart. Invasive measurements have the highest validity but are very poorly feasible in large scale samples where non-invasive measures are the preferred approach. Autonomic effects on the heart can be reliably quantified by the recording of the electrocardiogram (ECG) in combination with the impedance cardiogram (ICG), which reflects the changes in thorax impedance in response to respiration and the ejection of blood from the ventricle into the aorta. From the respiration and ECG signals, respiratory sinus arrhythmia can be extracted as a measure of cardiac parasympathetic control. From the ECG and the left ventricular ejection signals, the preejection period can be extracted as a measure of cardiac sympathetic control. ECG and ICG recording is mostly done in laboratory settings. However, having the subjects report to a laboratory greatly reduces ecological validity, is not always doable in large scale epidemiological studies, and can be intimidating for young children. An ambulatory device for ECG and ICG simultaneously resolves these three problems. Here, we present a study design for a minimally invasive and rapid assessment of cardiac autonomic control in children, using a validated ambulatory device 1-5, the VU University Ambulatory Monitoring System (VU-AMS, Amsterdam, the Netherlands,
Medicine, Issue 74, Neurobiology, Neuroscience, Anatomy, Physiology, Pediatrics, Cardiology, Heart, Central Nervous System, stress (psychological effects, human), effects of stress (psychological, human), sympathetic nervous system, parasympathetic nervous system, autonomic nervous system, ANS, childhood, ambulatory monitoring system, electrocardiogram, ECG, clinical techniques
Play Button
Non-invasive Assessment of Microvascular and Endothelial Function
Authors: Cynthia Cheng, Constantine Daskalakis, Bonita Falkner.
Institutions: Thomas Jefferson University , Thomas Jefferson University, Thomas Jefferson University .
The authors have utilized capillaroscopy and forearm blood flow techniques to investigate the role of microvascular dysfunction in pathogenesis of cardiovascular disease. Capillaroscopy is a non-invasive, relatively inexpensive methodology for directly visualizing the microcirculation. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary density), by the maximal capillary density (observed during passive venous occlusion). Percent perfused capillaries represents the proportion of all capillaries present that are perfused (functionally active), and is calculated by dividing postocclusive reactive hyperemia capillary density by the maximal capillary density. Both percent capillary recruitment and percent perfused capillaries reflect the number of functional capillaries. The forearm blood flow (FBF) technique provides accepted non-invasive measures of endothelial function: The ratio FBFmax/FBFbase is computed as an estimate of vasodilation, by dividing the mean of the four FBFmax values by the mean of the four FBFbase values. Forearm vascular resistance at maximal vasodilation (FVRmax) is calculated as the mean arterial pressure (MAP) divided by FBFmax. Both the capillaroscopy and forearm techniques are readily acceptable to patients and can be learned quickly. The microvascular and endothelial function measures obtained using the methodologies described in this paper may have future utility in clinical patient cardiovascular risk-reduction strategies. As we have published reports demonstrating that microvascular and endothelial dysfunction are found in initial stages of hypertension including prehypertension, microvascular and endothelial function measures may eventually aid in early identification, risk-stratification and prevention of end-stage vascular pathology, with its potentially fatal consequences.
Medicine, Issue 71, Anatomy, Physiology, Immunology, Pharmacology, Hematology, Diseases, Health Care, Life sciences, Microcirculation, endothelial dysfunction, capillary density, microvascular function, blood vessels, capillaries, capillary, venous occlusion, circulation, experimental therapeutics, capillaroscopy
Play Button
Predicting the Effectiveness of Population Replacement Strategy Using Mathematical Modeling
Authors: John Marshall, Koji Morikawa, Nicholas Manoukis, Charles Taylor.
Institutions: University of California, Los Angeles.
Charles Taylor and John Marshall explain the utility of mathematical modeling for evaluating the effectiveness of population replacement strategy. Insight is given into how computational models can provide information on the population dynamics of mosquitoes and the spread of transposable elements through A. gambiae subspecies. The ethical considerations of releasing genetically modified mosquitoes into the wild are discussed.
Cellular Biology, Issue 5, mosquito, malaria, popuulation, replacement, modeling, infectious disease
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.