JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Genome-Wide Microarray Expression and Genomic Alterations by Array-CGH Analysis in Neuroblastoma Stem-Like Cells.
PLoS ONE
PUBLISHED: 01-01-2014
Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-?) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-? and Hh signalling pathways, confirming the inhibition of repressors of TGF-? pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.
Authors: Jennifer Y. Kennett, Spencer K. Watson, Heather Saprunoff, Cameron Heryet, Wan L. Lam.
Published: 08-05-2008
ABSTRACT
Array comparative genomic hybridization (array CGH) is a method for detecting gains and losses of DNA segments or gene dosage in the genome 1. Recent advances in this technology have enabled high resolution comparison of whole genomes for the identification of genetic alterations in cancer and other genetic diseases 2. The Sub-Megabase Resolution Tiling-set array (or SMRT) array is comprised of a set of approximately thirty thousand overlapping bacterial artificial chromosome (BAC) clones that span the human genome in ~100 kilobase pair (kb) segments 2. These BAC targets are individually synthesized and spotted in duplicate on a single glass slide 2-4. Array CGH is based on the principle of competitive hybridization. Sample and reference DNA are differentially labeled with Cyanine-3 and Cyanine-5 fluorescent dyes, and co-hybridized to the array. After an incubation period the unbound samples are washed from the slide and the array is imaged. A freely available custom software package called SeeGH (www.flintbox.ca) is used to process the large volume of data collected - a single experiment generates 53,892 data points. SeeGH visualizes the log2 signal intensity ratio between the 2 samples at each BAC target which is vertically aligned with chromosomal position 5,6. The SMRT array can detect alterations as small as 50 kb in size 7. The SMRT array can detect a variety of DNA rearrangement events including DNA gains, losses, amplifications and homozygous deletions. A unique advantage of the SMRT array is that one can use DNA isolated from formalin fixed paraffin embedded samples. When combined with the low input requirements of unamplified DNA (25-100ng) this allows profiling of precious samples such as those produced by microdissection 7,8. This is attributed to the large size of each BAC hybridization target that allows the binding of sufficient labeled samples to produce signals for detection. Another advantage of this platform is the tolerance of tissue heterogeneity, decreasing the need for tedious tissue microdissection 8. This video protocol is a step-by-step tutorial from labeling the input DNA through to signal acquisition for the whole genome tiling path SMRT array.
24 Related JoVE Articles!
Play Button
Microarray-based Identification of Individual HERV Loci Expression: Application to Biomarker Discovery in Prostate Cancer
Authors: Philippe Pérot, Valérie Cheynet, Myriam Decaussin-Petrucci, Guy Oriol, Nathalie Mugnier, Claire Rodriguez-Lafrasse, Alain Ruffion, François Mallet.
Institutions: Joint Unit Hospices de Lyon-bioMérieux, BioMérieux, Hospices Civils de Lyon, Lyon 1 University, BioMérieux, Hospices Civils de Lyon, Hospices Civils de Lyon.
The prostate-specific antigen (PSA) is the main diagnostic biomarker for prostate cancer in clinical use, but it lacks specificity and sensitivity, particularly in low dosage values1​​. ‘How to use PSA' remains a current issue, either for diagnosis as a gray zone corresponding to a concentration in serum of 2.5-10 ng/ml which does not allow a clear differentiation to be made between cancer and noncancer2 or for patient follow-up as analysis of post-operative PSA kinetic parameters can pose considerable challenges for their practical application3,4. Alternatively, noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease, e.g. PCA3 in prostate cancer5,6 and to reveal uncharacterized aspects of tumor biology. Moreover, data from the ENCODE project published in 2012 showed that different RNA types cover about 62% of the genome. It also appears that the amount of transcriptional regulatory motifs is at least 4.5x higher than the one corresponding to protein-coding exons. Thus, long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) constitute a wide range of putative/candidate transcriptional regulatory sequences, as it is their primary function in infectious retroviruses. HERVs, which are spread throughout the human genome, originate from ancestral and independent infections within the germ line, followed by copy-paste propagation processes and leading to multicopy families occupying 8% of the human genome (note that exons span 2% of our genome). Some HERV loci still express proteins that have been associated with several pathologies including cancer7-10. We have designed a high-density microarray, in Affymetrix format, aiming to optimally characterize individual HERV loci expression, in order to better understand whether they can be active, if they drive ncRNA transcription or modulate coding gene expression. This tool has been applied in the prostate cancer field (Figure 1).
