JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
CD161+ MAIT Cells Are Severely Reduced in Peripheral Blood and Lymph Nodes of HIV-Infected Individuals Independently of Disease Progression.
PLoS ONE
PUBLISHED: 01-01-2014
Mucosal-associated invariant T (MAIT) cells are characterized by the combined expression of the semi-invariant T cell receptor (TCR) V?7.2, the lectin receptor CD161, as well as IL-18R, and play an important role in antibacterial host defense of the gut. The current study characterized CD161+ MAIT and CD161-TCRV?7.2+ T cell subsets within a large cohort of HIV patients with emphasis on patients with slow disease progression and elite controllers. Mononuclear cells from blood and lymph node samples as well as plasma from 63 patients and 26 healthy donors were analyzed by multicolor flow cytometry and ELISA for IL-18, sCD14 and sCD163. Additionally, MAIT cells were analyzed after in vitro stimulation with different cytokines and/or fixed E.coli. Reduced numbers of CD161+ MAIT cells during HIV infection were detectable in the blood and lymph nodes of all patient groups, including elite controllers. CD161+ MAIT cell numbers did not recover even after successful antiretroviral treatment. The loss of CD161+ MAIT cells was correlated with higher levels of MAIT cell activation; an increased frequency of the CD161-TCRV?7.2+T cell subset in HIV infection was observed. In vitro stimulation of MAIT cells with IL-18 and IL-12, IL-7 and fixed E.coli also resulted in a rapid and additive reduction of the MAIT cell frequency defined by CD161, IL-18R and CCR6. In summary, the irreversible reduction of the CD161+ MAIT cell subset seems to be an early event in HIV infection that is independent of later stages of the disease. This loss appears to be at least partially due to the distinctive vulnerability of MAIT cells to the pronounced stimulation by microbial products and cytokines during HIV-infection.
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Published: 07-06-2014
ABSTRACT
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
19 Related JoVE Articles!
Play Button
New Tools to Expand Regulatory T Cells from HIV-1-infected Individuals
Authors: Mathieu Angin, Melanie King, Marylyn Martina Addo.
Institutions: Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied. Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals. Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.
Infection, Issue 75, Infectious Diseases, Medicine, Immunology, Virology, Cellular Biology, Molecular Biology, Lymphocytes, T-Lymphocytes, Regulatory, HIV, Culture Techniques, flow cytometry, cell culture, Treg expansion, regulatory T cells, CD4+ T cells, Tregs, HIV-1, virus, HIV-1 infection, AIDS, clinical techniques
50244
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
50765
Play Button
In Vitro Assay to Evaluate the Impact of Immunoregulatory Pathways on HIV-specific CD4 T Cell Effector Function
Authors: Filippos Porichis, Meghan G. Hart, Jennifer Zupkosky, Lucie Barblu, Daniel E. Kaufmann.
Institutions: The Ragon Institute of MGH, MIT and Harvard, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM).
T cell exhaustion is a major factor in failed pathogen clearance during chronic viral infections. Immunoregulatory pathways, such as PD-1 and IL-10, are upregulated upon this ongoing antigen exposure and contribute to loss of proliferation, reduced cytolytic function, and impaired cytokine production by CD4 and CD8 T cells. In the murine model of LCMV infection, administration of blocking antibodies against these two pathways augmented T cell responses. However, there is currently no in vitro assay to measure the impact of such blockade on cytokine secretion in cells from human samples. Our protocol and experimental approach enable us to accurately and efficiently quantify the restoration of cytokine production by HIV-specific CD4 T cells from HIV infected subjects. Here, we depict an in vitro experimental design that enables measurements of cytokine secretion by HIV-specific CD4 T cells and their impact on other cell subsets. CD8 T cells were depleted from whole blood and remaining PBMCs were isolated via Ficoll separation method. CD8-depleted PBMCs were then incubated with blocking antibodies against PD-L1 and/or IL-10Rα and, after stimulation with an HIV-1 Gag peptide pool, cells were incubated at 37 °C, 5% CO2. After 48 hr, supernatant was collected for cytokine analysis by beads arrays and cell pellets were collected for either phenotypic analysis using flow cytometry or transcriptional analysis using qRT-PCR. For more detailed analysis, different cell populations were obtained by selective subset depletion from PBMCs or by sorting using flow cytometry before being assessed in the same assays. These methods provide a highly sensitive and specific approach to determine the modulation of cytokine production by antigen-specific T-helper cells and to determine functional interactions between different populations of immune cells.