Medicine, Issue 81, Cancer Biology, Genetics, Molecular Biology, Prostate, Retroviridae, Biomarkers, Pharmacological, Tumor Markers, Biological, Prostatectomy, Microarray Analysis, Gene Expression, Diagnosis, Human Endogenous Retroviruses, HERV, microarray, Transcriptome, prostate cancer, Affymetrix
50713
Play Button
Optimization of High Grade Glioma Cell Culture from Surgical Specimens for Use in Clinically Relevant Animal Models and 3D Immunochemistry
Authors: Laura A. Hasselbach, Susan M. Irtenkauf, Nancy W. Lemke, Kevin K. Nelson, Artem D. Berezovsky, Enoch T. Carlton, Andrea D. Transou, Tom Mikkelsen, Ana C. deCarvalho.
Institutions: Henry Ford Hospital.
Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor. Starting with fresh high grade astrocytoma tumors dissociated into single cells, we use the neurosphere assay as an enrichment method for cells presenting cancer stem cell phenotype, including expression of neural stem cell markers, long term self-renewal in vitro, and the ability to form orthotopic xenograft tumors. This method has been previously proposed, and is now in use by several investigators. Based on our experience of dissociating and culturing 125 glioblastoma specimens, we arrived at the detailed protocol we present here, suitable for routine neurosphere culturing of high grade astrocytomas and large scale expansion of tumorigenic cells for preclinical studies. We report on the efficiency of successful long term cultures using this protocol and suggest affordable alternatives for culturing dissociated glioblastoma cells that fail to grow as neurospheres. We also describe in detail a protocol for preserving the neurospheres 3D architecture for immunohistochemistry. Cell cultures enriched in CSCs, capable of generating orthotopic xenograft models that preserve the molecular signatures and heterogeneity of GBMs, are becoming increasingly popular for the study of the biology of GBMs and for the improved design of preclinical testing of potential therapies.
Medicine, Issue 83, Primary Cell Culture, animal models, Nervous System Diseases, Neoplasms, glioblastoma, neurosphere, surgical specimens, long-term self-renewal
51088
Play Button
Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray
Authors: Yvonne Linger, Alexander Kukhtin, Julia Golova, Alexander Perov, Peter Qu, Christopher Knickerbocker, Christopher G. Cooney, Darrell P. Chandler.
Institutions: Akonni Biosystems, Inc..
Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.
Immunology, Issue 86, MDR-TB, gel element microarray, closed amplicon, drug resistance, rifampin, isoniazid, streptomycin, ethambutol
51256
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
51285
Play Button
Isolation of Cancer Stem Cells From Human Prostate Cancer Samples
Authors: Samuel J. Vidal, S. Aidan Quinn, Janis de la Iglesia-Vicente, Dennis M. Bonal, Veronica Rodriguez-Bravo, Adolfo Firpo-Betancourt, Carlos Cordon-Cardo, Josep Domingo-Domenech.
Institutions: Icahn School of Medicine at Mount Sinai, Memorial Sloan-Kettering Cancer Center.
The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice.
Medicine, Issue 85, Cancer Stem Cells, Tumor Initiating Cells, Prostate Cancer, HLA class I, Primary Prostate Cancer, Castration Resistant Prostate Cancer, Metastatic Prostate Cancer, Human Tissue Samples, Intratumoral heterogeneity
51332
Play Button
DNA-affinity-purified Chip (DAP-chip) Method to Determine Gene Targets for Bacterial Two component Regulatory Systems
Authors: Lara Rajeev, Eric G. Luning, Aindrila Mukhopadhyay.
Institutions: Lawrence Berkeley National Laboratory.
In vivo methods such as ChIP-chip are well-established techniques used to determine global gene targets for transcription factors. However, they are of limited use in exploring bacterial two component regulatory systems with uncharacterized activation conditions. Such systems regulate transcription only when activated in the presence of unique signals. Since these signals are often unknown, the in vitro microarray based method described in this video article can be used to determine gene targets and binding sites for response regulators. This DNA-affinity-purified-chip method may be used for any purified regulator in any organism with a sequenced genome. The protocol involves allowing the purified tagged protein to bind to sheared genomic DNA and then affinity purifying the protein-bound DNA, followed by fluorescent labeling of the DNA and hybridization to a custom tiling array. Preceding steps that may be used to optimize the assay for specific regulators are also described. The peaks generated by the array data analysis are used to predict binding site motifs, which are then experimentally validated. The motif predictions can be further used to determine gene targets of orthologous response regulators in closely related species. We demonstrate the applicability of this method by determining the gene targets and binding site motifs and thus predicting the function for a sigma54-dependent response regulator DVU3023 in the environmental bacterium Desulfovibrio vulgaris Hildenborough.
Genetics, Issue 89, DNA-Affinity-Purified-chip, response regulator, transcription factor binding site, two component system, signal transduction, Desulfovibrio, lactate utilization regulator, ChIP-chip
51715
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Enrichment for Chemoresistant Ovarian Cancer Stem Cells from Human Cell Lines
Authors: Jennifer M. Cole, Stancy Joseph, Christopher G. Sudhahar, Karen D. Cowden Dahl.
Institutions: Indiana University School of Medicine.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.
Medicine, Issue 91, cancer stem cells, stem cell markers, ovarian cancer, chemoresistance, cisplatin, cancer progression
51891
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Generation of a Novel Dendritic-cell Vaccine Using Melanoma and Squamous Cancer Stem Cells
Authors: Qiao Li, Lin Lu, Huimin Tao, Carolyn Xue, Seagal Teitz-Tennenbaum, John H. Owen, Jeffrey S Moyer, Mark E.P. Prince, Alfred E. Chang, Max S. Wicha.
Institutions: University of Michigan, University of Michigan, University of Michigan.
We identified cancer stem cell (CSC)-enriched populations from murine melanoma D5 syngeneic to C57BL/6 mice and the squamous cancer SCC7 syngeneic to C3H mice using ALDEFLUOR/ALDH as a marker, and tested their immunogenicity using the cell lysate as a source of antigens to pulse dendritic cells (DCs). DCs pulsed with ALDHhigh CSC lysates induced significantly higher protective antitumor immunity than DCs pulsed with the lysates of unsorted whole tumor cell lysates in both models and in a lung metastasis setting and a s.c. tumor growth setting, respectively. This phenomenon was due to CSC vaccine-induced humoral as well as cellular anti-CSC responses. In particular, splenocytes isolated from the host subjected to CSC-DC vaccine produced significantly higher amount of IFNγ and GM-CSF than splenocytes isolated from the host subjected to unsorted tumor cell lysate pulsed-DC vaccine. These results support the efforts to develop an autologous CSC-based therapeutic vaccine for clinical use in an adjuvant setting.
Cancer Biology, Issue 83, Cancer stem cell (CSC), Dendritic cells (DC), Vaccine, Cancer immunotherapy, antitumor immunity, aldehyde dehydrogenase
50561
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
50478
Play Button
Cell Population Analyses During Skin Carcinogenesis
Authors: Dongsheng Gu, Qipeng Fan, Jingwu Xie.
Institutions: Indiana University.