Immunology, Issue 80, Virus Diseases, Immune System Diseases, HIV, CD4 T cell, CD8 T cell, antigen-presenting cell, Cytokines, immunoregulatory networks, PD-1: IL-10, exhaustion, monocytes
50821
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
51242
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
The Use of Fluorescent Target Arrays for Assessment of T Cell Responses In vivo
Authors: Benjamin J. C. Quah, Danushka K. Wijesundara, Charani Ranasinghe, Christopher R. Parish.
Institutions: Australian National University.
The ability to monitor T cell responses in vivo is important for the development of our understanding of the immune response and the design of immunotherapies. Here we describe the use of fluorescent target array (FTA) technology, which utilizes vital dyes such as carboxyfluorescein succinimidyl ester (CFSE), violet laser excitable dyes (CellTrace Violet: CTV) and red laser excitable dyes (Cell Proliferation Dye eFluor 670: CPD) to combinatorially label mouse lymphocytes into >250 discernable fluorescent cell clusters. Cell clusters within these FTAs can be pulsed with major histocompatibility (MHC) class-I and MHC class-II binding peptides and thereby act as target cells for CD8+ and CD4+ T cells, respectively. These FTA cells remain viable and fully functional, and can therefore be administered into mice to allow assessment of CD8+ T cell-mediated killing of FTA target cells and CD4+ T cell-meditated help of FTA B cell target cells in real time in vivo by flow cytometry. Since >250 target cells can be assessed at once, the technique allows the monitoring of T cell responses against several antigen epitopes at several concentrations and in multiple replicates. As such, the technique can measure T cell responses at both a quantitative (e.g. the cumulative magnitude of the response) and a qualitative (e.g. functional avidity and epitope-cross reactivity of the response) level. Herein, we describe how these FTAs are constructed and give an example of how they can be applied to assess T cell responses induced by a recombinant pox virus vaccine.
Immunology, Issue 88, Investigative Techniques, T cell response, Flow Cytometry, Multiparameter, CTL assay in vivo, carboxyfluorescein succinimidyl ester (CFSE), CellTrace Violet (CTV), Cell Proliferation Dye eFluor 670 (CPD)
51627
Play Button
Development of an IFN-γ ELISpot Assay to Assess Varicella-Zoster Virus-specific Cell-mediated Immunity Following Umbilical Cord Blood Transplantation
Authors: Insaf Salem Fourati, Anne-Julie Grenier, Élyse Jolette, Natacha Merindol, Philippe Ovetchkine, Hugo Soudeyns.
Institutions: Université de Montréal, Université de Montréal, Université de Montréal.
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.  
Immunology, Issue 89, Varicella zoster virus, cell-mediated immunity, T cells, interferon gamma, ELISpot, umbilical cord blood transplantation
51643
Play Button
Isolation of Murine Lymph Node Stromal Cells
Authors: Maria A. S. Broggi, Mathias Schmaler, Nadège Lagarde, Simona W. Rossi.
Institutions: University of Basel and University Hospital Basel.
Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host. Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed.
Immunology, Issue 90, lymph node, lymph node stromal cells, digestion, isolation, enzymes, fibroblastic reticular cell, lymphatic endothelial cell, blood endothelial cell
51803
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
50537
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
50455
Play Button
Peptide-based Identification of Functional Motifs and their Binding Partners
Authors: Martin N. Shelton, Ming Bo Huang, Syed Ali, Kateena Johnson, William Roth, Michael Powell, Vincent Bond.
Institutions: Morehouse School of Medicine, Institute for Systems Biology, Universiti Sains Malaysia.
Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.
Virology, Issue 76, Biochemistry, Immunology, Infection, Infectious Diseases, Molecular Biology, Medicine, Genetics, Microbiology, Genomics, Proteins, Exosomes, HIV, Peptides, Exocytosis, protein trafficking, secretion, HIV-1, Nef, Secretion Modification Region, SMR, peptide, AIDS, assay
50362
Play Button
Artificial Antigen Presenting Cell (aAPC) Mediated Activation and Expansion of Natural Killer T Cells
Authors: James E. East, Wenji Sun, Tonya J. Webb.
Institutions: University of Maryland .