Cancer development is a multiple-step process involving many cell types including cancer precursor cells, immune cells, fibroblasts and endothelial cells. Each type of cells undergoes signaling and functional changes during carcinogenesis. The current challenge for many cancer researchers is to dissect these changes in each cell type during the multiple-step process in vivo. In the last few years, the authors have developed a set of procedures to isolate different cell populations during skin cancer development using K14creER/R26-SmoM2YFP mice. The procedure is divided into 6 parts: 1) generating appropriate mice for the study (K14creER+ and R26-SmoM2YFP+ mice in this protocol); 2) inducing SmoM2YFP expression in mouse skin; 3) preparing mouse skin biopsies; 4) isolating epidermis from skin; 5) preparing single cells from epidermis; 6) labeling single cell populations for flow cytometry analysis. Generation of sufficient number of mice with the right genotype is the limiting step in this protocol, which may take up to two months. The rest of steps take a few hours to a few days. Within this protocol, we also include a section for troubleshooting. Although we focus on skin cancer, this protocol may be modified to apply for other animal models of human diseases.
Cancer Biology, Issue 78, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Genetics, Anatomy, Physiology, Oncology, Cocarcinogenesis, animal models, Skin cancer, basal cell carcinoma, hedgehog, smoothened, keratinocyte, cancer, carcinogenesis, cells, cell culture, animal model
50311
Play Button
Global Gene Expression Analysis Using a Zebrafish Oligonucleotide Microarray Platform
Authors: Samuel M. Peterson, Jennifer L. Freeman.
Institutions: Purdue University.
Gene microarray technology permits quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. Gene microarray technology is used in numerous biological disciplines in a variety of applications including global gene expression analysis in relation to developmental stage, to a disease state, and in toxic responses. Herein, we include a demonstration of global gene expression analysis using a comprehensive zebrafish-specific oligonucleotide microarray platform. The zebrafish expression microarray platform contains 385,000 probes, 60 base pairs in length, interrogating 37,157 targets with up to 12 probes per target. For this platform, all cDNA and genomic information available for the zebrafish was collected from various genomic databases including Ensembl (http://www.ensembl.org), VEGA (http://vega.sanger.ac.uk), UCSC (http://genome.ucsc.edu), and ZFIN (http://www.zfin.org). As a result this expression array provides complete coverage of the current zebrafish transcriptome. The zebrafish expression microarray was printed by Roche NimbleGen (Madison, WI). This technical demonstration includes the fluorescent labeling of a cDNA product, hybridization of the labeled cDNA product to the microarray platform, and array scanning for signal acquisition using the one color analysis strategy.
Developmental Biology, Issue 30, zebrafish, microarray, genomics, gene expression, RNA, oligonucleotide
1471
Play Button
Isolation, Enrichment, and Maintenance of Medulloblastoma Stem Cells
Authors: Xi Huang, Tatiana Ketova, Ying LItingtung, Chin Chiang.
Institutions: Vanderbilt University.
Brain tumors have been suggested to possess a small population of stem cells that are the root cause of tumorigenesis. Neurosphere assays have been generally adopted to study the nature of neural stem cells, including those derived from normal and tumorous tissues. However, appreciable amounts of differentiation and cell death are common in cultured neurospheres likely due to sub-optimal condition such as accessibility of all cells within sphere aggregates to culture medium. Medulloblastoma, the most common pediatric CNS tumor, is characterized by its rapid progression and tendency to spread along the entire brain-spinal axis with dismal clinical outcome. Medulloblastoma is a neuroepithelial tumor of the cerebellum, accounting for 20% and 40% of intracranial and posterior fossa tumor in childhood, respectively1. It is now well established that Shh signaling stimulates proliferation of cerebellar granule neuron precursors (CGNPs) during cerebellar development 2-4. Numerous studies using mouse models, in which the Shh pathway is constitutively activated, have linked Shh signaling with medulloblastoma 5-9. A recent report has shown that a subset of medulloblastoma cells derived from Patched1LacZ/+ mice are cancer stem cells, which are capable of initiating and propogating tumors 10. Here we describe an efficient method to isolate, enrich and maintain tumor stem cells derived from several mouse models of medulloblastoma, with constitutively activated Shh pathway due to a mutation in Smoothened (11, hereon referred as SmoM2), a GPCR that is critical for Shh pathway activation. In every isolated medulloblastoma tissue, we were able to establish numerous highly proliferative colonies. These cells robustly expressed several neural stem cell markers such as Nestin and Sox2, can undergo serial passages (greater than 20) and were clonogenic. While these cultured tumor stem cells were relatively small, often bipoar with high nuclear to cytoplasmic ratio when cultured under conditions favoring stem cell growth, they dramatically altered their morphology, extended multiple cellular processes, flattened and withdrew from the cell cycle upon switching to a cell culture medium supplemented with 10% fetal bovine serum. More importantly, these tumor stem cells differentiated into Tuj1+ or NeuN+ neurons, GFAP+ astrocytes and CNPase+ oligodendrocytes, thus highlighting their multi-potency. Furthermore, these cells were capable of propagating secondary medulloblastomas when orthotopically transplanted into host mice.
Medicine, Issue 43, medulloblastoma, stem cells, isolation, in vitro culture
2086
Play Button
Isolation of Stem Cells from Human Pancreatic Cancer Xenografts
Authors: Zeshaan Rasheed, Qiuju Wang, William Matsui.
Institutions: Johns Hopkins University School of Medicine.
Cancer stem cells (CSCs) have been identified in a growing number of malignancies and are functionally defined by their ability to undergo self-renewal and produce differentiated progeny1. These properties allow CSCs to recapitulate the original tumor when injected into immunocompromised mice. CSCs within an epithelial malignancy were first described in breast cancer and found to display specific cell surface antigen expression (CD44+CD24low/-)2. Since then, CSCs have been identified in an increasing number of other human malignancies using CD44 and CD24 as well as a number of other surface antigens. Physiologic properties, including aldehyde dehydrogenase (ALDH) activity, have also been used to isolate CSCs from malignant tissues3-5. Recently, we and others identified CSCs from pancreatic adenocarcinoma based on ALDH activity and the expression of the cell surface antigens CD44 and CD24, and CD1336-8. These highly tumorigenic populations may or may not be overlapping and display other functions. We found that ALDH+ and CD44+CD24+ pancreatic CSCs are similarly tumorigenic, but ALDH+ cells are relatively more invasive8. In this protocol we describe a method to isolate viable pancreatic CSCs from low-passage human xenografts9. Xenografted tumors are harvested from mice and made into a single-cell suspension. Tissue debris and dead cells are separated from live cells and then stained using antibodies against CD44 and CD24 and using the ALDEFLUOR reagent, a fluorescent substrate of ALDH10. CSCs are then isolated by fluorescence activated cell sorting. Isolated CSCs can then be used for analytical or functional assays requiring viable cells.
Cellular Biology, Issue 43, mouse models, pancreatic cancer, cancer stem cell, xenograft, fluorescent activated cell sorting, aldehyde dehydrogenase, CD44, CD24
2169
Play Button
Determining Genetic Expression Profiles in C. elegans Using Microarray and Real-time PCR
Authors: Kassandra L. Guthmueller, Maggie L. Yoder, Andrea M. Holgado.
Institutions: Southwestern Oklahoma State University.
Synapses are composed of a presynaptic active zone in the signaling cell and a postsynaptic terminal in the target cell. In the case of chemical synapses, messages are carried by neurotransmitters released from presynaptic terminals and received by receptors on postsynaptic cells. Our previous research in Caenorhabditis elegans has shown that VSM-1 negatively regulates exocytosis. Additionally, analysis of synapses in vsm-1 mutants showed that animals lacking a fully functional VSM-1 have increased synaptic connectivity. Based on these preliminary findings, we hypothesized that C. elegans VSM-1 may play a crucial role in synaptogenesis. To test this hypothesis, double-labeled microarray analysis was performed, and gene expression profiles were determined. First, total RNA was isolated, reversely transcribed to cDNA, and hybridized to the DNA microarrays. Then, in-silico analysis of fluorescent probe hybridization revealed significant induction of many genes coding for members of the major sperm protein family (MSP) in mutants with enhanced synaptogenesis. MSPs are the major component of sperm in C. elegans and appear to signal nematode oocyte maturation and ovulation . In fruit flies, Chai and colleagues 1 demonstrated that MSP-like molecules regulate presynaptic bouton number and size at the neuromuscular junction. Moreover, analysis performed by Tsuda and coworkers 2 suggested that MSPs may act as ligands for Eph receptors and trigger receptor tyrosine kinase signaling cascades. Lastly, real time PCR analysis corroborated that the gene coding for MSP-32 is induced in vsm-1(ok1468) mutants. Taken together, research performed by our laboratory has shown that vsm-1 mutants have a significant increase in synaptic density, which could be mediated by MSP-32 signaling.