Natural killer T (NKT) cells are a unique subset of T cells that display markers characteristic of both natural killer (NK) cells and T cells1. Unlike classical T cells, NKT cells recognize lipid antigen in the context of CD1 molecules2. NKT cells express an invariant TCRα chain rearrangement: Vα14Jα18 in mice and Vα24Jα18 in humans, which is associated with Vβ chains of limited diversity3-6, and are referred to as canonical or invariant NKT (iNKT) cells. Similar to conventional T cells, NKT cells develop from CD4-CD8- thymic precursor T cells following the appropriate signaling by CD1d 7. The potential to utilize NKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human NKT cells with α-Galactosylceramide (α-GalCer) and a variety of cytokines8. Importantly, these cells retained their original phenotype, secreted cytokines, and displayed cytotoxic function against tumor cell lines. Thus, ex vivo expanded NKT cells remain functional and can be used for adoptive immunotherapy. However, NKT cell based-immunotherapy has been limited by the use of autologous antigen presenting cells and the quantity and quality of these stimulator cells can vary substantially. Monocyte-derived DC from cancer patients have been reported to express reduced levels of costimulatory molecules and produce less inflammatory cytokines9,10. In fact, murine DC rather than autologous APC have been used to test the function of NKT cells from CML patients11. However, this system can only be used for in vitro testing since NKT cells cannot be expanded by murine DC and then used for adoptive immunotherapy. Thus, a standardized system that relies on artificial Antigen Presenting Cells (aAPC) could produce the stimulating effects of DC without the pitfalls of allo- or xenogeneic cells12, 13. Herein, we describe a method for generating CD1d-based aAPC. Since the engagement of the T cell receptor (TCR) by CD1d-antigen complexes is a fundamental requirement of NKT cell activation, antigen: CD1d-Ig complexes provide a reliable method to isolate, activate, and expand effector NKT cell populations.
Immunology, Issue 70, Medicine, Molecular Biology, Cellular Biology, Microbiology, Cancer Biology, Natural killer T cells, in vitro expansion, cancer immunology, artificial antigen presenting cells, adoptive transfer
4333
Play Button
An In vitro Co-infection Model to Study Plasmodium falciparum-HIV-1 Interactions in Human Primary Monocyte-derived Immune Cells
Authors: Guadalupe Andreani, Dominic Gagnon, Robert Lodge, Michel J. Tremblay, Dave Richard.
Institutions: CHUL (CHUQ), Quebec City, Quebec, Canada.
Plasmodium falciparum, the causative agent of the deadliest form of malaria, and human immunodeficiency virus type-1 (HIV-1) are among the most important health problems worldwide, being responsible for a total of 4 million deaths annually1. Due to their extensive overlap in developing regions, especially Sub-Saharan Africa, co-infections with malaria and HIV-1 are common, but the interplay between the two diseases is poorly understood. Epidemiological reports have suggested that malarial infection transiently enhances HIV-1 replication and increases HIV-1 viral load in co-infected individuals2,3. Because this viremia stays high for several weeks after treatment with antimalarials, this phenomenon could have an impact on disease progression and transmission. The cellular immunological mechanisms behind these observations have been studied only scarcely. The few in vitro studies investigating the impact of malaria on HIV-1 have demonstrated that exposure to soluble malarial antigens can increase HIV-1 infection and reactivation in immune cells. However, these studies used whole cell extracts of P. falciparum schizont stage parasites and peripheral blood mononuclear cells (PBMC), making it hard to decipher which malarial component(s) was responsible for the observed effects and what the target host cells were4,5. Recent work has demonstrated that exposure of immature monocyte-derived dendritic cells to the malarial pigment hemozoin increased their ability to transfer HIV-1 to CD4+ T cells6,7, but that it decreased HIV-1 infection of macrophages8. To shed light on this complex process, a systematic analysis of the interactions between the malaria parasite and HIV-1 in different relevant human primary cell populations is critically needed. Several techniques for investigating the impact of HIV-1 on the phagocytosis of micro-organisms and the effect of such pathogens on HIV-1 replication have been described. We here present a method to investigate the effects of P. falciparum-infected erythrocytes on the replication of HIV-1 in human primary monocyte-derived macrophages. The impact of parasite exposure on HIV-1 transcriptional/translational events is monitored by using single cycle pseudotyped viruses in which a luciferase reporter gene has replaced the Env gene while the effect on the quantity of virus released by the infected macrophages is determined by measuring the HIV-1 capsid protein p24 by ELISA in cell supernatants.
Immunology, Issue 66, Infection, Medicine, Malaria, HIV-1, Monocyte-Derived Macrophages, PBMC, Red blood cells, Dendritic Cells, Co-infections, Parasites, Plasmodium falciparum, AIDS
4166
Play Button
Expansion of Human Peripheral Blood γδ T Cells using Zoledronate
Authors: Makoto Kondo, Takamichi Izumi, Nao Fujieda, Atsushi Kondo, Takeharu Morishita, Hirokazu Matsushita, Kazuhiro Kakimi.