Molecular Biology, Issue 53, microarray, C. elegans, real-time PCR, neuroscience
2777
Play Button
Competitive Genomic Screens of Barcoded Yeast Libraries
Authors: Andrew M. Smith, Tanja Durbic, Julia Oh, Malene Urbanus, Michael Proctor, Lawrence E. Heisler, Guri Giaever, Corey Nislow.
Institutions: University of Toronto, University of Toronto, University of Toronto, National Human Genome Research Institute, NIH, Stanford University , University of Toronto.
By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000 - 1,000,000 gene-gene and drug-gene interactions in a single experiment.
Biochemistry, Issue 54, chemical biology, chemogenomics, chemical probes, barcode microarray, next generation sequencing
2864
Play Button
Isolation of CD133+ Liver Stem Cells for Clonal Expansion
Authors: C. Bart Rountree, Wei Ding, Hein Dang, Colleen VanKirk, Gay M. Crooks.
Institutions: Pennsylvania State College of Medicine, Pennsylvania State College of Medicine, University of California Los Angeles, School of Medicine.
Liver stem cell, or oval cells, proliferate during chronic liver injury, and are proposed to differentiate into both hepatocytes and cholangiocytes. In addition, liver stem cells are hypothesized to be the precursors for a subset of liver cancer, Hepatocellular carcinoma. One of the primary challenges to stem cell work in any solid organ like the liver is the isolation of a rare population of cells for detailed analysis. For example, the vast majority of cells in the liver are hepatocytes (parenchymal fraction), which are significantly larger than non-parenchymal cells. By enriching the specific cellular compartments of the liver (i.e. parenchymal and non-parenchymal fractions), and selecting for CD45 negative cells, we are able to enrich the starting population of stem cells by over 600-fold.The proceduresdetailed in this report allow for a relatively rare population of cells from a solid organ to be sorted efficiently. This process can be utilized to isolateliver stem cells from normal murine liver as well as chronic liver injury models, which demonstrate increased liver stem cell proliferation. This method has clear advantages over standard immunohistochemistry of frozen or formalin fixed liver as functional studies using live cells can be performed after initial co-localization experiments. To accomplish the procedure outlined in this report, a working relationship with a research based flow-cytometry core is strongly encouraged as the details of FACS isolation are highly dependent on specialized instrumentation and a strong working knowledge of basic flow-cytometry procedures. The specific goal of this process is to isolate a population of liver stem cells that can be clonally expanded in vitro.
Developmental Biology, Issue 56, CD133, liver stem cell, oval cell, liver cancer stem cell, stem cell, cell isolation, non-parenchymal fraction of liver, flow cytometry
3183
Play Button
Evaluation of Cancer Stem Cell Migration Using Compartmentalizing Microfluidic Devices and Live Cell Imaging
Authors: Yu Huang, Basheal Agrawal, Paul A. Clark, Justin C. Williams, John S. Kuo.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison.
In the last 40 years, the United States invested over 200 billion dollars on cancer research, resulting in only a 5% decrease in death rate. A major obstacle for improving patient outcomes is the poor understanding of mechanisms underlying cellular migration associated with aggressive cancer cell invasion, metastasis and therapeutic resistance1. Glioblastoma Multiforme (GBM), the most prevalent primary malignant adult brain tumor2, exemplifies this difficulty. Despite standard surgery, radiation and chemotherapies, patient median survival is only fifteen months, due to aggressive GBM infiltration into adjacent brain and rapid cancer recurrence2. The interactions of aberrant cell migratory mechanisms and the tumor microenvironment likely differentiate cancer from normal cells3. Therefore, improving therapeutic approaches for GBM require a better understanding of cancer cell migration mechanisms. Recent work suggests that a small subpopulation of cells within GBM, the brain tumor stem cell (BTSC), may be responsible for therapeutic resistance and recurrence. Mechanisms underlying BTSC migratory capacity are only starting to be characterized1,4. Due to a limitation in visual inspection and geometrical manipulation, conventional migration assays5 are restricted to quantifying overall cell populations. In contrast, microfluidic devices permit single cell analysis because of compatibility with modern microscopy and control over micro-environment6-9. We present a method for detailed characterization of BTSC migration using compartmentalizing microfluidic devices. These PDMS-made devices cast the tissue culture environment into three connected compartments: seeding chamber, receiving chamber and bridging microchannels. We tailored the device such that both chambers hold sufficient media to support viable BTSC for 4-5 days without media exchange. Highly mobile BTSCs initially introduced into the seeding chamber are isolated after migration though bridging microchannels to the parallel receiving chamber. This migration simulates cancer cellular spread through the interstitial spaces of the brain. The phase live images of cell morphology during migration are recorded over several days. Highly migratory BTSC can therefore be isolated, recultured, and analyzed further. Compartmentalizing microfluidics can be a versatile platform to study the migratory behavior of BTSCs and other cancer stem cells. By combining gradient generators, fluid handling, micro-electrodes and other microfluidic modules, these devices can also be used for drug screening and disease diagnosis6. Isolation of an aggressive subpopulation of migratory cells will enable studies of underlying molecular mechanisms.
Medicine, Issue 58, BTSC, Tumor, cancer stem cell, cell migration, microfluidics, Glioblastoma Multiforme, GBM, chemotaxis, amoeboid, mesenchymal, haptotaxis, PDMS
3297
Play Button
Processing of Primary Brain Tumor Tissue for Stem Cell Assays and Flow Sorting
Authors: Chitra Venugopal, Nicole M. McFarlane, Sara Nolte, Branavan Manoranjan, Sheila K. Singh.
Institutions: McMaster University .
Brain tumors are typically comprised of morphologically diverse cells that express a variety of neural lineage markers. Only a relatively small fraction of cells in the tumor with stem cell properties, termed brain tumor initiating cells (BTICs), possess an ability to differentiate along multiple lineages, self-renew, and initiate tumors in vivo. We applied culture conditions originally used for normal neural stem cells (NSCs) to a variety of human brain tumors and found that this culture method specifically selects for stem-like populations. Serum-free medium (NSC) allows for the maintenance of an undifferentiated stem cell state, and the addition of bFGF and EGF allows for the proliferation of multi-potent, self-renewing, and expandable tumorspheres. To further characterize each tumor's BTIC population, we evaluate cell surface markers by flow cytometry. We may also sort populations of interest for more specific characterization. Self-renewal assays are performed on single BTICs sorted into 96 well plates; the formation of tumorspheres following incubation at 37 °C indicates the presence of a stem or progenitor cell. Multiple cell numbers of a particular population can also be sorted in different wells for limiting dilution analysis, to analyze self-renewal capacity. We can also study differential gene expression within a particular cell population by using single cell RT-PCR. The following protocols describe our procedures for the dissociation and culturing of primary human samples to enrich for BTIC populations, as well as the dissociation of tumorspheres. Also included are protocols for staining for flow cytometry analysis or sorting, self-renewal assays, and single cell RT-PCR.
Cancer Biology, Issue 67, Stem Cell Biology, Medicine, Cellular Biology, Molecular Biology, BTIC (brain tumor initiating cells), tumorspheres, self-renewal, flow cytometry, single cell RT-PCR
4111
Play Button
Patient Derived Cell Culture and Isolation of CD133+ Putative Cancer Stem Cells from Melanoma
Authors: Yvonne Welte, Cathrin Davies, Reinhold Schäfer, Christian R.A. Regenbrecht.
Institutions: Charité - Universitätsmedizin Berlin, Free University Berlin, Charité - Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin.