Institutions: University of Tokyo Hospital, MEDINET Co., Ltd.
Human γδ T cells can recognize and respond to a wide variety of stress-induced antigens, thereby developing innate broad anti-tumor and anti-infective activity.1 The majority of γδ T cells in peripheral blood have the Vγ9Vδ2 T cell receptor. These cells recognize antigen in a major histocompatibility complex-independent manner and develop strong cytolytic and Th1-like effector functions.1Therefore, γδ T cells are attractive candidate effector cells for cancer immunotherapy. Vγ9Vδ2 T cells respond to phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is synthesized in bacteria via isoprenoid biosynthesis;2 and isopentenyl pyrophosphate (IPP), which is produced in eukaryotic cells through the mevalonate pathway.3 In physiological condition, the generation of IPP in nontransformed cell is not sufficient for the activation of γδ T cells. Dysregulation of mevalonate pathway in tumor cells leads to accumulation of IPP and γδ T cells activation.3 Because aminobisphosphonates (such as pamidronate or zoledronate) inhibit farnesyl pyrophosphate synthase (FPPS), the enzyme acting downstream of IPP in the mevalonate pathway, intracellular levels of IPP and sensitibity to γδ T cells recognition can be therapeutically increased by aminobisphosphonates. IPP accumulation is less efficient in nontransfomred cells than tumor cells with a pharmacologically relevant concentration of aminobisphosphonates, that allow us immunotherapy for cancer by activating γδ T cells with aminobisphosphonates. 4 Interestingly, IPP accumulates in monocytes when PBMC are treated with aminobisphosphonates, because of efficient drug uptake by these cells. 5 Monocytes that accumulate IPP become antigen-presenting cells and stimulate Vγ9Vδ2 T cells in the peripheral blood.6 Based on these mechanisms, we developed a technique for large-scale expansion of γδ T cell cultures using zoledronate and interleukin-2 (IL-2).7 Other methods for expansion of γδ T cells utilize the synthetic phosphoantigens bromohydrin pyrophosphate (BrHPP)8 or 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP).9 All of these methods allow ex vivo expansion, resulting in large numbers of γδ T cells for use in adoptive immunotherapy. However, only zoledronate is an FDA-approved commercially available reagent. Zoledronate-expanded γδ T cells display CD27-CD45RA- effector memory phenotype and thier function can be evaluated by IFN-γ production assay. 7
Immunology, Issue 55, γδ T Cell, zoledronate, PBMC, peripheral blood mononuclear cells
3182
Play Button
Preparation and Use of HIV-1 Infected Primary CD4+ T-Cells as Target Cells in Natural Killer Cell Cytotoxic Assays
Authors: Zachary B. Davis, Jeffrey P. Ward, Edward Barker.
Institutions: Rush University Medical Center.
Natural killer (NK) cells are a vital component of the innate immune response to virus-infected cells. It is important to understand the ability of NK cells to recognize and lyse HIV-1 infected cells because identifying any aberrancy in NK cell function against HIV-infected cells could potentially lead to therapies that would enhance their cytolytic activity. There is a need to use HIV-infected primary T-cell blasts as target cells rather then infected-T-cell lines in the cytotoxicity assays. T-cell lines, even without infection, are quite susceptible to NK cell lysis. Furthermore, it is necessary to use autologous primary cells to prevent major histocompatibility complex class I mismatches between the target and effector cell that will result in lysis. Early studies evaluating NK cell cytolytic responses to primary HIV-infected cells failed to show significant killing of the infected cells 1,2. However, using HIV-1 infected primary T-cells as target cells in NK cell functional assays has been difficult due the presence of contaminating uninfected cells 3. This inconsistent infected cell to uninfected cell ratio will result in variation in NK cell killing between samples that may not be due to variability in donor NK cell function. Thus, it would be beneficial to work with a purified infected cell population in order to standardize the effector to target cell ratios between experiments 3,4. Here we demonstrate the isolation of a highly purified population of HIV-1 infected cells by taking advantage of HIV-1's ability to down-modulate CD4 on infected cells and the availability of commercial kits to remove dead or dying cells 3-6. The purified infected primary T-cell blasts can then be used as targets in either a degranulation or cytotoxic assay with purified NK cells as the effector population 5-7. Use of NK cells as effectors in a degranulation assay evaluates the ability of an NK cell to release the lytic contents of specialized lysosomes 8 called "cytolytic granules". By staining with a fluorochrome conjugated antibody against CD107a, a lysosomal membrane protein that becomes expressed on the NK cell surface when the cytolytic granules fuse to the plasma membrane, we can determine what percentage of NK cells degranulate in response to target cell recognition. Alternatively, NK cell lytic activity can be evaluated in a cytotoxic assay that allows for the determination of the percentage of target cells lysed by release of 51Cr from within the target cell in the presence of NK cells.