Despite improved treatments options for melanoma available today, patients with advanced malignant melanoma still have a poor prognosis for progression-free and overall survival. Therefore, translational research needs to provide further molecular evidence to improve targeted therapies for malignant melanomas. In the past, oncogenic mechanisms related to melanoma were extensively studied in established cell lines. On the way to more personalized treatment regimens based on individual genetic profiles, we propose to use patient-derived cell lines instead of generic cell lines. Together with high quality clinical data, especially on patient follow-up, these cells will be instrumental to better understand the molecular mechanisms behind melanoma progression. Here, we report the establishment of primary melanoma cultures from dissected fresh tumor tissue. This procedure includes mincing and dissociation of the tissue into single cells, removal of contaminations with erythrocytes and fibroblasts as well as primary culture and reliable verification of the cells' melanoma origin. Recent reports revealed that melanomas, like the majority of tumors, harbor a small subpopulation of cancer stem cells (CSCs), which seem to exclusively fuel tumor initiation and progression towards the metastatic state. One of the key markers for CSC identification and isolation in melanoma is CD133. To isolate CD133+ CSCs from primary melanoma cultures, we have modified and optimized the Magnetic-Activated Cell Sorting (MACS) procedure from Miltenyi resulting in high sorting purity and viability of CD133+ CSCs and CD133- bulk, which can be cultivated and functionally analyzed thereafter.
Cancer Biology, Issue 73, Medicine, Stem Cell Biology, Cellular Biology, Molecular Biology, Biomedical Engineering, Genetics, Oncology, Primary cell culture, melanoma, MACS, cancer stem cells, CD133, cancer, prostate cancer cells, melanoma, stem cells, cell culture, personalized treatment
50200
Play Button
Design and Use of Multiplexed Chemostat Arrays
Authors: Aaron W. Miller, Corrie Befort, Emily O. Kerr, Maitreya J. Dunham.
Institutions: University of Washington.
Chemostats are continuous culture systems in which cells are grown in a tightly controlled, chemically constant environment where culture density is constrained by limiting specific nutrients.1,2 Data from chemostats are highly reproducible for the measurement of quantitative phenotypes as they provide a constant growth rate and environment at steady state. For these reasons, chemostats have become useful tools for fine-scale characterization of physiology through analysis of gene expression3-6 and other characteristics of cultures at steady-state equilibrium.7 Long-term experiments in chemostats can highlight specific trajectories that microbial populations adopt during adaptive evolution in a controlled environment. In fact, chemostats have been used for experimental evolution since their invention.8 A common result in evolution experiments is for each biological replicate to acquire a unique repertoire of mutations.9-13 This diversity suggests that there is much left to be discovered by performing evolution experiments with far greater throughput. We present here the design and operation of a relatively simple, low cost array of miniature chemostats—or ministats—and validate their use in determination of physiology and in evolution experiments with yeast. This approach entails growth of tens of chemostats run off a single multiplexed peristaltic pump. The cultures are maintained at a 20 ml working volume, which is practical for a variety of applications. It is our hope that increasing throughput, decreasing expense, and providing detailed building and operation instructions may also motivate research and industrial application of this design as a general platform for functionally characterizing large numbers of strains, species, and growth parameters, as well as genetic or drug libraries.
Genetics, Issue 72, Molecular Biology, Microbiology, Biochemistry, Cellular Biology, Basic Protocols, Genomics, Eukaryota, Bacteria, Biological Phenomena, Metabolic Phenomena, Genetic Phenomena, Microbiological Phenomena, Life sciences, chemostat, evolution, experimental evolution, Ministat, yeast, E. coli., Physiology, Continuous culture, high throughput, arrays, cell culture
50262
Play Button
Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis
Authors: Shan Zong, Shuyun Deng, Kenian Chen, Jia Qian Wu.
Institutions: The University of Texas Graduate School of Biomedical Sciences at Houston.
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Genetics, Issue 93, EML Cells, Self-renewal, Differentiation, Hematopoietic precursor cell, RNA-Sequencing, Data analysis
52104
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.