Immunology, Issue 49, innate immunity, HIV-1, natural killer cell, cytolytic assay, degranulation assay, primary lymphocytes
2668
Play Button
Accurate and Simple Measurement of the Pro-inflammatory Cytokine IL-1β using a Whole Blood Stimulation Assay
Authors: Barbara Yang, Tuyet-Hang Pham, Raphaela Goldbach-Mansky, Massimo Gadina.
Institutions: National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Arthritis and Musculoskeletal and Skin Diseases.
Inflammatory processes resulting from the secretion of soluble mediators by immune cells, lead to various manifestations in skin, joints and other tissues as well as altered cytokine homeostasis. The innate immune system plays a crucial role in recognizing pathogens and other endogenous danger stimuli. One of the major cytokines released by innate immune cells is Interleukin (IL)-1. Therefore, we utilize a whole blood stimulation assay in order to measure the secretion of inflammatory cytokines and specifically of the pro-inflammatory cytokine IL-1β 1, 2, 3. Patients with genetic dysfunctions of the innate immune system causing autoinflammatory syndromes show an exaggerated release of mature IL-1β upon stimulation with LPS alone. In order to evaluate the innate immune component of patients who present with inflammatory-associated pathologies, we use a specific immunoassay to detect cellular immune responses to pathogen-associated molecular patterns (PAMPs), such as the gram-negative bacterial endotoxin, lipopolysaccharide (LPS). These PAMPs are recognized by pathogen recognition receptors (PRRs), which are found on the cells of the innate immune system 4, 5, 6, 7. A primary signal, LPS, in conjunction with a secondary signal, ATP, is necessary for the activation of the inflammasome, a multiprotein complex that processes pro-IL-1β to its mature, bioactive form 4, 5, 6, 8, 9, 10. The whole blood assay requires minimal sample manipulation to assess cytokine production when compared to other methods that require labor intensive isolation and culturing of specific cell populations. This method differs from other whole blood stimulation assays; rather than diluting samples with a ratio of RPMI media, we perform a white blood cell count directly from diluted whole blood and therefore, stimulate a known number of white blood cells in culture 2. The results of this particular whole blood assay demonstrate a novel technique useful in elucidating patient cohorts presenting with autoinflammatory pathophysiologies.
Immunology, Issue 49, Interleukin-1 beta, autoinflammatory, whole blood stimulation, lipopolysaccharide, ATP, cytokine production, pattern-recognition receptors, pathogen-associated molecular patterns
2662
Play Button
Multicolor Flow Cytometry Analyses of Cellular Immune Response in Rhesus Macaques
Authors: Hong He, Amy N. Courtney, Eric Wieder, K. Jagannadha Sastry.
Institutions: MD Anderson Cancer Center - University of Texas, University of Miami.
The rhesus macaque model is currently the best available model for HIV-AIDS with respect to understanding the pathogenesis as well as for the development of vaccines and therapeutics1,2,3. Here, we describe a method for the detailed phenotypic and functional analyses of cellular immune responses, specifically intracellular cytokine production by CD4+ and CD8+ T cells as well as the individual memory subsets. We obtained precise quantitative and qualitative measures for the production of interferon gamma (INF-) and interleukin (IL) -2 in both CD4+ and CD8+ T cells from the rhesus macaque PBMC stimulated with PMA plus ionomycin (PMA+I). The cytokine profiles were different in the different subsets of memory cells. Furthermore, this protocol provided us the sensitivity to demonstrate even minor fractions of antigen specific CD4+ and CD8+ T cell subsets within the PBMC samples from rhesus macaques immunized with an HIV envelope peptide cocktail vaccine developed in our laboratory. The multicolor flow cytometry technique is a powerful tool to precisely identify different populations of T cells 4,5 with cytokine-producing capability6 following non-specific or antigen-specific stimulation 5,7.
JoVE Immunology, Issue 38, Immune Response, Cytokine Production, Flow Cytometry, HIV, Rhesus Macaque, T Cells, Intracellular Cytokine Staining, FACS
1743
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
793
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
791
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.